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Delayed boundary control of a heat equation

under discrete-time point measurements

Anton Selivanov and Emilia Fridman

Abstract— We consider a reaction-diffusion PDE under con-
tinuously applied boundary control that contains a constant
delay. The point measurements are sampled in time and
transmitted through a network with a time-varying delay. We
construct an observer that predicts the value of the state
allowing to compensate for the constant boundary delay. Using a
time-varying injection gain, we ensure that the estimation error
vanishes exponentially with a desired decay rate if the delays
and sampling intervals are small enough while the number
of sensors is large enough. The stability conditions, obtained
via a Lyapunov-Krasovskii functional, are formulated in terms
of linear matrix inequalities. By applying the backstepping
transformation to the future state estimation, we derive a
boundary controller that guarantees the exponential stability
of the closed-loop system with an arbitrary decay rate smaller
than that of the observer. The results are demonstrated by an
example.

I. INTRODUCTION

Networked control systems (NCSs) are systems with spa-

tially distributed sensors, controllers, and actuators connected

through a shared communication network. NCSs have be-

come widespread due to great advantages they bring, such

as long distance control, reduced system wiring, low cost,

increased system agility, ease of reconfiguration, diagnosis,

and maintenance [1], [2]. The main theoretical challenges

caused by networked architecture are data sampling and

transmission delays, which have been extensively studied for

finite-dimensional systems. In particular, predictors, origi-

nally proposed for continuous-time measurements [3], [4],

have been extended to discrete-time measurements for both

static [5], [6], [7], [8] and dynamic feedback [9], [10], [11].

Another way to compensate for input delay is to use

an observer that predicts the future value of the state.

Such observer is obtained by shifting the plant in time

and adding a correcting term, which is proportional to the

difference between the last available measurement and cor-

respondingly delayed observer output. The stability analysis

consists in proving the observer’s robustness with respect to

measurement delays. This idea can be used to analyse chain

observers [12], [13], [14], [15] and sequential predictors [16],

[17], [18], [19], [20]. In [21] a time-varying injection gain

was introduced in the observer to improve its exponential

convergence under delayed measurements. This result was

revisited in [22] to increase the period of a sampled-data

system.
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A constant input delay can be compensated in a reaction-

diffusion system by representing it as a PDE-PDE cas-

cade [23], which is then analysed using the backstepping

transformation [24], [25]. However, this method is hard

to combine with data sampling. In [26], [27], [28], some

qualitative stability results are provided for sampled-data

infinite-dimensional systems of a general form. The same

problem can be studied using Galerkin’s method (see, e.g.,

[29], [30], [31] and references therein). The general idea is

to approximate the PDE by a finite dimensional system that

captures the dominant dynamics of the PDE. A drawback of

such approach is the inherent loss of process information due

to truncation before the controller design and stability analy-

sis. Thus, it is difficult to guarantee the stability/performance

for the original system.

Some qualitative stability results for state-feedback bound-

ary control in the presence of data sampling have been

recently obtained in [32]. The analysis is based on the Fourier

method and Input-to-State Stability ideas of [33].

Quantitative stability results, formulated in terms of lin-

ear matrix inequalities, were obtained in [34], [35], [36],

[37] using Lyapunov-Krasovskii functionals. These works

concern parabolic systems with sampled measurements and

controls applied through distributed shape functions and

zero-order holds. So far, it is not clear whether such approach

can be extended to state-feedback boundary control with

sampled measurements or delayed input, since such control

is represented by an unbounded operator.

In this paper, we design an observer-based boundary

controller for a reaction-diffusion PDE with sampled mea-

surements and continuous in time input that contains a

constant delay. Inspired by the ideas of sequential predictors

[16], [17], [18], [19], [20], we construct an observer that

estimates the future value of the state using the sampled

measurements. By introducing a time-varying injection gain

[21] and performing the stability analysis in a manner similar

to [34], [37], we show that the observation error exponen-

tially vanishes with any desired decay rate if the delays and

sampling are small enough while the number of sensors is

large enough. Such observer allows to eliminate the constant

input delay. Applying the backstepping transformation [24],

[25] to the predictive state estimation, we obtain a target

system that contains the exponentially vanishing estimation

error in the differential equation. Proving its Input-to-State

Stability with respect to this error, we guarantee the expo-

nential stability of the closed-loop system with an arbitrary

decay rate smaller than that of the observer.



Fig. 1: System representation

Lemma 1 (Wirtinger inequality [38]): For f ∈H1(a, b),

‖f‖2L2 ≤ (b− a)2

π2
‖f ′‖2L2 if f(a) = f(b) = 0,

‖f‖2L2 ≤ 4(b− a)2

π2
‖f ′‖2L2 if f(a) = 0 or f(b) = 0.

II. PLANT DESCRIPTION AND OBSERVER CONSTRUCTION

We consider the system schematically presented in Fig. 1.

The plant is governed by the reaction-diffusion PDE

zt(x, t) = zxx(x, t) + az(x, t),

dLz(0, t) + (1− dL)zx(0, t) = 0,

dRz(1, t) + (1− dR)zx(1, t) = u(t− r),

(1)

where z : [0, 1] × [0,∞) → R is a state and u(t − r)
with r ≥ 0 is a delayed boundary control. Each constant

dL, dR ∈ {0, 1} sets either the Dirichlet or Neumann

boundary condition. If u(t) = 0, the plant is unstable for

a large enough reaction coefficient a.

We assume that N in-domain sensors measure the state at

space points 0 ≤ x1 < x2 < . . . < xN ≤ 1 at time instants

0 = s0 < s1 < s2 < . . . such that

sk+1 − sk ≤ h, lim sk = ∞.

The measurements z(xi, sk) are transmitted through a net-

work with a time-varying delay ηk ∈ [0, ηM ] such that the

observer/controller updating times tk = sk + ηk form a non-

decreasing sequence: tk ≤ tk+1.

We construct an observer that estimates the future value

of the state: ẑ(x, t) ≈ z(x, t+ r),

ẑt(x, t) = ẑxx(x, t) + aẑ(x, t) + Le−αo(t+r−sk)×
∑N

i=1 bi(x)[ẑ(xi, sk − r)− z(xi, sk)], t ∈ [tk, tk+1),
dLẑ(0, t) + (1− dL)ẑx(0, t) = 0,
dRẑ(1, t) + (1− dR)ẑx(1, t) = u(t),
ẑ(·, t) = 0, t ≤ t0.

(2)

The observer (2) is obtained by shifting the plant (1) in time

by r and introducing a correcting term. The time-varying

injection gain Le−αo(t+r−sk) will allow to guarantee that

the observation error decays with the rate αo [21]. The shape

functions bi ∈ L2(0, 1) are given by

bi(x) =

{

0, x /∈ Ωi,

1, x ∈ Ωi,
(3)

Fig. 2: Partition of [0, 1] for point measurements

where {Ωi} is a partition of [0, 1] such that1 xi ∈ Ωi (Fig. 2).

Due to (1), (2), the observation/prediction error z̄(x, t) =
ẑ(x, t− r)− z(x, t) satisfies (if u(t) = 0 for t < t0)

z̄t = z̄xx + az̄, t ∈ [0, t0 + r),

z̄t = z̄xx + az̄ + Le−αo(t−sk)
∑N

i=1 bi(x)z̄(xi, sk)
t ∈ [tk + r, tk+1 + r),

dLz̄(0, t) + (1− dL)z̄x(0, t) = 0,
dRz̄(1, t) + (1− dR)z̄x(1, t) = 0,
z̄(·, 0) = −z(·, 0).

(4)

In a manner similar to the proof of [39, Theorem 7.7], one

can show that (4) has a unique strong solution on [0,∞)
for the initial conditions z̄(·, 0) ∈ H1(0, 1) subject to the

boundary conditions.

Proposition 1: For positive α0, α1 let there exist a scalar

G and positive scalars Si, Ri, pi with i = 1, 2, such that2

Φ < 0, α1p2 ≤ 2p1,
[

R2 G
G R2

]

≥ 0,

with Φ = {Φij} being a symmetric matrix composed from

Φ11 = −R1e
−α1r + S1 + 2p1(a+ αo) + α1

−π2(2p1 − α1p2)
max{dL,dR}
4−3dLdR

,

Φ12 = 1− p1 + p2(a+ αo),
Φ13 = R1e

−α1r,
Φ14 = Φ16 = p1L,
Φ22 = −2p2 + r2R1 + (h+ ηM )2R2,
Φ24 = Φ26 = p2L,
Φ33 = −(R1 + S1 − S2)e

−α1r −R2e
−α1τM ,

Φ34 = Φ45 = (R2 −G)e−α1τM ,
Φ35 = Ge−α1τM ,
Φ44 = −2(R2 −G)e−α1τM − α1,
Φ55 = −(R2 + S2)e

−α1τM ,

Φ66 = − α1p2π
2

4maxi |Ωi|2
,

where τM = h+ηM+r. Then the system (4) is exponentially

stable with the decay rate αo, i.e.,

‖z̄(·, t)‖H1 ≤ C̄e−αot‖z̄(·, 0)‖H1 , t ≥ 0 (5)

for some C̄ > 0. Moreover,

‖σ(·, t)‖L2 ≤ Cσe
−αot‖z(·, 0)‖H1 , t ≥ 0 (6)

for some Cσ > 0, where

σ(x, t) =
∑N

i=1 bi(x)z̄(xi, t), x ∈ [0, 1], t ≥ 0. (7)

1It is reasonable to choose {Ωi} that minimizes maxi |Ωi|
2MATLAB codes for solving the LMIs are available at https://

github.com/AntonSelivanov/CDC17

https://github.com/AntonSelivanov/CDC17
https://github.com/AntonSelivanov/CDC17


Proof: Let ζ(x, t) = eαotz̄(x, t). For t ≥ t0 + r, (4)

implies

ζt = ζxx + (a+ αo)ζ + L
∑N

i=1 bi(x)ζ(xi, t− τ(t)),
dLζ(0, t) + (1− dL)ζx(0, t) = 0,
dRζ(1, t) + (1− dR)ζx(1, t) = 0,

(8)

where

τ(t) = t− sk, t ∈ [tk + r, tk+1 + r), k ∈ N0,
r ≤ τ(t) ≤ τM = r + h+ ηM .

Consider the Lyapunov-Krasovskii functional

Vζ = V1 + V2 + VS1 + VR1 + VS2 + VR2, (9)

where

V1 =

∫ 1

0

ζ2(x, t) dx,

V2 = p2

∫ 1

0

ζ2x(x, t) dx,

VS1 = S1

∫ 1

0

∫ t

t−r

e−α1(t−s)ζ2(x, s) ds dx,

VR1 = rR1

∫ 1

0

∫ 0

−r

∫ t

t+θ

e−α1(t−s)ζ2s (x, s) ds dθ dx,

VS2 = S2

∫ 1

0

∫ t−r

t−τM

e−α1(t−s)ζ2(x, s) ds dx,

VR2 = (h+ηM )R2

∫ 1

0

∫ −r

−τM

∫ t

t+θ

e−α1(t−s)ζ2s (x, s) ds dθ dx.

Similarly to [40], we formally set ζ(·, t) = ζ(·, 0) for t < 0
so that Vζ is defined on3 [t0 + r − τM ,∞). For t ≥ t0 + r,

V̇1 + α1V1 = 2
∫ 1

0
ζζt + α1

∫ 1

0
ζ2,

V̇2 + α1V2 = 2p2
∫ 1

0
ζxζxt + α1p2

∫ 1

0
ζ2x,

V̇S1 + α1VS1 = S1

∫ 1

0
ζ2 − S1e

−α1r
∫ 1

0
ζ2(x, t− r) dx,

V̇S2 + α1VS2 = S2e
−α1r

∫ 1

0
ζ2(x, t− r) dx

−S2e
−α1τM

∫ 1

0
ζ2(x, t− τM ) dx.

Using Jensen’s inequality [41, Proposition B.8],

V̇R1 + α1VR1 =

r2R1

∫ 1

0

ζ2t (x, t) dx−rR1

∫ 1

0

∫ t

t−r

e−α1(t−s)ζ2s (x, s) ds dx

≤r2R1

∫ 1

0

ζ2t (x, t) dx−R1e
−α1r

∫ 1

0

(

ζ(x, t)−ζ(x, t−r)
)2
dx.

Jensen’s inequality and reciprocally convex approach [42,

Theorem 1] allow to obtain4

V̇R2 + α1VR2 ≤ (h+ ηM )2R2

∫ 1

0
ζ2t (x, t) dx− e−α1τM×

∫ 1

0

[

ζ(x,t−r)−ζ(x,t−τ(t))
ζ(x,t−τ(t))−ζ(x,t−τM )

]T
[

R2 G
G R2

]

[

ζ(x,t−r)−ζ(x,t−τ(t))
ζ(x,t−τ(t))−ζ(x,t−τM )

]

dx.

Instead of replacing ζt with the right-hand side of (8), we

employ the descriptor method [43]. Namely, (8) implies

0 = 2
∫ 1

0
[p1ζ(x, t) + p2ζt(x, t)][−ζt(x, t) + ζxx(x, t)

+(a+ αo)ζ(x, t) + L
∑N

i=1 bi(x)ζ(xi, t− τ(t))] dx,

3This is required for (15) to be meaningful
4Similar calculation is given in [37, (A.1)] in more details

which right-hand side will be added to V̇ζ . Denote

κ(x, t) = ζ(xi, t)− ζ(x, t), x ∈ Ωi, i ∈ 1:N. (10)

Then the latter can be rewritten as

0= 2
∑N

i=1

∫

Ωi

[p1ζ(x, t) + p2ζt(x, t)][−ζt(x, t) + ζxx(x, t)

+(a+ αo)ζ(x, t) + Lκ(x, t− τ(t))
+Lζ(x, t− τ(t))] dx.

(11)

Integrating by parts, we obtain

2p1
∑N

i=1

∫

Ωi

ζζxx = −2p1
∑N

i=1

∫

Ωi

ζ2x,

2p2
∑N

i=1

∫

Ωi

ζtζxx = −2p2
∫ 1

0
ζxtζx = −V̇2.

(12)

Since α1p2 ≤ 2p1, Lemma 1 implies

0 ≤ (2p1 − α1p2)max{dL, dR}×
[

∫ 1

0
ζ2x(x, t) dx− π2

4−3dLdR

∫ 1

0
ζ2(x, t) dx

]

.
(13)

Denote [xLi , x
R
i ) = Ωi. Since κ(xi, t) = 0 and κx = −ζx,

∫

Ωi

κ2 =
∫ xi

xL

i

κ2 +
∫ xR

i

xi

κ2
Lem.1

≤ 4|Ωi|
2

π2

[

∫ xi

xL

i

ζ2x +
∫ xR

i

xi

ζ2x

]

≤ 4maxi |Ωi|
2

π2

∫

Ωi

ζ2x.
(14)

Therefore, for any α2 > 0,

−α2 sup
θ∈[t−τM ,t]

Vζ(θ) ≤ −α2Vζ(t− τ(t))

≤−α2

N
∑

i=1

∫

Ωi

ζ2(x, t−τ(t))dx−α2p2

N
∑

i=1

∫

Ωi

ζ2x(x, t−τ(t))dx

≤ −α2

N
∑

i=1

∫

Ωi

ζ2(x, t− τ(t))dx

− α2p2π
2

4maxi |Ωi|2
N
∑

i=1

∫

Ωi

κ2(x, t− τ(t))dx.

Consider the matrix Ψ that coincides with Φ except for

Ψ44 = −2(R2 −G)e−α1τM − α2,

Ψ66 = − α2p2π
2

4maxi |Ωi|2
.

Since Φ < 0 is a strict inequality, Ψ < 0 for large enough

α2 < α1. By adding the right-hand sides of (11), (13) to V̇ζ
and using (12), we obtain

V̇ζ+ α1Vζ − α2 supθ∈[t−τM ,t] Vζ(θ)

≤
∑N

i=1

∫

Ωi

ψT (x, t)Ψψ(x, t) dx

−(1−max{dL, dR})(2p1 − α1p2)‖ζx(·, t)‖2L2

with ψ(x, t) = col{ζ, ζt, ζ(x, t − r), ζ(x, t − τ(t)), ζ(x, t −
τM ), κ(x, t− τ(t))}. Since Ψ < 0 and 2p1 ≥ α1p2,

V̇ζ(t) ≤ −α1Vζ(t) + α2 sup
θ∈[t−τM ,t]

Vζ(θ), t ≥ t0 + r.

The Halanay inequality [44, Lemma 4.2] implies

Vζ(t) ≤ e−ᾱ(t−t0−r) sup
θ∈[t0+r−τM ,t0+r]

Vζ(θ), t ≥ t0 + r,

(15)

where ᾱ is a unique and positive solution of ᾱ=α1−α2e
ᾱτM .



For t ∈ [0, t0 + r), (4) implies (8) with L = 0. Then

calculations similar to the above imply V̇ζ(t) ≤ δVζ(t) for

t ∈ [0, t0 + r) with large enough δ. Therefore,

Vζ(t) ≤ eδtVζ(0) ≤ eδ(t0+r)Vζ(0), t ∈ [0, t0 + r].

Moreover, since we set ζ(·, t) = ζ(·, 0) for t < 0,

Vζ(t) = Vζ(0), t ∈ [t0 + r − τM , 0].

Consequently,

sup
θ∈[t0+r−τM ,t0+r]

Vζ(θ) ≤ eδ(t0+r)Vζ(0) ≤ CV ‖ζ(·, 0)‖2H1

for some CV > 0. Recalling that ζ(x, t) = eαotz̄(x, t), the

latter and (15) yield

‖z̄(·, t)‖2H1 = e−2αot‖ζ(·, t)‖2H1 ≤ e−2αot

min{1,p2}
Vζ(t)

≤ C̄2e−2αot‖ζ(·, 0)‖2H1 = C̄2e−2αot‖z̄(·, 0)‖2H1

for t ≥ 0 with some C̄ > 0. This proves (5).

Using the notation (10), bi(x)ζ(xi, t) = bi(x)(ζ(x, t) +
κ(x, t)) for any x ∈ [0, 1]. Therefore,

∫ 1

0
σ2 =

∫ 1

0

(

∑N
i=1 bi(x)ζ(xi, t)

)2

dx

=
∫ 1

0
(ζ(x, t) + κ(x, t))2

(

∑N
i=1 bi(x)

)2

dx

≤ 2
∫ 1

0
κ2 + 2

∫ 1

0
ζ2

(14)

≤2max
{

1, 4maxi |Ωi|
2

p2π2

}

Vζ(t)

≤ C2
σe

−2αot‖z̄(·, 0)‖2H1 = C2
σe

−2αot‖z(·, 0)‖2H1

for t ≥ 0 with some Cσ > 0. This proves (6).

Remark 1: Using the standard arguments for time-delay

systems [44], one can show that the LMIs of Proposition 1

are feasible for any given αo if the delays r, ηM and sampling

h are small enough while the maximum subdomain size

maxi |Ωi| is small enough.

III. BOUNDARY CONTROLLER SYNTHESIS

A boundary controller for (1) is constructed based on the

estimation ẑ using the backstepping transformation [24], [25]

w(x, t) = ẑ(x, t)−
∫ x

0

k(x, y)ẑ(y, t) dy, (16)

where k(x, y) is the solution of

kxx(x, y)− kyy(x, y) = λk(x, y),
k(x, x) = −λ

2x,
dLk(x, 0) + (1− dL)ky(x, 0) = 0

(17)

with some λ ∈ R. Such kernel k(x, y) exists for any λ and

is bounded (see, e.g., [25, Theorem 2.1]). Let

u(t) =
∫ 1

0
k(1, y)ẑ(y, t) dy if dR = 1,

u(t) = k(1, 1)ẑ(1, t) +
∫ 1

0
kx(1, y)ẑ(y, t) dy if dR = 0

(18)

for t ≥ t0 and u(t) = 0 for t < t0. Then, performing

calculations similar to those in [25, Chapter 2.2], we have

wt(x, t) = wxx(x, t)− (λ− a)w(x, t) + v(x, t),

dLw(0, t) + (1− dL)wx(0, t) = 0,

dRw(1, t) + (1− dR)wx(1, t) = 0,

w(·, t0) = 0

(19)

for t ≥ t0, where

v(x, t) = Le−αo(t+r−sk)×
[

σ(x, sk)−
∫ x

0
k(x, y)σ(y, sk) dy

]

, t ∈ [tk, tk+1)

with σ(x, t) defined in (7).

Proposition 2: Under the assumptions of Proposition 1, if

λ > αc + a− max{dL, dR}π2

4− 3dLdR + π2
, (20)

where αc > 0, then the solutions of the system (19) satisfy

‖w(·, t)‖H1 ≤ Cwe
−min{αo,αc}t‖z(·, 0)‖H1 , t ≥ t0 (21)

with some Cw > 0.

Proof: Consider Vw = Vw1 + Vw2 with

Vw1 =
∫ 1

0
w2(x, t) dx, Vw2 =

∫ 1

0
w2

x(x, t) dx.

We have

V̇w1 = 2
∫ 1

0
wwxx − 2(λ− a)

∫ 1

0
w2 + 2

∫ 1

0
wv.

Since

2
∫ 1

0
wwxx = −2

∫ 1

0
w2

x (integration by parts)

2
∫ 1

0
wv ≤ 2µ

∫ 1

0
w2 + 1

2µ

∫ 1

0
v2 (Young’s inequality)

with an arbitrary µ > 0, we obtain

V̇w1 ≤ −2
∫ 1

0
w2

x − 2(λ− a− µ)
∫ 1

0
w2 + 1

2µ

∫ 1

0
v2.

Using integration by parts, we have

V̇w2 = 2
∫ 1

0
wxwxt = −2

∫ 1

0
wxxwt

= −2
∫ 1

0
w2

xx + 2(λ− a)
∫ 1

0
wxxw − 2

∫ 1

0
wxxv.

Since

2(λ− a)
∫ 1

0
wxxw = −2(λ− a)

∫ 1

0
w2

x (int. by parts),

−2
∫ 1

0
wxxv ≤ 2

∫ 1

0
w2

xx + 1
2

∫ 1

0
v2 (Young’s inequality),

we obtain

V̇w2 ≤ −2(λ− a)
∫ 1

0
w2

x + 1
2

∫ 1

0
v2.

Summing up, for any µ > 0

V̇w + 2αcVw ≤ −2(1 + λ− a− αc)‖wx‖2L2

− 2(λ− a− αc − µ)‖w‖2L2
+

(

1
2µ + 1

2

)

∫ 1

0
v2.

The condition (20) yields 1 + λ− a− αc > 0. Then, using

−‖wx‖2L2

Lem.1

≤ −max{dL,dR}π2

4−3dLdR
‖w‖2L2

,

and (20), for small enough µ > 0, we obtain

V̇w ≤ −2αcVw +
(

1
2µ + 1

2

)

∫ 1

0
v2.

Since k(x, y) is bounded, there exists Cv > 0 such that
∫ 1

0
v2(x, t) dx ≤ Cve

−2αo(t−sk)‖σ(·, sk)‖2L2

(6)

≤ CvC
2
σe

−2αot‖z(·, 0)‖2H1 .

Summing up,

V̇w(t) ≤ −2αcVw(t)+

(

1

2µ
+

1

2

)

CvC
2
σe

−2αot‖z(·, 0)‖2H1 .



Fig. 3: The state z(x, t) Fig. 4: The estimation/prediction ẑ(x, t)

If αc 6= αo, the comparison principle implies (21) (note that

Vw(t0) = 0). If (20) holds for αc = αo, it remains true for

slightly larger α′
c > αc. Then (21) holds for α′

c 6= αo, what

implies (21) for αc.

Corollary 1: If the assumptions of Proposition 1 are sat-

isfied, the observer-based boundary controller (2), (17), (18)

with λ satisfying (20) makes the system (1) exponentially

stable with the decay rate min{αo, αc}, i.e.,

‖z(·, t)‖H1 ≤ Cze
−min{αo,αc}t‖z(·, 0)‖H1 , t ≥ 0. (22)

with some Cz > 0.

Proof: The transformation (16) has an inverse, which is

bounded in H1 norm (see, e.g., [25]). Therefore, there exists

a constant C̃ such that

‖ẑ(·, t)‖H1≤ C̃‖w(·, t)‖H1

(21)

≤ C̃Cwe
−min{αo,αc}t‖z(·, 0)‖H1

for t ≥ t0. Since z(x, t) = ẑ(x, t − r) − z̄(x, t), the latter

together with (5) imply (22).

Remark 2: One can achieve an arbitrary decay rate in

(22) if the delays and sampling are small enough while

the number of sensors is large enough. This follows from

Remark 1 and solvability of (17) for any λ satisfying (20).

IV. EXAMPLE

Consider the plant (1) with a = 10, r = 0.05, dL = 1,

dR = 0, which is unstable with u(t − r) = 0. Assume

there are N = 10 in-domain sensors transmitting point

measurements with the sampling period h = 0.01 and time-

varying network delay ηk ≤ ηM = 0.01. The conditions

of Proposition 1 are satisfied with L = −10, αo = 0.48,

α1 = 1. Therefore, the observer (2) provides a prediction of

the state that converges with the rate αo. Taking αc = 0.48,

we derive the boundary controller (18) with

k(1, 1) = −λ
2 , kx(1, y) = −λy

I2

(√
λ(1−y2)

)

1−y2 ,

where λ = a+αo−π2/(4+π2)+10−5 and I2 is the Modified

Bessel Function. Corollary 1 guarantees exponential stability

of the plant with the decay rate min{αo, αc} = 0.48.

Fig. 5: ‖z(·, t)‖L2 (blue solid line) and ‖ẑ(·, t− r)‖L2 (red

dashed line)

Fig. 6: The error ‖z(·, t)− ẑ(·, t− r)‖L2

The numerical simulations were performed with

z(x, 0) = 5 sin
(πx

2

)

and randomly chosen ηk ∈ [0, 0.01] such that tk ≤ tk+1.

The results are presented in Figs. 3–6.
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University Press, 1952.
[39] J. C. Robinson, Infinite-dimensional dynamical systems: an introduc-

tion to dissipative parabolic PDEs and the theory of global attractors.
Cambridge University Press, 2001.

[40] K. Liu and E. Fridman, “Delay-dependent methods and the first delay
interval,” Systems & Control Letters, vol. 64, pp. 57–63, 2014.

[41] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston: Birkhäuser, 2003.
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