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Simple conditions for sampled-data

stabilization by using artificial delay

Anton Selivanov Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel

Abstract: It is well known that in some systems a stabilizing feedback that depends on the
output and its derivative can be replaced by delay-dependent feedback where the derivative
is approximated by a finite difference. We study sampled-data implementation of such delay-
dependent feedback. The analysis is based on the Taylor representation of the delayed signal
with the remainder in the integral form, which is then compensated by appropriate Lyapunov-
Krasovskii functional. This allows to obtain simple LMI-based conditions guaranteeing a desired
decay rate of convergence. Using these conditions, we prove that if the system can be stabilized
by continuous-time derivative-dependent feedback then it can be stabilized by sampled-data
delay-dependent feedback with small enough sampling and delay. Finally, we introduce the
event-triggering mechanism that allows to reduce the amount of transmitted signals at the cost
of larger memory used.

1. INTRODUCTION

It has been shown for some classes of systems that if a
system is stable under a linear feedback depending on
output derivatives (e.g., u = K1y+K2ẏ), it remains stable
if the derivatives are replaced by their finite difference
approximations (e.g., u = K1y(t)+K2[y(t)− y(t−h)]/h).
That is, the delay-induced stability is guaranteed if the
derivative-dependent control stabilizes the system. Such
results have been obtained, e.g., for a chain of integrators
in Niculescu and Michiels (2004) and minimum-phase
systems of relative degree two in Ilchmann and Sangwin
(2004). The latter work was then extended to nonlinear
systems with an arbitrary relative degree and disturbances
(see Karafyllis (2008), French et al. (2009)).

A simple constructive approach to the stabilization by
using artificial delays has been proposed in Fridman and
Shaikhet (2016, 2017). The idea is to use the Taylor
expansion of the delayed output with the remainder in
the integral form, which is compensated by appropriate
Lyapunov-Krasovskii functional. This method leads to
LMI-based stability conditions that are feasible if the
output-derivative-dependent controller stabilizes the sys-
tem and the delays are small enough.

In Section 2 we extend the results of Fridman and
Shaikhet (2016) to arbitrary linear systems with relative
degree two and sampled output. Data sampling simpli-
fies the implementation of the delayed control, since it
requires to store a finite number of sampled measure-
ments y(tk), y(tk−1), . . . y(tk−q) instead of a history func-
tion y(t − θ) with θ ∈ [0, h]. Moreover, it allows to study
delay-induced stabilization for networked control systems,
where only sampled signals can be transmitted through
communication channels. Sampled-data control with sta-
bilizing delay has been analysed in Liu and Fridman
(2012) via complete Lyapunov-Krasovskii functionals with
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a Wirtinger-based term and in Seuret and Briat (2015)
via impulse representation and looped-functionals. Both
methods lead to complicated LMIs with many decision
variables. Differently from Liu and Fridman (2012) and
Seuret and Briat (2015), we obtain simple LMIs with much
smaller number of decision variables that lead to reason-
able sampling intervals. In addition, our results allow to
guarantee a desired decay rate of convergence.

In networked control systems, where sampled measure-
ments are transmitted through communication channels,
it is often beneficial to reduce the amount of transmitted
signals in order to save communicational and computa-
tional resources. To achieve this goal, we study event-
triggered control in Section 3. The key idea is to trans-
mit only those measurements whose relative change is
large enough (Åström and Bernhardsson (1999); Tabuada
(2007)). For sampled-data delayed control this approach
allows to reduce the amount of transmitted signals by
increasing the number of stored sampled measurements
y(tk), y(tk−1), . . . , y(tk−q) (see Example 2).

Notations. P > 0 indicates that P ∈ R
n×n is positive-

definite, ∗ stands for symmetric terms, N0 are nonnegative
integers, Im ∈ R

m×m is the identity matrix.

Lemma 1. (Jensen’s inequality). Let f : [a, b] → [0,∞)
and x : [a, b] → R

n be such that the integration concerned
is well-defined. Then for any 0 < Q ∈ R

n×n,
[

∫ b

a

f(s)x(s) ds

]T

Q

[

∫ b

a

f(s)x(s) ds

]

≤
∫ b

a

f(s) ds

∫ b

a

f(s)xT (s)Qx(s) ds.

Proof is given in Solomon and Fridman (2013).

Lemma 2. (Wirtinger’s inequality). Let 0 ≤ W ∈ R
n×n

and f : [a, b] → R
n be an absolutely continuous function

with a square integrable first derivative such that f(a) = 0
or f(b) = 0. Then for any α ∈ R,



∫ b

a

e2αtfT (s)Wf(s) ds

≤ e2|α|(b−a) 4(b− a)2

π2

∫ b

a

e2αsḟT (s)Wḟ(s) ds.

Proof is given in Selivanov and Fridman (2016). It com-
bines ideas from Gelig and Churilov (1998) and Liu et al.
(2010).

2. SYSTEM DESCRIPTION AND STABILITY
CONDITIONS

Consider a linear system

ẋ = Ax+Bu,

y = Cx,
x ∈ R

n, u ∈ R
m, y ∈ R

l, (1)

such that CB = 0. Let there exist K̄1, K̄2 such that the
control signal u = K̄1y + K̄2ẏ stabilizes the system (1).
Since CB = 0, substituting u into (1), we obtain

ẋ = Ax+B[K̄1Cx+ K̄2Cẋ]

= Ax+B[K̄1Cx+ K̄2CAx] = D̄x,
(2)

where D̄ = A+BK̄1C +BK̄2CA is Hurwitz.

Remark 1. One can always find appropriate K̄1 and K̄2

if (1) is a square (m = l) minimum-phase system with
detCAB 6= 0 (Ilchmann and Sangwin (2004)).

Consider now a sampled-data controller

u(t) = K1y(tk) +K2y(tk−q), t ∈ [tk, tk+1) (3)

with a sampling tk = kh (k ∈ N0 throughout the paper)
and delay q ∈ N. For the sake of notation convenience, we
set y(tk−q) = 0 for k − q < 0. Defining

τ(t) = t− tk ≤ h,

v(t) = − 1

τ(t)

∫ t

tk

ẏ(s) ds,
t ∈ [tk, tk+1),

we have

y(tk) = y(t)−
∫ t

tk

ẏ(s) ds = y(t) + τ(t)v(t). (4)

Using Taylor’s expansion for y(t− qh) with the remainder
in the integral form, we obtain

y(tk−q) = [y(tk−q)− y(t− qh)] + y(t− qh)

= δ(t) + y(t)− ẏ(t)qh+ r(t),
(5)

where y(t) = 0 for t < 0 and

δ(t) = y(tk−q)− y(t− qh),

r(t) =

∫ t

t−qh

(s− t+ qh)ÿ(s) ds,
t ∈ [tk, tk+1).

Therefore, the control (3) takes the form

u(t) = (K1 +K2)y(t)−K2qhẏ(t)

+K1τ(t)v(t) +K2(δ(t) + r(t))

and the closed-loop system (1), (3) is given by

ẋ = Dx+BK1τv +BK2(δ + r), (6)

with
D = A+B(K1 +K2)C − qhBK2CA.

Note that for

K1 = K̄1 +
K̄2

qh
, K2 = −K̄2

qh

we have D = D̄. That is, if (1) can be stabilized by
u = K̄1y + K̄2ẏ, it can be stabilized by (3) provided τv,

δ, r are small enough. The latter values can be reduced
by reducing the sampling period h. The next proposition
gives a bound for the sampling period in terms of LMIs
for which the system (6) (that is (1), (3)) is exponentially
stable.

Proposition 1. For given sampling period h and decay rate
α let there exist n × n matrices P > 0, P2, P3 and l × l
nonnegative matrices Q, W , U such that 1

Φ(0) ≤ 0 and Φ(h) ≤ 0, (7)

where Φ(τ) = {Φij(τ)} is composed of

Φ11 = 2αP + PT
2 D +DTP2,

Φ12 = P − PT
2 +DTP3,

Φ13 = Φ14 = PT
2 BK2,

Φ15 = τPT
2 BK1,

Φ22 = − P3 − PT
3 + (h− τ)CTUC

+ (qh)2ATCTQCA+ h2e2αhCTWC,

Φ23 = Φ24 = PT
3 BK2,

Φ25 = τPT
3 BK1,

Φ33 = − 4

(qh)2
e−2αqhQ,

Φ44 = − π2

4
e−2αqhW,

Φ55 = − τe−2αhU,

other blocks are zero. Then the system (1), (3) is expo-
nentially stable with the decay rate α.

Proof. For t ≥ h consider the functional

V = V0 + Vv + Vδ + Vr, (8)

where

V0 = xTPx,

Vv = (tk+1 − t)

∫ t

tk

e−2α(t−s)ẏT (s)Uẏ(s) ds,

Vδ = h2e2αh
∫ t

tk−qh

e−2α(t−s)ẏT (s)Wẏ(s) ds

− π2

4

∫ t−qh

tk−qh

e−2α(t−s)[y(s)− y(tk − qh)]T×

W [y(s)− y(tk − qh)] ds,

Vr =

∫ t

t−qh

e−2α(t−s)(s− t+ qh)2ÿT (s)Qÿ(s) ds

for t ∈ [tk, tk+1). The term Vv, taken from Fridman
(2010), compensates the error due to sampling v(t). The
term Vδ compensates another error due to sampling δ(t)
and follows the constructions of Liu and Fridman (2012);
Selivanov and Fridman (2016). Note that Vδ ≥ 0 due to
Lemma 2. The term Vr compensates the remainder r(t) in
the Taylor expansion (5). In Fridman and Shaikhet (2016)

the corresponding term has the form V̄r =
∫ t

t−qh
(s − t +

qh)ÿT (s)Qÿ(s) ds, which leads to more conservative results
(see Remark 3.1 in Fridman and Shaikhet (2017)).

We have

V̇0 + 2αV0 = 2xTPẋ+ 2αxTPx,

1 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/IFAC17a



Table 1. Sampling intervals and the amounts of decision variables

Sampling h # Variables

(Seuret and Briat, 2015, Theorem 3.3) [10−5, 0.788] 37n2 + 5n+
(n+1)n

2

(Liu and Fridman, 2012, N = 2) [10−5, 0.499] 10n2 + 4n+
(n+1)n

2

(Liu and Fridman, 2012, N = 1) [10−5, 0.380] 7n2 + 3n+
(n+1)n

2

Proposition 1 and Remark 2 [2× 10−5, 0.222] 2n2 +
(n+1)n

2
+ 3

(l+1)l
2

V̇δ + 2αVδ = h2e2αhẋT (t)CTWCẋ(t)

− π2

4
e−2αqhδT (t)Wδ(t).

Using Lemma 1 with f(s) ≡ 1, we obtain

V̇v + 2αVv = (h− τ(t))ẏT (t)Uẏ(t)

−
∫ t

tk

e−2α(t−s)ẏT (s)Uẏ(s) ds ≤ (h− τ(t))×

ẋT (t)CTUCẋ(t)− e−2αhτ(t)vT (t)Uv(t).

Using Lemma 1 and CB = 0, we derive

V̇r + 2αVr = (qh)2ÿT (t)Qÿ(t)

− 2

∫ t

t−qh

e−2α(t−s)(s− t+ qh)ÿT (s)Qÿ(s) ds ≤

(qh)2ẋT (t)ATCTQCAẋ(t)− 4e−2αqh

(qh)2
rT (t)Qr(t).

We use the following descriptor representation of (6):

0 = 2[xTPT
2 + ẋTPT

3 ]×
[−ẋ+Dx+BK1τv +BK2(δ + r)]. (9)

Therefore,
V̇ + 2αV + (9) ≤ ϕTΦ(τ)ϕ,

where ϕ = col{x, ẋ, r, δ, v}. Since Φ(τ) is affine in τ ∈
[0, h], the condition (7) guarantees V̇ ≤ −2αV and,
therefore, exponential stability with the decay rate α. �

Corollary 1. (Stabilizability for small h). Let there exist
K̄1 and K̄2 such that the system (1) is stable under the
continuous-time controller u = K̄1y+ K̄2ẏ. Then it can be
stabilized by sampled-data controller (3), where

K1 = K̄1 +
K̄2

qh
, K2 = −K̄2

qh

with small enough sampling period h and appropriate q.

Proof. To proof the corollary, we show that LMIs (7)
are feasible for small enough h and appropriate q. Since
u = K̄1y+ K̄2ẏ stabilizes (1), the matrix D̄ from (2) must
be stable. For chosen K1, K2, we have D = D̄, therefore,
there exists P > 0 such that PD +DTP < 0, where D is
from (6). Then, there exist P2, P3 such that

Λ =

[

PT
2 D +DTP2 P − PT

2 +DTP3

∗ −P3 − PT
3

]

< 0.

To see this, one can take P2 = P , P3 = εI and apply Schur
complement to obtain

PD +DTP +
ε

2
DTD < 0,

which is true for small ε > 0.

Consider now q = q(h) = O(1/
√
h) for h → 0. Then

qh = O(
√
h) and K1 = O(1/

√
h), K2 = O(1/

√
h). By

taking U = O(1/
√
h), Q = O(1/

√
h), W = O(1/(h

√
h))

and applying Schur complement to Φ(τ) with α = 0 and
τ = 0, h, we obtain that (7) holds if

Λ +O(
√
h) < 0,

which is true for small enough h. Obviously, (7) remains
true for small α > 0. �

Remark 2. (Polytopic uncertainty). The results of Propo-
sition 1 are applicable to polytopic-type uncertain A.
Indeed, by applying Schur complement to the term
(qh)2ATCTQCA, we obtain that (7) is equivalent to 2

Ξ(0) ≤ 0 and Ξ(h) ≤ 0, (10)

where

Ξ(τ) =















0
qhATCTQ

Φ̄(τ) 0
0
0

∗ ∗ ∗ ∗ ∗ −Q















and Φ̄(τ) coincides with Φ(τ) except for the block

Φ̄22(τ) = −P3 − PT
3 + (h− τ)CTUC + h2e2αhCTWC.

The matrix Ξ is affine in A, therefore, if A resides in the
uncertain polytope

A =

M
∑

j=1

µjA
(j), 0 ≤ µj ≤ 1,

M
∑

j=1

µj = 1,

one needs to solve the LMIs (10) simultaneously for the
M vertices A(j), applying the same decision matrices P2,
P3, Q, W , U .

Example 1 (Liu and Fridman (2012)). Consider the system

ẋ(t) =

[

0 1
g 0

]

x(t) +

[

0
1

]

u(t), y(t) = [1 0]x(t)

with the uncertainty g ∈ [−0.1, 0.1]. This system is not
stabilizable by sampled-data controller u(t) = Ky(tk),
t ∈ [tk, tk+1). However, it can be stabilized by

u(t) = −0.35y(tk) + 0.1y(tk−3), t ∈ [tk, tk+1).

Table 1 shows intervals for the sampling h = tk+1 − tk
that preserves the stability, obtained via different methods.
As one can see, Proposition 1 leads to a reasonable
sampling interval while the number of decision variables
is significantly smaller: 14 instead of 37 as in Liu and
Fridman (2012) with N = 1.

Differently from Liu and Fridman (2012), Seuret and Briat
(2015), our results can easily guarantee a decay rate of
exponential convergence α. E.g., for α = 10−3, Remark 2
gives h ∈ [0.04, 0.185].

Note that the results of Liu and Fridman (2012), Seuret
and Briat (2015) are applicable to time-varying g(t) while
we consider constant g. Our approach would be applicable
2 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/IFAC17a



to time-varying uncertainty g(t) if the matrix P in (10)
was the same for all the M vertices A(j). However, such
conditions are not feasible for the considered example.

3. EVENT-TRIGGERED CONTROL

In this section we use event-triggered control to reduce
the amount of transmitted signals. The basic idea is to
transmit only those measurements whose relative change
is large enough. Namely, the control is given by

u(t) = K1ŷ(tk) +K2ŷ(tk−q), t ∈ [tk, tk+1), (11)

where ŷ(tk) is the last sent measurement at time tk:

ŷ(t0) = y(t0),

ŷ(tk) =

{

ŷ(tk−1), (13) is true,

y(tk), otherwise,

(12)

with the event-triggering rule

(ŷ(tk−1)− y(tk))
TΩ(ŷ(tk−1)− y(tk)) ≤ σyT (tk)Ωy(tk),

0 < Ω ∈ R
l×l, 0 ≤ σ ∈ R. (13)

For convenience, we set y(tk−q) = ŷ(tk−q) = 0 for k−q<0.

Proposition 2. For given sampling period h, decay rate
α, event-triggering parameter σ, and tuning parameter
ν > 0 let there exist n × n matrices P > 0, P2, P3, l × l
nonnegative matrices Q, W , U , and 0 < Ω ∈ R

l×l such
that 3

[

Φ(τ) Ψ(τ)
∗ Υ

]

τ=0,h

≤ 0, (14)

where Φ(τ) is defined in Proposition 1,

Ψ(τ) =











PT
2 BK1 P

T
2 BK2 σC

TΩ σCTΩ
PT
3 BK1 P

T
3 BK2 0 −σqhCTΩ

0 0 0 σΩ
0 0 0 σΩ
0 0 στΩ 0











,

Υ = diag{−Ω,−νΩ,−σΩ,−σΩ/ν}.
Then the system (1) under the event-triggered control
(11)–(13) is exponentially stable with the decay rate α.

Proof. Introduce the event-triggering error ek = ŷ(tk) −
y(tk). Then the control signal (11) takes the form

u(t) = K1y(tk)+K2y(tk−q)+K1ek+K2ek−q, t ∈ [tk, tk+1).

Using (4), (5), we obtain the following descriptor repre-
sentation of the system (1), (11)–(13) on t ∈ [tk, tk+1):

0 = 2[xTPT
2 + ẋTPT

3 ]×
[−ẋ+Dx+BK1(τv + ek) +BK2(δ + r + ek−q)]. (15)

The event-triggering condition (12), (13) ensures that

0 ≤ σyT (tk)Ωy(tk)− eTkΩek,
0 ≤ σνyT (tk−q)Ωy(tk−q)− νeTk−qΩek−q.

(16)

For the functional V given in (8), we obtain

V̇ + 2αV + (15) + (16) ≤ ψT

[

Φ(τ) Ψ′(τ)
∗ Υ′

]

ψ

+ σyT (tk)Ωy(tk) + σνyT (tk−q)Ωy(tk−q),

where ψ = col{x, ẋ, r, δ, v, ek, ek−q}, Ψ′(τ) is obtained
from Ψ(τ) by eliminating the last two block-columns, and
Υ′ = diag{−Ω,−νΩ}. Substituting representations (4),

3 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/IFAC17a

(5) for y(tk), y(tk−q) and using the Schur complement for
the terms with σ, we obtain that if

[

Φ(τ) Ψ(τ)
∗ Υ

]

≤ 0 (17)

then V̇ ≤ −2αV and, therefore, the system is exponen-
tially stable with the decay rate α. Since both Φ(τ) and
Ψ(τ) are affine in τ ∈ [0, h], the condition (14) implies (17).

�

Example 2 (French et al. (2009)). Consider the system

ẋ(t) =

[

0 1 0
1 1 1
1 0 −1

]

x(t) +

[

0
1
0

]

u(t), y(t) = [1 0 0]x(t)

under the control

u(t) = −17y(tk) + 13y(tk−q), t ∈ [tk, tk+1). (18)

To reduce the amount of transmitted signals, we would
like the sampling period h to be as large as possible. Using
Proposition 1, we find the maximum sampling h for each
q = 1, 2, . . . The overall maximum h = 0.0876 corresponds
to q = 3. This implies that within 50 seconds of the system
evolution, ⌊ 50

h
⌋ + 1 = 571 measurements are transmitted

through a network.

Event-triggered control allows to send less measurements.
Consider (11)–(13) with σ = 9 × 10−4, q = 5. Using
Proposition 2, we find the maximum sampling h = 0.0619.
Performing numerical simulations for 100 randomly chosen
initial conditions from B1(0) = {x0 ∈ R

n | ‖x0‖ < 1},
we find that the average amount of sent measurements is
425.2, what is by 25% less than in the case of periodic
sampling (18) with q = 3. Note that for q = 5 Proposi-
tion 1 gives h = 0.0708 leading to 707 sent measurements
under periodic sampling (18). Thus, event-triggered control
allows to reduce the amount of transmitted signals at the
cost of larger memory used (q = 5 for event-triggered
control, q = 3 for periodic sampling).

4. CONCLUSION

We considered LTIs of relative degree two under sampled-
data feedback with artificial delay. For such systems, we
derived simple LMI-based conditions ensuring stability
with a desired decay rate. Moreover, we proved that if the
system can be stabilized by continuous-time derivative-
dependent feedback then it can be stabilized by sampled-
data delay-dependent feedback with small enough sam-
pling and delay. Finally, we introduced event-triggered
control and demonstrated that it allows to reduce the
amount of transmitted signals at the cost of larger memory
used.

Further research will be devoted to the stabilization of
LTIs with arbitrary relative degree by sampled-data feed-
back with several artificial delays.
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Birkhäuser, Boston.

Ilchmann, A. and Sangwin, C.J. (2004). Output feedback
stabilisation of minimum phase systems by delays. Sys-
tems & Control Letters, 52(3-4), 233–245.

Karafyllis, I. (2008). Robust global stabilization by means
of discrete-delay output feedback. Systems & Control
Letters, 57(12), 987–995.

Liu, K. and Fridman, E. (2012). Wirtinger’s inequality
and Lyapunov-based sampled-data stabilization. Auto-
matica, 48(1), 102–108.

Liu, K., Suplin, V., and Fridman, E. (2010). Stability of
linear systems with general sawtooth delay. IMA Jour-
nal of Mathematical Control and Information, 27(4),
419–436.

Niculescu, S.I. and Michiels, W. (2004). Stabilizing a chain
of integrators using multiple delays. IEEE Transactions
on Automatic Control, 49(5), 802–807.

Selivanov, A. and Fridman, E. (2016). Observer-based
input-to-state stabilization of networked control systems
with large uncertain delays. Automatica, 74, 63–70.

Seuret, A. and Briat, C. (2015). Stability analysis of
uncertain sampled-data systems with incremental delay
using looped-functionals. Automatica, 55, 274–278.

Solomon, O. and Fridman, E. (2013). Automatica New
stability conditions for systems with distributed delays.
Automatica, 49(11), 3467–3475.

Tabuada, P. (2007). Event-Triggered Real-Time Schedul-
ing of Stabilizing Control Tasks. IEEE Transactions on
Automatic Control, 52(9), 1680–1685.


