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Abstract: We study passification-based adaptive control of minimum-phase systems with
sampled measurements. First, we remove the “relative degree one” assumption previously
imposed in Selivanov et al. (2015). To achieve this, we introduce the shunting method that
allows to obtain hyper-minimum-phase augmented system, which is further stabilized by
a passification-based adaptive controller. Second, we introduce a switching event-triggering
mechanism to reduce the number of transmitted measurements. The advantage of adaptive
control and the benefit of the switching approach are demonstrated by an example of adaptive
flight control.

1. INTRODUCTION

The passification method is a long-studied approach
to adaptive control (Fradkov (1974, 1976); Barkana
and Kaufman (1985); Kaufman et al. (1998); Iwai and
Mizumoto (1992); Deng et al. (2001); Dolinar et al.
(2000); Cho and Burton (2011); Amini and Javanbakht
(2014)). Though passification-based adaptive controllers
have rather simple structure, their practical implementa-
tion faces certain difficulties. First, disturbances, inherent
in most systems, can cause infinite growth of the dynami-
cally tuned controller gains. This issue has been overcome
by introducing the so-called “σ-modification” (Narendra
et al. (1971); Lindorff and Carroll (1973); Ioannou and
Kokotovic (1984)). A similar modification is required for
systems with measurement quantization (Selivanov et al.
(2016)). An entirely different problem is the presence of
input/output delays that unavoidably appear due to finite
time of signals’ processing and transmission. Just recently
this problem has been resolved for minimum-phase sys-
tems with relative degree one, i.e., hyper-minimum-phase
systems (Selivanov et al. (2015)). Since input/output de-
lays can model control/measurement sampling (Fridman,
2014, Chapter 7), the results of Selivanov et al. (2015) are
applicable to sampled-data systems.

In this paper, we remove the restrictive “relative degree
one” assumption for sampled-data adaptive controller. To
achieve this, we use the so-called shunting method (par-
allel feedforward compensator) in the form proposed in
Fradkov (1994). This allows to obtain a hyper-minimum-
phase augmented system, which is further stabilized by a
passification-based adaptive controller.

One of the motivations for considering data sampling is
networked control systems where signals cannot be con-
tinuously transmitted through communication medium.
In such systems, it is beneficial to reduce the number of
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samplings (that is, the number of transmitted signals) to
save computational and communicational resources. For
this purpose we introduce the event-triggering mecha-
nism (Åström and Bernhardsson (1999); Tabuada (2007);
Heemels et al. (2012)), which basic idea is to send only
those signals whose relative change is larger than a given
threshold. We implement this idea using a switching ap-
proach recently proposed in Selivanov and Fridman (2016).
We demonstrate its advantage over periodic sampling and
periodic event-triggering (where event-triggering condition
is checked periodically) by an example of adaptive flight
control.

Preliminaries

Lemma 1. (Wirtinger inequality, Hardy et al. (1952)).
Let f : [a, b] → R be an absolutely continuous function
with a square integrable first derivative such that f(a) = 0
or f(b) = 0. Then

∫ b

a

f2(t) dt ≤
4(b− a)2

π2

∫ b

a

[

ḟ(t)
]2

dt.

Consider the system

ẋ = Ax+Bu,

y = Cx,
x ∈ R

n, u ∈ R, y ∈ R
l. (1)

For a given vector g ∈ R
l a scalar transfer function

gTW (s) = gTC(sI − A)−1B is called minimum-phase if
its numerator is stable. It is called hyper-minimum-phase
(HMP) if its numerator is stable and has a positive leading
coefficient, i.e., gTCB > 0.

Lemma 2. (Passification lemma, Fradkov (1976, 2003)).
For the existence of a matrix P > 0 such that PB = CT g
and

P [A−Bk∗g
TC] + [A−Bk∗g

TC]TP < 0 (2)
with large enough k∗ ∈ R, it is necessary and sufficient
that the rational function gTW (s) = gTC(sI − A)−1B is
HMP.

If gTW (s) = gTC(sI − A)−1B is HMP then there exists
k∗ such that the input u = −k∗g

T y + v makes the system



Fig. 1. Sampled-data adaptive controller with a shunt

(1) strictly passive from a new input v to the output gT y,
i.e., there exist functions V (x) = xTPx, with P > 0, and
ϕ(x) ≥ 0, such that ϕ(x) > 0 for x 6= 0, satisfying

V (x(t)) ≤ V (x(0)) +

∫ t

0

[

yT (s)gv(s)− ϕ(x(s))
]

ds.

Lemma 3. (Fradkov (1994)). Let gTp Wp(s) = gTp Cp(sI −

Ap)
−1Bp be a minimum-phase transfer function with a rel-

ative degree r > 1 and a leading coefficient gTp CpA
r−1
p Bp >

0. Let P (s) and Q(s) be Hurwitz polynomials of degrees
r − 2 and r − 1 with positive coefficients. Then there
exist a number κ0 > 0 and a function λ0(κ) > 0 such
that gTp Wp(s) + κλP (λs)/Q(s) is HMP for any κ > κ0,
0 < λ < λ0(κ).

2. ADAPTIVE CONTROL WITH A SHUNT

Consider the linear system

ẋp = Apxp +Bpup,

yp = Cpxp,
xp ∈ R

n, up ∈ R, yp ∈ R
l (3)

with a structured time-varying uncertainty

Ap ∈

{

N
∑

i=1

ξiAp,i

∣

∣

∣

∣

∣

0 ≤ ξi ≤ 1,
N
∑

i=1

ξi = 1

}

, (4)

where Ap,i ∈ R
n×n are some known matrices. The problem

is to construct a controller that stabilizes the uncertain
system (3) using only sampled measurements yp(tk), where
0 = t0 < t1 < t2 < . . . are sampling instants.

Let there exist gp ∈ R
l such that gTp Wp(s) = gTp Cp(sI −

Ap)
−1Bp is minimum-phase with a relative degree r ≥ 1

and a leading coefficient gTp CpA
r−1
p Bp > 0.

Remark 1. The transfer function gTp Wp(s) depends on
the uncertain matrix Ap from (4). To check that it is
minimum-phase, one needs to check the stability of its
numerator b(s) = det(sI − Ap)

−1gTp Wp(s) with uncer-
tain coefficients. This can be done using Theorem 2 of
Kharitonov (1979).

Choose some stable polynomials P (s) and Q(s) of degrees
r − 2 and r − 1 with positive coefficients (P (s) = 0 if
r = 1). Due to Lemma 3, there exist λ and κ such that
gTp Wp(s) +Ws(s) is HMP, where Ws(s) = κλP (λs)/Q(s).
Consider a minimal realization of Ws(s):

ẋs(t) = Asxs(t) +Bsu(t),

ys(t) = Csxs(t).
(5)

Denoting x = col{xp, xs}, y = col{yp, ys},

A =

[

Ap 0
0 As

]

, B =

[

Bp

Bs

]

, C =

[

Cp 0
0 Cs

]

, (6)

we obtain the augmented system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

which transfer function is

W (s) =

[

Wp(s)
Ws(s)

]

.

Note that the uncertain matrix A belongs to (4) with
Ap,i replaced by Ai = diag{Ap,i, As}. For g = col{gp, 1},
gTW (s) = gTp Wp(s) + Ws(s) is HMP. Uncertain HMP
systems can be stabilized using passification-based adap-
tive controller (Andrievskii and Fradkov (2006)). Here we
study the sampled-data form of such controller (see Fig. 1):

u(t) = −k(t)[gTp yp(tk) + ys(t)],

k̇(t) = γ[gTp yp(tk) + ys(t)]
2,

(7)

where k ∈ R is an adaptive coefficient and γ > 0.

3. EVENT-TRIGGERED SAMPLING

So far we did not specify how one should choose the sam-
pling instants 0 = t0 < t1 < t2 < . . . A straight-forward
approach is to take periodic sampling tk = kh. However,
in this case the measurements are sent even when the out-
put fluctuation is small and does not significantly change
the control signal. To avoid such “redundant” packets
and reduce the amount of transmitted measurements, we
consider the switching approach to event-triggered control
proposed in Selivanov and Fridman (2016). Namely, we
take t0 = 0 and

tk+1 = min
{

t ≥ tk + h
∣

∣ [gTp (yp(tk)− yp(t))]
2

≥ σ[gTp yp(t)]
2
}

, (8)

where h > and σ > 0 are the event-triggering parameters.
The idea is that the sensor waits for at least h seconds after
it sent the last measurement and sends the next one when
its relative change is larger than σ. Under event-triggering
sampling the signals are sent only when their change is
significant enough. Moreover, the presence of the waiting
time h guarantees that lim tk = ∞.

Theorem 1. For given event-triggering parameters σ >
0 and h > 0 let there exist a positive-definite matrix
P ∈ R

(n+r−1)×(n+r−1), positive scalars µ, w, and tuning
parameter k∗ such that 1

PB = CT g, Φi|a=±M < 0, Ψi|a=±M < 0, i = 1, . . . , N,

where Φi, Ψi are symmetric matrices combined of

Φi
11 = P [Ai −Bk∗g

TC] + [Ai −Bk∗g
TC]TP

+ µσ diag{CT
p gpg

T
p Cp, 0r−1},

Φ12 = Ψ12 = −PBk∗ + CT ga,

Φ22 = 2a− µ,

Ψi
11 = P [Ai −Bk∗g

TC] + [Ai −Bk∗g
TC]TP,

Ψi
13 = hw(AT

i − CT gBT (k∗ + a))

[

CT
p gp

0(r−1)×1

]

,

Ψ22 = 2a− π2w/4,

1 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/IFAC17



Ψ23 = − hwBT (k∗ + a)

[

CT
p gp

0(r−1)×1

]

,

Ψ33 = − w

with Ai = diag{Ap,i, As}. Then, for the system (3) with
initial conditions ‖xp(0)‖ < δ, the adaptive sampled-data
controller (5), (7), (8) with

xs(0) = 0, |k(0)− k∗| < M, γ <
M2 − (k(0)− k∗)

2

λmax(P )δ2

guarantees limt→∞ xp(t) = 0. Moreover, limt→∞ xs(t) = 0
and limt→∞ k(t) = const.

Proof. Consider the functional

V =

{

V0 + Vγ + Vw, t ∈ [tk, tk + h),

V0 + Vγ , t ∈ [tk + h, tk+1),

where

V0 = xT (t)Px(t),

Vγ = γ−1(k(t)− k∗)
2,

Vw = h2w

∫ t

tk

[gTp ẏp(s)]
2ds−

π2w

4

∫ t

tk

[gTp (yp(s)− yp(tk))]
2ds.

The function V0 + Vγ is chosen following Fradkov (1974).
The Wirtinger-based term Vw is taken from Liu and
Fridman (2012). Due to Lemma 1, Vw ≥ 0. Moreover,
Vw(tk + h) ≤ Vw(tk + h − 0), therefore, V (t) does not
increase at discontinuity points tk + h. Since Vw(tk) = 0,
V is continuous at tk.

Denote

a(t) = k(t)− k∗,

e(t) = gTp [yp(tk)− yp(t)], t ∈ [tk, tk+1).

Then the closed-loop system (3), (5), (7) can be presented
in the form

ẋ = Ax(t)−B(k(t)± k∗)(g
T
p [yp(tk)± yp(t)]+ys(t))

= Ax−B(k∗ + a)(gTCx+ e).
(9)

We have

V̇0 = 2xT (t)P
[

Ax−B(k∗ + a)(gTCx+ e)
]

= 2xTP [A−Bk∗g
TC]x− 2xTPBk∗e

− 2(xTPB ± e)a(gTCx+ e)

= 2xTP [A−Bk∗g
TC]x− 2xTPBk∗e

− 2a(gTCx+ e)2 + 2ea(gTCx+ e),

where we used PB = CT g (note that xTPB is a scalar).

The penultimate term of V̇0 is canceled by

V̇γ = 2a[gTp yp(tk) + ys(t)]
2 = 2a[gTCx+ e]2.

Thus,

V̇0 + V̇γ = 2xTP [A−Bk∗g
TC]x

− 2xTPBk∗e+ 2ea(gTCx+ e).

The remainder of the proof is divided into three parts.
First, we show that V̇ < −ε

(

‖x‖2 + ‖e‖2
)

for small
enough ε > 0 if a(t) ∈ [−M,M ]. Then, we prove that
|a| < M is always true. Finally, we use the inequality

V̇ < −ε
(

‖x‖2 + ‖e‖2
)

to prove the statement of the
theorem.

I. Proof that |a| < M implies V̇ < −ε(‖x‖2 + ‖e‖2).

For t ∈ [tk, tk + h) we have

V̇w = h2wẋT
[

CT
p gp

0(r−1)×n

] [

CT
p gp

0(r−1)×n

]T

ẋ−
π2w

4
e2.

Therefore,

V̇ =

[

x
e

]T [

Ψ11 CT ga− PBk∗
∗ 2a− π2w/4

] [

x
e

]

+ h2wẋT
[

CT
p gp

0(r−1)×n

] [

CT
p gp

0(r−1)×n

]T

ẋ,

where Ψ11 = P [A − Bk∗g
TC] + [A − Bk∗g

TC]TP . Sub-
stituting (9) for ẋ and applying the Schur complement,

we obtain that V̇ < −ε(‖x‖2 + ‖e‖2) for small enough
ε if Ψ < 0, where Ψ is obtained from Ψi by replacing
Ai with A. Since Ψ is affine in A and a, the conditions
Ψi|a=±M < 0 (i = 1, . . . , N) guarantee V̇ < −ε(‖x‖2 +
‖e‖2) for t ∈ [tk, tk + h).

For t ∈ [tk + h, tk+1) the event-triggering condition (8)
implies

µσxT diag{CT
p gpg

T
p Cp, 0r−1}x− µe2 ≥ 0. (10)

Then we have

V̇ + (10) =

[

x
e

]T

Φ

[

x
e

]

,

where Φ is obtained from Φi by replacing Ai with A.
Since Φ is affine in A and a, the conditions Φi|a=±M < 0

(i = 1, . . . , N) guarantee V̇ < −ε(‖x‖2 + ‖e‖2) for small
enough ε and t ∈ [tk + h, tk+1).

II. Proof that |a| < M for t ≥ 0.

Note that xs(0), k(0), and γ are chosen to ensure

V (0) ≤ λmax(P )δ
2 + γ−1(k(0)− k∗)

2 < γ−1M2.

Let V (t) ≥ γ−1M2 for some t > 0. Since V (0) < γ−1M2

and V (t) decreases at its discontinuity points, there should
exist t∗ such that V (t) < γ−1M2 on [0, t∗) and V (t∗) =
γ−1M2. Then

|a(t)| = |k(t)− k∗| ≤
√

γV (t) ≤M, t ∈ [0, t∗].

As we have shown before, the latter implies V̇ < −ε(‖x‖2+
‖e‖2) on [0, t∗]. But then V (t∗) ≤ V (0) < γ−1M2 what
contradicts to the definition of t∗. Thus, for t ≥ 0 we have

V (t) < γ−1M2 ⇒ |a| < M ⇒ V̇ < −ε(‖x‖2 + ‖e‖2).

III. End of the proof.

Since V is positive and decreases, limt→∞ V (t) <∞ and
∫∞

0
ε‖x(s)‖2 ds+

∫∞

0
ε‖e(s)‖2 ds <

−
∫∞

0
V̇ (s) ds = V (0)− limt→∞ V (t)

should be finite. That is, x(·), e(·) ∈ L2. Boundedness
of V implies boundedness of x and a and (10) implies
boundedness of e. Therefore, ẋ given by (9) is bounded and
x is uniformly continuous. Then, from Barbalat’s lemma
(Khalil, 2002, Lemma 8.2), we have limt→∞ ‖x(t)‖ = 0.
Moreover,

k(t) = k(0) + γ
∫ t

0
[gTCx(s) + e(s)]2ds

≤ k(0) + γλmax(C
T ggTC)‖x‖2L2 + γ‖e‖2L2 .

Since k(t) = k∗ + a(t) monotonically increases and
bounded, it converges to a constant value. �



Remark 2. The LMIs of Theorem 1 are always feasible
for large k∗, small event-triggering parameters h, σ, and
narrow uncertainty class (4). Indeed, since the system (3),
(5) is HMP, Lemma 2 guarantees the existence of P > 0
such that PB = CT g and (2) is valid for large enough
k∗. Then the Schur complement implies that the LMIs of
Theorem 1 hold for h = 0, σ = 0, Ai = A if µ and w are
large enough. Then they hold for small h, σ and narrow
enough uncertainty class (4).

Remark 3. The results of Theorem 1 are semi-global. That
is, for any initial conditions ‖xp(0)‖

2 < δ with arbitrary
large δ there always exists sufficiently small γ such that
the adaptive controller (5), (7) stabilizes the system.

Remark 4. One can show that if the conditions of Theo-
rem 1 are satisfied with M = 0 then the static feedback

u(t) = −k∗[g
T
p yp(tk) + ys(t)]

stabilizes the system (3), (5). The advantage of adaptive
control is that usually limt→∞ k(t) < k∗. That is, adaptive
control allows to stabilize the system using a smaller
controller gain (see Section 4).

Remark 5. For the sake of simplicity, we consider a scalar
adaptive coefficient k(t) in the adaptive controller (7).
However, Theorem 1 can be extended to cope with a vector
adaptive gain θ(t) = col{θp(t), θs(t)}, where θp ∈ R

l,
θs ∈ R and the adaptive controller is given by

u(t) = −θTp (t)yp(tk)− θs(t)ys(t),

θ̇p(t) = γyp(tk)[g
T
p yp(tk) + ys(t)],

θ̇s(t) = γys(t)[g
T
p yp(tk) + ys(t)].

On the one hand, such extension brings more flexibility
and allows to consider, e.g., adaptive PID controllers (see
Andrievskii and Fradkov (2006)). On the other hand, one
will have to check the LMIs of Theorem 1 for 2l+1 values
of a = θ(t)− θ∗ (since each of l + 1 components will have
two values ai = ±M), while for a scalar gain we have only
two vertices a = ±M .

Remark 6. Consider the periodic event-triggered sampling

tk+1 = min
{

tk + ih
∣

∣ [gTp (yp(tk)− yp(tk + ih))]2

≥ σ[gTp yp(tk + ih)]2, i ∈ N
}

. (11)

The stability conditions for the system (3), (5), (7), (11)
can be obtained in a manner similar to Theorem 1 using
the functional V = V0 + Vγ + Vw and representation
y(tk) = y(t) + [y(t) − y(tk + ih)] + [y(tk) − y(tk + ih)].
In this case the matrices Φi and Ψi should be replaced by
Ξi composed of the blocks 2

Ξi
11 = P [Ai −Bk∗g

TC] + [Ai −Bk∗g
TC]TP

+ µσ diag{CT
p gpg

T
p Cp, 0r−1},

Ξ12 = Ξ13 = −PBk∗ + CT ga,

Ξi
14 = hw(AT

i − CT gBT (k∗ + a))

[

CT
p gp

0(r−1)×1

]

,

Ξ22 = 2a− π2w/4,

Ξ23 = 2a,

Ξ24 = Ξ34 = −hwBT (k∗ + a)

[

CT
p gp

0(r−1)×1

]

,

Ξ33 = 2a− µ, Ξ44 = −w.

2 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/IFAC17

The advantage of the sampling (11) is that it requires to
check the event-triggering condition only at time instants
tk+ih while (8) requires to check it continuously. However,
the event-triggering with waiting time (8) may lead to a
smaller amount of sent signals (see Section 4). A more
detailed comparison of the event-triggering mechanisms
(8) and (11) can be found in Selivanov and Fridman (2016).

4. EXAMPLE: ADAPTIVE FLIGHT CONTROL

The lateral motion of an aircraft considered as a rigid body
can be described by (see Fradkov and Andrievsky (2011))

β̇(t) = a1β(t) + r(t) + b1δ(t),

ṙ(t) = a2β(t) + a3r(t) + b2δ(t),

ψ̇(t) = r(t),

(12)

where ψ(t) and r(t) are the yaw angle and the yaw rate,
β(t) is the sideslip angle, δ(t) is the rudder angle (the
control signal), ai and bi are aircraft model parameters
that depend on the flight conditions. Following Fradkov
and Andrievsky (2011), we take a2 = 33, a3 = −1.3,
b1 = 19/15, b2 = 19 and assume that a1 ∈ [−1.5,−0.7]
is an uncertain parameter.

The first mode of the aircraft bending is modeled as

Wbend(s) =
∆ψ(s)

δ(s)
=

kbend
T 2
bends

2 + 2ξbendTbends+ 1
, (13)

where kbend = −1.5×10−4 is the bending mode transition
factor; Tbend = ω−1

bend is the response time factor with
ωbend = 65 s−1 being the first bending mode natural
frequency; and ξbend = 0.01 is the damping ratio. The
measured signal is given by

y(t) = ψ(t) + ∆ψ(t). (14)

The system (12)–(14) can be presented in the form (3)
with

[

Ap Bp

Cp 0

]

=

















a1 1 0 0 0 b1
a2 a3 0 0 0 b2
0 1 0 0 0 0

0 0 0 −2ξbend

Tbend

1 0

0 0 0 −1
T 2

bend

0 kbend

T 2

bend

0 0 1 1 0 0

















.

For gp = 1 the transfer gTp Wp(s) = gTp Cp(sI −Ap)
−1Bp is

minimum-phase with the relative degree r = 2 and positive
leading coefficient. As a shunt transfer function we take

Ws(s) =
2

s+ 14
.

Then for g = [1, 1]T the function gTW (s) =Wp(s)+Ws(s)
is HMP. In what follows, we study the adaptive controller
(5), (7) for different choices of sampling instants tk.

First, consider periodic sampling tk = kh. Note that event-
triggered sampling (8) coincides with periodic sampling if
σ = 0. Therefore, we use Theorem 1 with σ = 0, k∗ =
30, M = 35 to obtain the maximum periodic sampling
h = 0.0265. This implies that ⌊ 10

h
⌋ + 1 = 378 signals are

transmitted within 10 seconds of system evolution.

Now consider the event-triggered sampling (8). For dif-
ferent values of σ we use Theorem 1 to find the maxi-
mum waiting time h. To obtain the average amount of
sent signals, for each pair of (σ, h) we perform numerical



Fig. 2. Sent measurements with different σ for periodic
sampling (dotted line), event-triggering (8) (solid
line), periodic event-triggering (11) (dashed line).

Fig. 3. Evolution of the controller gain k(t) for 5 randomly
chosen initial conditions and the value of k∗ = 30.

simulations with 100 randomly chosen initial conditions
‖xp(0)‖ < 1 and a1 = −0.75, xs(0) = 0, k(0) = 0. The
results are depicted in Fig. 2 (solid line). The minimum
corresponds to σ = 4 × 10−3, h = 0.0261 with 334.9 sent
measurements, what is by more than 10% less than in the
case of periodic sampling.

At the same time, as clearly seen from Fig. 2, periodic
event-triggering (11) does not reduce the network work-
load. For instance, taking σ = 4×10−3 as above and using
Remark 6, we find the maximum sampling h = 0.0163 and
the average amount of sent signals 477.99. Therefore, the
event-triggered control (5), (7), (8) reduces the network
workload compared to both periodic sampling and periodic
event-triggering (11).

In Fig. 3 one can see the evolution of k(t) for 5 randomly
chosen initial conditions ‖xp(0)‖ < 1 under the event-
triggered control (5), (7), (8). Clearly, the adaptive gains
k(t) converge to constants that are smaller than the value
of the static gain k∗ = 30 (see Remark 4). This happens
because the static controller u(t) = −k∗[g

T
p yp(tk) + ys(t)]

ensures stability of the system (3) for all a1 ∈ [−1.5,−0.7],
while adaptive controller finds an appropriate static gain
limt→∞ k(t) for a particular value a1 = −0.75.

5. CONCLUSION

We obtained the stability conditions in terms of linear
matrix inequalities for event-triggered adaptive stabiliza-
tion of minimum-phase systems with sampled measure-
ments. The presence of measurement sampling allows to
obtain only semi-global results because the deviation of
the adaptive controller must be bounded (i.e. |a| < M
in Theorem 1). Possible extensions include consideration
of time-varying network delays, system disturbances, and
measurement noise.
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