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Sampled-data relay control of diffusionPDEs

Anton Selivanov, Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel

Abstract

We consider a vector reaction-advection-diffusion equation on a hypercube. The measurements are weighted averages of the state
over different subdomains. These measurements are asynchronously sampled in time. Subject to matched disturbances, the discrete
control signals are applied through shape functions and zero-order holds. The feature of this work is that we consider generalized relay
control: the control signals take their values in a finite set. This allows for networked control through low capacity communication
channels. First, we derive linear matrix inequalities (LMIs) whose feasibility guarantees the ultimate boundedness with a limit
bound proportional to the sampling period. Then we construct a switching procedure for the controller parameters that ensures
semi-global practical stability: for an arbitrarily large domain of initial conditions the trajectories converge to a set whose size does
not depend on the domain size. For the disturbance-free system this procedure guarantees exponential convergence to the origin.
The results are demonstrated by two examples: 2D catalytic slab and a chemical reactor.

Key words: Distributed parameter systems; Relay control; Networked control systems.

1 Introduction

Networked control systems (NCSs), which are comprised
of spatially distributed sensors, actuators, and controllers
connected via a communication network, have become
widespread due to great advantages they bring: long dis-
tance control, low cost, ease of reconfiguration, reduced
system wiring, etc. [1,2]. Networked control of distributed
parameter systems may be applicable to long distance con-
trol of chemical reactors [3] or air polluted areas [4]. One
of the main challenges in NCSs is a measurement sam-
pling. A variety of methods has been developed to analyse
PDEs in the presence of sampling: the discrete-time ap-
proach [5,6], the time-delay approach [7,8], the modal
decomposition techniques [9,10], which were also used for
sampled-data predictive control with state and control
constraints [11,12]. To reduce the amount of transmit-
ted signals, event-triggered approach has been developed
for PDEs [13,14]. In this work we use the time-delay ap-
proach to develop sampled-data relay control for diffusion
equation, where the control signals take their values in a
finite set. This allows for networked control through low
capacity communication channels.

Relay control is a well known approach in a wide range of
technical domains [15]. It has undeniable advantages: sim-
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ple implementation, control saturation/quantization, finite
time convergence, full compensation of matched distur-
bances. However, the analysis of sampled-data relay con-
trol is not a trivial task even for linear finite-dimensional
systems. In [16] it has been shown that relay control does
not lead to the asymptotic stability of a finite-dimensional
system in the presence of input delay. In this case ultimate
boundedness is achieved with a limit bound proportional
to the time-delay bound. In [17] a convex optimization ap-
proach has been used to study generalized relays for finite-
dimensional systems. In that work sampled measurements
were modeled as input delays and the size of the limit set
was proportional to a sampling period.

In this workwe consider sampled-data relay control of semi-
linear diffusion PDEs. We assume that the space domain is
divided into several subdomains. In each subdomain, there
is a sensor, which measures a weighted average of the state
function, and a controller, which influences the dynamics
through a shape function. The control signals are subject
to unknown disturbances, take their values in a finite set,
and remain constant within a sampling period. First, we
derive linear matrix inequalities (LMIs) whose feasibility
guarantees the ultimate boundedness with a limit bound
proportional to the sampling period. Then we construct a
switching procedure for the controller parameters that en-
sures semi-global practical stability: for an arbitrarily large
domain of initial conditions the trajectories converge to a
set whose size does not depend on the domain size. For the
disturbance-free system this procedure guarantees expo-
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nential convergence to the origin. The results are demon-
strated by two examples: 2D catalytic slab and a chemical
reactor. Preliminary results, presented in [18], are gener-
alized here to a vector system with multidimensional do-
main, convection term, reaction term, and asynchronous
sampling.

Notations: N0 = {0}∪N, 1 : Ns = {1, 2, . . . , Ns},H1(Ω) is
the Sobolev space of absolutely continuous functions with
square integrable first derivatives, div f is the divergence
of a vector field f , ∇z(x, t) is the gradient with respect to
x if z is scalar and ∇z(x, t) = col{∇z1, . . . ,∇zM} if z =
(z1, . . . , zM )T . Given a set S ⊂ R

N , l(S) is its diameter,
λ(S) is its volume, Int{S} is the interior, conv{S} is the
closed convex hull. For a convex polytope P, ρ ∈ R, we
denote ρP = {ρv | v ∈ P}. For a matrix P ∈ R

N×N , P > 0
denotes that it is symmetric and positive-definite, λmax(P )
is the maximum eigenvalue, ⊗ stands for the Kronecker
product.

Lemma 1 (Exponential Wirtinger inequality [19])
Let a, b, α ∈ R, 0 ≤ W ∈ R

n×n, and f : [a, b] → R
n be an

H1 function such that f(a) = 0 or f(b) = 0. Then
∫ b

a
e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt.

Lemma 2 (Wirtinger inequality on hypercube [8])
Let Ω = [0, 1]N and f ∈ H1(Ω) be a scalar function such
that f |∂Ω = 0. Then

Nπ2
∫

Ω
f2(x) dx ≤

∫

Ω
‖∇f(x)‖2 dx.

Lemma 3 (Poincaré inequality on rectangle [20])
Let Ω ⊂ RN be rectangular with a diameter l(Ω) and
f ∈ H1(Ω) be a scalar function such that

∫

Ω
f(x) dx = 0.

Then
∫

Ω
f2(x) dx ≤ l2(Ω)

π2

∫

Ω
‖∇f(x)‖2 dx.

2 Preliminaries and problem formulation

2.1 Lyapunov-based relay control of ODEs

Before proceeding to PDEs, we explain the essential idea
of the Lyapunov-based relay control for ODEs. Consider
the plant

ẋ = Ax+B(u+ w), x ∈ R
n, u, w ∈ R

such that (A,B) is stabilizable. Then there existK ∈ R
1×n

and 0 < P ∈ R
n×n such that P (A−BK)+(A−BK)TP <

0. For V = 1
2x

TPx one has

V̇ = xTP [Ax+B(u+ w ±Kx)]

= xTP [A−BK]x+ xTPB(u+ w +Kx).

If one requires |w| ≤ ρK0 and guarantees |Kx| ≤ (1−ρ)K0

for some ρ ∈ [0, 1), then w +Kx ∈ [−K0,K0]. Taking

u = −K0 signx
TPB = arg min

v∈[−K0,K0]
xTPBv,

Fig. 1. The system representation

one gets

xTPBu ≤ xTPB(−w −Kx)

for − (w +Kx) ∈ [−K0,K0].
(1)

Then V̇ < 0 for x 6= 0. To guarantee that |Kx(t)| ≤ (1 −
ρ)K0, note that it follows from

V (x(t)) < min
|Kx|≥(1−ρ)K0

V (x). (2)

Theminimum in (2) is positive, since the ellipsoid V (x) = c
with small enough c > 0 lies in the layer |Kx| < (1 −
ρ)K0. Since V (x(t)) cannot increase when |Kx(t)| ≤ (1−
ρ)K0, if (2) holds for t = 0, it remains true for t ≥ 0.
For an arbitrary domain, (2) holds with t = 0 if the relay
controller gain K0 is large enough. This implies the semi-
global stability.

Consider now sampled-data relay control with sampling
0 = t0 < t1 < t2 < . . . given by

u(t) = −K0 signx
T (tk)PB, t ∈ [tk, tk+1).

For the same V one has

V̇ = xTP [A−BK]x+ xTPB(u+ w +Kx)

= xTP [A−BK]x+ xT (tk)PB(u+ w +Kx)

+
∫ t

tk
ẋT (s) dsPB(u+ w +Kx).

By a reasoning similar to the above, the term with xT (tk) is
nonpositive. If ẋ is bounded, the integral term can be made
arbitrarily small by reducing the maximum sampling, i.e.
maxk{tk+1− tk}. These allow to obtain ultimate bounded-
ness proportional to the sampling and disturbance bounds.

In this paper we will extend these ideas to sampled-data
relay control of a diffusion PDE.

2.2 Problem formulation

Consider a semilinear parabolic system

zt(x, t) = ∆Dz(x, t) + β∇z(x, t) +Az(x, t) + f(x, t, z)

+B
∑Ns

j=1 bj(x)[uj(t) + wj(t)], x ∈ Ω, (3)

with the space domain Ω = [0, 1]N , state z : Ω ×
[t0,∞) → R

M , matched disturbances wj(t), and matri-
ces β ∈ R

M×MN , A ∈ R
M×M , B ∈ R

M×L. The dif-
fusion term is defined as ∆Dz = (∆1

Dz1, . . . ,∆M
D zM )T ,
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Fig. 2. Subdomain Ωj and its subset Ωε
j

Fig. 3. Common sampling intervals

where ∆m
Dzm(x, t) = div(Dm(x)∇zm(x, t)) with Dm(x) =

(Dm(x))T ∈ C1(Ω, RN×N ) for m ∈ 1 : M . The space
domain Ω is divided into Ns rectangular subdomains Ωj

(Fig. 1), where the control signals are applied through
shape functions bj(x) ∈ H1(0, 1) such that







bj(x) = 0, x /∈ Ωj ,

bj(x) = 1, x ∈ Ωε
j ,

bj(x) ∈ [0, 1], x ∈ Ωj\Ωε
j

(4)

with Ωε
j being subsets of Ωj depicted in Fig. 2.

Each control signal uj is applied through zero-order hold
changing its value at asynchronous sampling instants t0 =
sj,0 < sj,1 < sj,2 < . . . such that

sj,p+1 − sj,p ≤ h, limp sj,p = ∞, ∀p ∈ N0, j ∈ 1 : Ns.

By [tk, tk+1) we denote common sampling time intervals
where all uj are constant (see Fig. 3). We adopt the nota-
tion tj,k = maxp∈N0

{sj,p | sj,p ≤ tk}. For instance, in Fig. 3
t1,0 = t1,1 = t1,2 = s1,0, t1,3 = t1,4 = s1,1 and so on.

Clearly, tj,k+1−tj,k ≤ h and [tk, tk+1) =
⋂Ns

j=1[tj,k, tj,k+1).

We assume that the measurements of the system (3), (4)
are given by

yj,p =

∫

Ωj

bj(x)z(x, sj,p) dx, j ∈ 1 : Ns, p ∈ N0.

Let V = {v1, v2, . . . , vq} ⊂ R
L be a set of control values.

Consider the generalized sampled-data relay control

uj(t) = argminv∈V yTj,pP1Bv,

t ∈ [sj,p, sj,p+1), j ∈ 1 : Ns, p ∈ N0

(5)

with P1 ∈ R
M×M to be defined later. A concrete form of

the set V is not important for our further analysis. For
instance, if V = {−v, v} with 0 < v ∈ R, the minimum
in (5) is delivered by uj(t) = −v sign{(P1B)T yj,p}, which
coincides with the classical relay control.

Remark 1 For the sake of simplicity, we consider the case
of collocated sensors and actuators, i.e. the measurements
yj,p depend on the controller shape functions bj(x). How-
ever, the results can be extended to the non-collocated case
with the measurements yj,p =

∫

Ωj
b̄j(x)z(x, sj,p) dx pro-

vided ‖bj(x)− b̄j(x)‖ are small enough.

We consider the system (3) under the Dirichlet boundary
conditions

z(x, t)|x∈∂Ω = 0 (6)

and the Neumann boundary conditions

〈zx(x, t), n̄〉|x∈∂Ω = 0, (7)

where n̄ is a unit vector normal to the edge.

We adopt the following assumptions:

1) ∃dm0 : 0 < dm0 I ≤ Dm(x), ∀x ∈ [0, 1], m ∈ 1 : M .
2) conv{V} 6= ∅ and 0 ∈ Int{conv{V}}.
3) ∀j ∈ 1 : Ns, wj ∈ C1 and ∃ρ ∈ [0, 1) such that

wj(t) ∈ −ρ conv{V} ∀t ≥ t0, j ∈ 1 : Ns.

4) f = (f1, . . . , fM )T ∈ C1 and ∀m ∈ 1 : M , z ∈ R
N ,

x ∈ Ω, t ∈ [t0,∞),

(µm
T zm − fm(x, t, z))(fm(x, t, z)− µm

B zm) ≥ 0

for some µm
T ≥ µm

B .
5) There exists K ∈ R

L×M such that the system

zt(x, t) = ∆Dz(x, t)+Az(x, t)+Bu(x, t) t ≥ t0 (8)

is stable under the state-feedback control u(x, t) =
−Kz(x, t).

Assumption 1 determines a parabolic system with mini-
mum diffusion rates dm0 . Assumption 2 is a standard tech-
nical assumption. Assumption 3 allows to compensate the
disturbances using the relay control u ∈ V. Assumption 4
implies that the nonlinearity fm belongs to the sector
[µm

T , µm
B ]. Assumption 5 guarantees that for a large enough

number of subdomains Ns and small enough sampling h,
the finite-dimensional controller uj(t) = −Kyj,p (for j ∈
1 : Ns, t ∈ [sj,p, sj,p+1)) stabilizes the system [8]. Similarly
to Subsection 2.1, this controller can be replaced by relay
control if the system state is bounded (see Remark 3).

Remark 2 In order to verify Assumption 5, consider

V1(t) =

∫

Ω

zT (x, t)P1z(x, t) dx (9)

with P1 = diag{p11, . . . , pm1 } > 0. Then (8) implies

V̇1 = 2

∫

Ω

zTP1[∆Dz + (A−BK)z]. (10)

Using Green’s formula and taking into account the boundary
conditions (6) or (7), we obtain:

2
∫

Ω
zTP1∆Dz = −2

∑M
m=1

∫

Ω
(∇zm)T pm1 Dm∇zm

≤ −2
∫

Ω
(∇z)T (P1D0 ⊗ IN )∇z,

3



where D0 = diag{d10, . . . , dM0 } with dm0 from Assump-
tion 1. For the Dirichlet boundary conditions we can use
the Wirtinger inequality (Lemma 2) to obtain

−2
∫

Ω
(∇z)T (P1D0 ⊗ IN )∇z ≤ −2Nπ2

∫

Ω
zTP1D0z.

Therefore, Assumption 5 is satisfied if

P1[A−BK − µD0] + [A−BK − µD0]
TP1 ≤ 0, (11)

where µ = Nπ2 for (6) and µ = 0 for (7). Denoting P−1
1 =

P̄1, Y = KP̄1 and multiplying (11) by P̄1 from both sides,
we obtain that Assumption 5 is satisfied if there exist P̄1 =
diag{p̄11, . . . , p̄m1 } > 0 and Y ∈ R

L×M such that

[A− µD0]P̄1 + P̄1[A− µD0]
T +BY + Y TBT ≤ 0

where µ = Nπ2 for (6) and µ = 0 for (7). The controller
gain is given by K = −Y P̄−1

1 .

Remark 3 Here we explain how Lyapunov-based relay
control (Subsection 2.1) is extended to PDEs. Consider the
system with continuous-time control

zt(x, t) = ∆Dz(x, t) +Az(x, t) +B[u(t) + w(t)] (12)

subject to boundary conditions (6) or (7). Let the measure-
ments be given by y(t) =

∫

Ω
z(x, t) dx. For V1 from (9), we

have

V̇1 = 2

∫

Ω

zTP1[∆Dz + (A−BK)z] + 2

∫

Ω

zTP1BK[z − y]

+ 2

∫

Ω

zT (x, t)P1B[u(t) + w(t) +Ky(t)] dx.

The first integral term coincides with (10) and is negative if
(11) is true. The second term may be compensated using the
Poincaré inequality (see (A.8) for details). The last term
is equal to 2yTP1B[u + w +Ky]. If −w ∈ ρ conv{V} and
−Ky ∈ (1−ρ) conv{V}, then−w−Ky ∈ conv{V}. Taking

u = argminv∈V yTP1Bv = argminv∈conv{V} y
TP1Bv,

one obtains

2yTP1Bu ≤ 2yTP1B[−w −Ky].

Thus, the last integral term of V̇1 is nonpositive. In Theo-
rem 1 this idea is extended to sampled-data control through
shape functions on several subdomains.

Remark 4 Our main objective is to achieve ultimate
bound for the trajectories that is proportional to a sampling
period. In this remark we explain what prevents us from ob-
taining such results under point measurements. Consider
the system (12) with point measurements ȳ(t) = z( 12 , t).
For V1 from (9), we have

V̇1 = 2

∫

Ω

zTP1[∆Dz + (A−BK)z]

+ 2

∫

Ω

ȳT (t)P1B[u(t) + w(t) +Kz(x, t)] dx

+ 2

∫

Ω

δT (x, t)P1B[u(t) + w(t) +Kz(x, t)] dx,

where δ(x, t) = z(x, t) − ȳ(t). The first integral term co-
incides with (10) and is negative if (11) is true. If −w −

K
∫

Ω
z ∈ conv{V}, the second term is nonpositive for u =

argminv∈V ȳTP1Bv. The difficulty arises when analysing
the last term due to the presence of u and w. Using the
boundedness of u and w, one can prove only ultimate bound-
edness of the sampling-free system. This eliminates the pos-
sibility of obtaining an ultimate bound proportional to a
sampling period for the sampled-data system. The other
types of functionals, like V2 =

∫

Ω
zTx P2zx, seem to be inap-

plicable.

Since w, f ∈ C1, by arguments of [21] we establish the exis-
tence of a unique strong solution of (3)–(5) initialized with
z(·, t0) ∈ H1(Ω) subject to appropriate boundary condi-
tions (6) or (7). Moreover, if z(·, t0) ∈ H2 subject to ap-
propriate boundary conditions, then the solution z(·, t) is
of class C1 in time as a function with values in H1 [22].

Remark 5 For the proof of our main result (Theorem 1),
we need the Lyapunov-Krasovskii functional (A.1) to be
continuous on (tk, tk+1). To achieve this, it suffices to guar-
antee that the solution is continuous in H1-norm. This re-
quires to take the shape functions (4) from H1. For smaller
ε in (4) the stability conditions of Theorem 1 are less re-
strictive. Thus, if the system is stable for ε′ > 0, it remains
stable for all ε ∈ (0, ε′). For ε → 0 the shape functions ap-
proach

bj(x) =

{

1, x ∈ Ωj ,

0, x /∈ Ωj ,
j ∈ 1 : Ns,

which are not fromH1. However, after the stability is proved
for all ε ∈ (0, ε′), one can prove the stability for ε = 0 using
continuous dependence of the solutions on the parameters
(see, e.g., [23, Theorem 3.4.4]).

Our objective is to derive conditions for local practical
stability of the closed-loop system (3)–(5) and to find a
bound on the domain of attraction. Moreover, we construct
a switching procedure that allows to obtain semi-global
results, i.e. practical stability for an arbitrary set of ini-
tial conditions. For disturbance-free systems this procedure
guarantees exponential convergence to the origin.

3 Regional stabilization

For convenience we define

‖z(·, t)‖2V =

∫

Ω

zT (x, t)P1z(x, t) dx

+ h

M
∑

m=1

∫

Ω

pm3 (∇zm(x, t))TDm(x)∇zm(x, t) dx,

whereP1 = diag{p11, . . . , pM1 } ≥ 0,P3 = diag{p13, . . . , pM3 } ≥
0, and z(·, t) ∈ H1(Ω). The choice of such norm is moti-
vated by the Lyapunov-Krasovskii functional (A.1). Simi-
larly to [7,8], the terms with pm3 appear due to sampling.

Denote by ai ∈ R
L, i ∈ 1 : Na, the dual vectors of conv{V}:

conv{V} = {v ∈ R
L | aTi v ≤ 1, i ∈ 1 : Na}. (13)

4



Such vectors always exist (see, e.g., [24, Theorem 1.1]).

The following theorem provides the ultimate boundedness
conditions for the closed-loop system (3)–(5) under (6) or
(7) with an ultimate bound C∞ proportional to a product
of the sampling period h and maxv∈V ‖v‖2.

Theorem 1 Consider the system (3), (4) with control laws
(5) and boundary conditions (6) or (7) under Assump-
tions 1–5. For given sampling period h > 0, decay rate
α > 0, and tuning parameter ν > 0 let there exist P2 =
diag{p12, . . . , pM2 }, 0 ≤ W ∈ R

M×M , L × L nonnegative
matrices βu, βw, andM×M nonnegative diagonal matrices
P1, P3, Λf , Λκ, ΛD, where ΛD = 0 for the Neumann bound-
ary conditions (7), such that 1 Φ ≤ 0, where Φ = {Φij} is
a symmetric matrix composed from

Φ11=P1(A−BK) + (A−BK)TP1 + 2αP1 − µTµBΛf

+2Nε(1 + ν−1)Λκ −Nπ2ΛD + h(P2A+ATP2),

Φ12=(P1 + hP2)β, Φ13=P1 + hP2 +
1
2 (µT + µB)Λf ,

Φ14=P1BK, Φ15=h(ATP3 − P2), Φ16=h(P1BK)T ,

Φ17=Φ18=hP2B, Φ22 = 2(αhP3 − P1 − hP2)D0 ⊗ IN

+ΛD ⊗ IN + (1 + ν) l2

π2 (Λκ ⊗ IN ), Φ25=h(P3β)
T ,

Φ33=−Λf , Φ35=hP3, Φ44 = −Λκ, Φ46=−h(P1BK)T ,

Φ55=h(e2αhW−2P3), Φ57=Φ58=hP3B, Φ66=−π2h
4 W,

Φ67=Φ68=hP1B, Φ77=−hβu, Φ88=−hβw,

µT = diag{µ1
T , . . . , µ

M
T }, µB = diag{µ1

B , . . . , µ
M
B }, l =

maxj l(Ωj), D0 = diag{d10, . . . , dM0 }. Denote

C0 = mini∈1:Na
(aTi KP−1

1 KTai)
−1 minj=1:Ns

λ(Ωj),

C∞ = h
2α (λmax(βu) + ρ2λmax(βw))maxv∈V ‖v‖2.

If
C∞ < (1− ρ)2C0 (14)

then for initial conditions z(·, t0) ∈ H1(Ω) subject to ap-
propriate boundary conditions (6) or (7), such that

‖z(·, t0)‖2V < (1− ρ)2C0, (15)

the strong solution of the system satisfies

‖z(·, t)‖2V ≤ ‖z(·, t0)‖2V e−2α(t−t0) + C∞. (16)

Proof is given in Appendix A.

Remark 6 For zero values of ε, µT , µB, α, l, h, β the
condition Φ ≤ 0 is reduced to

diag{P1(A−BK) + (A−BK)TP1 −Nπ2ΛD,

− 2P1D0 ⊗ IN + ΛD ⊗ IN} ≤ 0.

The latter inequality coincides with (11) if one takes ΛD =
−2P1D0 for (6) or ΛD = 0 for (7). Therefore, Assump-
tion 5 guarantees Φ ≤ 0 for small enough ε, µT , µB, α, l, h,

1 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/Aut17

β and establishes a relation among the system parameters
(such as sampling h, decay rate α, subdomains’ maximum
diameter l, etc.) that preserves the stability.

Remark 7 If the conditions of Theorem 1 are satisfied for
h = 0, they are also satisfied with the same decision vari-
ables for all h ∈ [0, h∗], where h∗ is sufficiently small (this
can be verified using Schur complement formula). Since C0

does not depend on h and C∞ is linear in h, this implies
that by decreasing the sampling period h one ensures expo-
nential convergence of the solutions from the set (15) to an
arbitrarily small vicinity of zero.

Remark 8 If K is unknown, the matrix inequalities of
Theorem 1 are nonlinear. Similarly to [25], they can be lin-
earized by seting P2 = µ2P1, P3 = µ3P1, P̄1 = P−1

1 , multi-
plying Φ from both sides by diag{P̄1 ⊗ IN+5, I2N} and de-
noting Y = KP̄1. The scalars µ2 and µ3 are tuning param-
eters.

Remark 9 Theorem 1 admits several straight-forward ex-
tensions. First, one may consider the boundary conditions

z(x, t)|x∈Γ1
= 0, 〈zx(x, t), n̄〉|x∈Γ2

= 0,

where Γ1 ∪ Γ2 = ∂Ω. Moreover, for constant diffusion co-
efficients Dm(x) = Dm one may derive the stability condi-
tions with non-diagonal matrices P1, P2, and P3 (see [26]).

4 Semi-global stabilization by switching

The set of control values V has no impact on the feasibil-
ity of Φ ≤ 0 from Theorem 1. At the same time, V deter-
mines the sizes of the initial set (1 − ρ2)C0 (through dual
vectors ai) and the limit set C∞. Using this observation,
we construct a switching procedure that ensures ultimate
boundedness for an arbitrarily large domain with a limit
bound independent of the domain size (Corollary 1). For
disturbance-free systems this procedure guarantees expo-
nential convergence to the origin.

Consider the system (3), (4) with boundary conditions (6)
or (7) under Assumptions 1–5. Let us choose a “zooming”
parameter σk > 0 and switching period T > 0. Assump-
tion 3 can be rewritten as

wj(t) ∈ −ρ conv{V} = − ρ

σk

conv{σkV}.

Then the substitute V → σkV (with dual vectors ai →
σ−1
k ai) in Theorem 1 leads to the following changes

C0 → σ2
kC0, C∞ → σ2

kCu + Cw, ρ → ρ

σk

,

where

Cu = h
2αλmax(βu)maxv∈V ‖v‖2,

Cw = h
2αρ

2λmax(βw)maxv∈V ‖v‖2.
In particular, the condition (14), which guarantees that the
limit set is larger than the initial set, takes the form

σ2
kCu + Cw <

(

1− ρ

σk

)2

σ2
kC0 = Uk. (17)
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The condition (15) was imposed to guarantee V (t0) < (1−
ρ)2C0, which in our case can be written as

V (kT ) < (σk − ρ)2C0 = Uk. (18)

If Φ ≤ 0 and (17), (18) are true then, in a manner similar
to the proof of Theorem 1, one obtains (cf. (A.3))

V (kT +T ) ≤ (Uk−σ2
kCu−Cw)e

−2αT +σ2
kCu+Cw. (19)

Due to (17), this upper bound for V (kT + T ) is smaller
than Uk, an upper bound for V (kT ). Thus, we can reduce
the zooming parameter σk+1 so that Uk+1 = (σk+1−ρ)2C0

satisfies

Uk+1 = (Uk − σ2
kCu − Cw)e

−2αT + σ2
kCu + Cw.

This leads to a switching control

uj(t) = argminv∈σkV
yTj,pP2Bv,

t ∈ [sj,p, sj,p+1) ∩ [kT, kT + T ),
(20)

where j ∈ 1 : Ns, k, p ∈ N0 and

σk = ρ+
√

Uk/C0,

Uk+1 = (Uk − σ2
kCu − Cw)e

−2αT + σ2
kCu + Cw.

(21)

To ensure the stability, it suffices to guarantee (17) and
(18) for k ∈ N0. Let Cu < C0. Then the parabola σ2Cu +
Cw − (σ − ρ)2C0 = 0 opens down with the largest (real)
root

σ∞=

(

1−Cu

C0

)−1
(

ρ+

√

ρ2
Cu

C0
+

(

1−Cu

C0

)

Cw

C0

)

. (22)

Therefore, the relation (17) is satisfied for any σk > σ∞.
By taking σ0 > σ∞ such that V (t0) < U0 = C0(σ0 − ρ)2,
we guarantee (17) and (18) for k = 0. If (17) and (18) hold
for some k ∈ N0 then (19) implies (18) for k+1. Moreover,
(19) implies that Uk+1 < Uk and, consequently, σk+1 < σk.
Therefore,

Uk+1

(21)
> σ2

kCu + Cw > σ2
k+1Cu + Cw,

which guarantees (17) for k + 1. By induction, (17) and
(18) hold for k ∈ N0, therefore, V (t) < Uk for t ∈ [kT, kT+
T ), with Uk and σk being monotonically decreasing se-
quences of positive numbers. These sequences converge to
a unique (real) positive root of (21) given by (22) and
U∞ = C0(σ∞−ρ)2. We have proved the following results.

Corollary 1 Consider the system (3), (4) with boundary
conditions (6) or (7) under Assumptions 1–5. Let Φ ≤ 0,
where Φ is given in Theorem 1, and Cu < C0. Then, for an
arbitrary set of initial conditions z(·, t0) ∈ H1(Ω) subject to
appropriate boundary conditions, the switching controller
(20), (21) with σ0 > σ∞ such that

‖z(·, t0)‖2V < (σ0 − ρ)2C0 = U0

guarantees

‖z(·, t)‖2V < Uk, t ∈ [kT, kT + T ), k ∈ N0. (23)

Moreover, σk and Uk monotonically decrease to σ∞ and
U∞ = (σ∞ − ρ)2C0.

Example 1 Example 2

k σk Uk σk Uk

0 1 0.1702 1 52.73

1 0.998 0.1694 0.69 24.97

2 0.996 0.1687 0.48 11.87

3 0.994 0.1680 0.33 5.68
Table 1
Parameters of switching

Fig. 4. Example 1: Evolution of ‖z(·, t)‖2V : (A) on [0, 0.1]; (B)
on [0.09, 0.1]

Corollary 2 Consider the disturbance-free system (3), (4)
with wj(t) ≡ 0 and boundary conditions (6) or (7) under
Assumptions 1, 2, 4, 5. Let Φ ≤ 0, where Φ is given in
Theorem 1, and Cu < C0. Then, for an arbitrary set of
initial conditions z(·, t0) ∈ H1(Ω) subject to appropriate
boundary conditions, the switching controller (20) with

σk =
√

Uk/C0, Uk+1 = λUk, (24)

where

λ =

(

1− Cu

C0

)

e−2αT +
Cu

C0

and σ0 > 0 is such that

‖z(·, t0)‖2V < σ2
0C0 = U0,

guarantees the exponential stability with the decay rate

δ = − lnλ

2T
.

For the disturbance-free case, switching algorithm (24) is
obtained by substituting ρ = 0 (consequently, Cw = 0)
in (21). The condition Cu < C0 implies λ < 1, therefore,
Uk → 0 and σk → 0 when k → ∞. That is, the system
is exponentially stable. Since Uk are upper bounds for the
Lyapunov functional, the exponential decay rate δ is found
from the equation λ = e−2δT .
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5 Examples

Example 1. Consider a 2D extension of the catalytic rod
equation from [27]:

∂z

∂t
=

1

π2
√
2

[

∂2z

∂x2
1

+
∂2z

∂x2
2

]

− βUz + βT

(

e−
γ

1+z − e−γ
)

+ βU

Ns
∑

j=1

βj(x)[uj(tj,k) + wj(t)], t ∈ [tk, tk+1)

(25)
under the Dirichlet boundary conditions (6), where z is the
temperature in the reactor, βT = 50 is a heat of reaction,
βU = 2 is a heat transfer coefficient, γ = 4 is an activation
energy, and the control u is the temperature of the cooling
medium. For the above values the steady state z(x, t) = 0
is unstable.

To stabilize the system (25), we use the controllers (5).

The nonlinearity f(x, t, z) = βT (e
− γ

1+z −e−γ) satisfies As-
sumption 4 with µT = 6.15 and µB = 0. The conditions of
Theorem 1 are feasible with V = {±10}, K = 4, Ns = 36,
α = 2.4, ρ = 0.01, ε = 10−9, ν = 10−5, h = 1.4 × 10−3.
For such choice of V the dual vectors a1,2 = ±0.1 lead to
C0 = 0.1736, C∞ = 0.1696. The initial conditions were
chosen as

z(x, 0) = 2 exp

( −1

1− (2x1 − 1)2 − (2x2 − 1)2

)

if (2x1 − 1)2 + (2x2 − 1)2 ≤ 1 and 0 otherwise. Note that
z(·, 0) satisfies (15). The disturbance wj(t) is piecewise lin-
ear function with wj(tk) ∈ −ρ conv{V} being uniformly
distributed random numbers. The evolution of ‖z(·, t)‖2V
is presented in Fig. 4. As one can see, the state z(·, t) con-
verges to the vicinity of the origin.

Consider the switching controller (20). The values of the
switching parameters (21) for T = 1 are given in Table 1.
Note that the values of σk and Uk are decreasing. This
indicates that the state, which gets smaller and smaller,
requires smaller control effort after every switching time.

Note that by increasing the number of sensorsNs we reduce
l = maxj l(Ωj) that appears in Φ22 of Theorem 1. There-
fore, for larger Ns the LMI Φ ≤ 0 remains feasible. This
corresponds to the general intuition, which says “the more
sensors/actuators the better”. On the other hand, larger
Ns reduces the bound for initial conditions C0. Thus, for
largeNs, the conditionC

u
∞ < C0 may no longer hold. In the

considered example, the LMIs are not feasible for Ns ≤ 25
and the condition Cu

∞ < C0 is violated for Ns ≥ 49.

Fig. 5. Example 2: Evolution of z1(·, t)

Fig. 6. Example 2: Evolution of z2(·, t)

Fig. 7. Example 2: Evolution of ‖z(·, t)‖2V : (A) on [0, 0.1]; (B)
on [0.08, 0.1]
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Example 2. Consider the chemical reactor model from [3]

Le
∂z1
∂t

+ V
∂z1
∂x

− ∂2z1
∂x2

=f∗(z)

+

Ns
∑

j=1

bj(x)[uj(tj,k) + wj(t)], t ∈ [tk, tk+1),

∂z2
∂t

+ V
∂z2
∂x

−D
∂2z2
∂x2

=g(z),

under the Neumann boundary conditions (7), where Le =
100 is the Lewis number, V = 1.1 is convective velocity,
D = 10 is diffusion coefficient. This model accounts for
an activator z1, which undergoes reaction (expressed as
f∗(z)), advection and diffusion, and for a fast inhibitor z2,
which may be advected by the flow. The kinetics terms are
given by

f∗(z) = z1 cos
2(z1) + z2, g(z) = −βz1 − dz2,

where β = 0.45, d = 0.2. The conditions of Theorem 1 are
feasible with V = {±2}, K = [2, 0], Ns = 4, α = 0.14,
ρ = 0.01, ε = 10−7, ν = 10−5, h = 10−3. For such choice
of V the dual vectors a1,2 = ±0.5 lead to C0 = 53.8, C∞ =
15.9. The results of numerical simulations on [0, 0.1] for

z(x, 0) =
[

cos(πx)+1
3 cos(πx)

]

× 10−2

are presented in Figs. 5–7. As one can see, the state z(·, t)
converges to the vicinity of the origin.

The switching parameters (21) of the controller (20) for
T = 5 are given in Table 1. Similarly to Example 1, the val-
ues of σk and Uk are decreasing. That is, the state requires
smaller control effort after every switching time.

References

[1] P. J. Antsaklis and J. Baillieul, “Guest Editorial Special Issue on
Networked Control Systems,” IEEE Transactions on Automatic

Control, vol. 49, no. 9, pp. 1421–1423, 2004.

[2] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A Survey of Recent
Results in Networked Control Systems,” Proceedings of the

IEEE, vol. 95, no. 1, 2007.

[3] Y. Smagina andM. Sheintuch, “Using Lyapunov’s direct method
for wave suppression in reactive systems,” Systems & Control

Letters, vol. 55, no. 7, pp. 566–572, 2006.

[4] J. R. Court, M. A. Demetriou, and N. A. Gatsonis, “Spatial
gradient measurement through length scale estimation for the
tracking of a gaseous source,” in American Control Conference,
2012, pp. 2984–2989.
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A Proof of Theorem 1

Throughout the proof we assume that the initial condi-
tions are from H2. This guarantees that the solution z(·, t)
is of class C1 in time as a function with values in H1. Then
the Lyapunov-Krasovskii functional defined below is con-
tinuous on [tk, tk+1) and V (tk) ≤ V (tk − 0). After be-
ing proved for the initial conditions from H2, Theorem 1
for z(·, t0) ∈ H1 follows from continuous dependence of
the solutions on the initial conditions (see, e.g., [28, Theo-
rem 6.1.2]) and the density of H2 in H1.

Consider the functional V = V1 + V2 + VW with

V1 =

∫

Ω

zT (x, t)P1z(x, t) dx,

V2 =h

M
∑

m=1

∫

Ω

pm3 (∇zm(x, t))TDm(x)∇zm(x, t) dx,

VW =he2αh
Ns
∑

j=1

∫

Ωj

∫ t

tj,k

e−2α(t−s)zTs (x, s)Wzs(x, s) ds dx

− π2h

4

Ns
∑

j=1

∫

Ωj

∫ t

tj,k

e−2α(t−s)ηT (x, s)Wη(x, s) ds dx,

t ∈ [tk, tk+1), k ∈ N0,
(A.1)

where η(x, t) = 1
h
[z(x, t) − z(x, tj,k)] for x ∈ Ωj , t ∈

[tk, tk+1). Here V1 and V2 are chosen as in [8], VW is an
extension of the Wirtinger-based terms of [29] to the case
of diffusion PDEs. The exponential Wirtinger inequality
(Lemma 1) implies VW ≥ 0, therefore, V ≥ 0.

We divide the proof into two parts. First, we assume that

K

λ(Ωj)

∫

Ωj

z(x, t) dx ∈ −(1− ρ) conv{V}, ∀j ∈ 1 : Ns

(A.2)
and show that

V (t) ≤ (V (t0)− C∞) e−2α(t−t0) + C∞, t ≥ t0. (A.3)

Then we prove that the solutions of (3)–(5) satisfy (A.2)
for t ≥ t0.

I. Proof of (A.3) under the assumption (A.2)

V̇1 = 2
∫

Ω
zTP1[∆Dz + β∇z +Az + f ]

+2
∑Ns

j=1

∫

Ωj
zT (x, t)P1Bbj(x)[uj(tj,k) + wj(t)] dx.

(A.4)
The key idea is to transform the last term as follows:

2
∫

Ωj
zT (x, t)P1Bbj(x)[uj(tj,k) + wj(t)] dx

±2
∫

Ωj
zT (x, t)P1BKz(x, t) dx

±2
∫

Ωj
zT (x, t)P1BK

bj(x)
λ(Ωj)

∫

Ωj
z(y, t) dy dx

= −2
∫

Ωj
zT (x, t)P1BKz(x, t) dx+ 2

∫

Ωj
zT (x, t)P1BK×

[

z(x, t)− bj(x)
λ(Ωj)

∫

Ωj
z(y, t) dy

]

dx+ 2
∫

Ωj
zT (x, t)P1B×

bj(x)
[

K
λ(Ωj)

∫

Ωj
z(y, t) dy + uj(tj,k) + wj(t)

]

dx.

(A.5)
Denote

κ(x, t) = z(x, t)− bj(x)
λ(Ωj)

∫

Ωj
z(y, t) dy, x ∈ Ωj .

Now we derive the inequality

0 ≤ −∑Ns

j=1

∫

Ωj
κTΛκκ+2Nε(1+ν−1)

∑Ns

j=1

∫

Ωj
zTΛκz

+ (1 + ν) l2

π2

∑Ns

j=1

∫

Ωj
(∇z)T (Λκ ⊗ IN )∇z, (A.6)

which allows to bound κ(x, t) and compensate the second
term of (A.5). By Young’s inequality,

∫

Ωj
(κm(x, t))2 dx =

∫

Ωj

[

zm(x, t)− 1
λ(Ωj)

∫

Ωj
zm(y, t) dy

+
1−bj(x)
λ(Ωj)

∫

Ωj
zm(y, t) dy

]2
dx

≤ (1 + ν)
∫

Ωj

[

zm(x, t)− 1
λ(Ωj)

∫

Ωj
zm(y, t) dy

]2
dx

+(1 + ν−1)
∫

Ωj

(1−bj(x))
2

λ2(Ωj)

[∫

Ωj
zm(y, t) dy

]2
dx.

(A.7)
Since

∫

Ωj

[

zm(x, t)− 1
λ(Ωj)

∫

Ωj
zm(y, t) dy

]

dx = 0,

the Poincaré inequality (Lemma 3) allows to obtain

(1 + ν)
∫

Ωj

[

zm(x, t)− 1
λ(Ωj)

∫

Ωj
zm(y, t) dy

]2
dx

≤ (1 + ν)
l2(Ωj)
π2

∫

Ωj
(∇zm(x, t))T∇zm(x, t) dx. (A.8)

By Bernoulli’s inequality,
∫

Ωj\Ωε
j

dx =
[

1− (1− 2ε)N
]

λ(Ωj) ≤ 2Nελ(Ωj),

which together with Jensen’s inequality [30] implies

(1 + ν−1)
∫

Ωj

(1−bj(x))
2

λ2(Ωj)

[∫

Ωj
zm(y, t) dy

]2
dx

≤ (1 + ν−1) 1
λ2(Ωj)

∫

Ωj\Ωε
j

dxλ(Ωj)
∫

Ωj
(zm(y, t))2 dy

≤ 2Nε(1 + ν−1)
∫

Ωj
(zm(y, t))2dy. (A.9)

Using the estimates (A.8) and (A.9) in (A.7), we ob-
tain (A.6).
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The last term of (A.5) can be presented in the form

2
∫

Ωj
zT (x, t)P1Bbj(x)

[

K
λ(Ωj)

∫

Ωj
z(y, t) dy

+uj(tj,k) + wj(t)
]

dx

= 2
∫

Ωj
zT (x, tj,k)P1Bbj(x) dx

[

K
λ(Ωj)

∫

Ωj
z(y, t) dy

+uj(tj,k) + wj(t)
]

+ 2
∫

Ωj
hηT (x, t)P1B×

[

bj(x)(uj(tj,k) + wj(t)) +Kz(x, t)−Kκ(x, t)
]

dx

(A.10)
where η(x, t) = 1

h
[z(x, t) − z(x, tj,k)] for x ∈ Ωj , t ∈

[tk, tk+1). Due to Assumption 3 and (A.2),

wj(t) +
K

λ(Ωj)

∫

Ωj

z(y, t) dy ∈ − conv{V}, ∀j ∈ 1 : Ns.

Then, (5) leads to (cf. (1))
∫

Ωj
zT (x, tj,k)P1Bbj(x) dxuj(tj,k)

= minv∈V

∫

Ωj
zT (x, tj,k)P1Bbj(x) dx v

= minv∈conv{V}

∫

Ωj
zT (x, tj,k)P1Bbj(x) dx v

≤−
∫

Ωj
zT (x, tj,k)P1Bbj(x) dx

[

wj(t)+
K

λ(Ωj)

∫

Ωj
z(y, t) dy

]

.

(A.11)
Therefore, the first term in the right-hand side of (A.10)
is nonpositive.

We use the following descriptor representation of (3) [8]:

0 = 2h
∑Ns

j=1

∫

Ωj
[zT (x, t)P2 + zTt (x, t)P3][−zt(x, t)

+∆Dz(x, t) + β∇z(x, t) +Az(x, t) + f(x, t, z)

+Bbj(x)(uj(tj,k) + wj(t))] dx, t ∈ [tk, tk+1).

(A.12)

Let us transform the terms of (A.4) and (A.12) that in-
volve ∆Dz. Using Green’s formula and taking into account
the boundary conditions (6) or (7), we obtain

2
∫

Ω
zT [P1 + hP2]∆Dz

= −2
∑M

m=1

∫

Ω
[pm1 + hpm2 ](∇zm)TDm∇zm

≤ −2
∫

Ω
(∇z)T ([P1 + hP2]D0 ⊗ IN )∇z,

2h
∫

Ω
zTt P3∆Dz

= −2h
∑M

m=1

∫

Ω
pm3 (∇zmt )TDm∇zm = −V̇2.

(A.13)
Furthermore,

V̇W = −2αVW + he2αh
∑Ns

j=1

∫

Ωj
zTt Wzt

− π2h
4

∑Ns

j=1

∫

Ωj
ηTWη. (A.14)

By multiplying the inequalities of Assumption 4 by λm
f ≥ 0

and summing them up, we obtain

0 ≤
Ns
∑

j=1

∫

Ωj

[

z

f

]T [

−µTµBΛf
1
2 (µT + µB)Λf

1
2 (µT + µB)Λf −Λf

][

z

f

]

.

(A.15)

For the Dirichlet boundary conditions (6) we use the
Wirtinger inequality (Lemma 2) to obtain

0 ≤
∫

Ω
(∇z)T (ΛD ⊗ IN )∇z −Nπ2

∫

Ω
zTΛDz. (A.16)

By summing up (A.4), (A.14) with the right-hand sides
of (A.6), (A.12), (A.15), (A.16) and taking into account
(A.5), (A.10), (A.11), (A.13), we obtain

V̇ + 2αV −∑Ns

j=1

∫

Ωj
hb2j (x)

[

uT
j (tj,k)βuuj(tj,k)

+ wT
j (t)βwwj(t)

]

dx ≤∑Ns

j=1

∫

Ωj
ϕT
j (x, t)Φϕj(x, t) dx,

where ϕj = col{z,∇z, f, κ, zt, η, bj(x)uj(tj,k), bj(x)wj(t)}.
Therefore, the condition Φ ≤ 0 guarantees V̇ ≤ −2αV +
2αC∞, which implies (A.3).

II. Proof of (A.2) for t ≥ t0
Due to (13), we need to prove

− aTi Kdj ≤ (1− ρ), i ∈ 1 : Na, (A.17)

where dj =
1

λ(Ωj)

∫

Ωj
z. Since for i ∈ 1 : Na,

min
−aT

i
Kdj=(1−ρ)

dTjP1dj=(1− ρ)2(aTi KP−1
1 KTai)

−1,

due to Assumption 2, it suffices to prove (cf. (2))

dTj P1dj < (1− ρ)2 min
i
(aTi KP−1

1 KTai)
−1.

Jensen’s inequality implies

dTj P1dj = λ−2(Ωj)
∫

Ωj
zTP1

∫

Ωj
z

≤ λ−1(Ωj)
∫

Ωj
zTP1z ≤ 1

minj λ(Ωj)
V1.

Therefore, it suffices to show

V1(t) < minj λ(Ωj)(1− ρ)2 mini(a
T
i KP−1

1 KTai)
−1

= (1− ρ)2C0, t ≥ t0. (A.18)

Let (A.18) be false for some t1 ≥ t0. Then

V1(t0) ≤ V (t0)
(15)
< (1− ρ)2C0 ≤ V1(t1).

Since V1 is continuous, there must exist t∗ ∈ (t0, t1) such
that

V1(t) < (1− ρ)2C0, t ∈ [t0, t∗]

V1(t∗) > V (t0).
(A.19)

The first relation of (A.19) guarantees (A.3) on [t0, t∗],
which implies V (t∗) ≤ V (t0). This contradicts the second
relation of (A.19), which implies V (t∗) ≥ V1(t∗) > V (t0).
Thus, (A.18) and, consequently, (A.3) are true on [t0,∞).

Remark 10 Note that the error due to sampling η(x, t) =
1
h
[z(x, t)−z(x, tj,k)] is compensated by the Wirtinger-based

term VW . Its derivative (A.14) contains he2αh
∫

Ω
zTt Wzt

that we compensate using the descriptor representation
(A.12). This allows to avoid the terms with∆Dz that would
arise if one substituted the expression for zt.
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