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Improved sampled-data implementation

of derivative-dependent control

Anton Selivanov Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel

Abstract: We consider an LTI system of relative degree two that can be stabilized using the
output and its derivative. The derivative is approximated using a finite difference, what leads
to a time-delayed feedback. This feedback is analyzed using a Lyapunov-Krasovskii functional
that compensates the derivative approximation error presented in an integral form. We show
that if the derivative-dependent control exponentially stabilizes the system, then one can use
consecutively sampled measurements to approximate the derivative and this approximation
will preserve the stability if the sampling period is small enough. We provide linear matrix
inequalities that allow to find admissible sampling period and can be used for robustness
analysis with respect to system uncertainties. The results are demonstrated by two examples:
2D uncertain system and the Furuta pendulum.

1. INTRODUCTION

Control laws that depend on the output derivative are used
to stabilize LTI systems of relative degree two. To estimate
the derivative, which can hardly be measured directly, one
can use the finite difference: ẏ ≈ (y(t) − y(t − h))/h.
Such approximation leads to time-delyed feedback that
preserves the stability if the delay h > 0 is small enough
(French et al. (2009)). For a given h, the delay-induced sta-
bility can be checked using frequency-domain techniques
(Niculescu and Michiels (2004); Kharitonov et al. (2005);
Ramı́rez et al. (2016)) or complete Lyapunov-Krasovskii
functionals (Gu et al. (2003); Kharitonov (2012); Egorov
(2016)), which give necessary and sufficient conditions.

The delay-induced stability can be also studied using
linear matrix inequalities (LMIs) (Gu (1997); Seuret and
Gouaisbaut (2013, 2015)). The advantage of LMIs is that,
though being conservative, they allow for performance
and robustness analysis, can cope with certain types
of nonlinearities (Fridman (2014)), and can deal with
stochastic perturbations (Fridman and Shaikhet (2016,
2017)). Simple and yet efficient LMIs for the delay-induced
stability were obtained in Fridman and Shaikhet (2016,
2017). The key idea was to use the Taylor’s expansion
of the delayed terms with the remainders in the integral
form that are compensated by appropriate terms in the
Lyapunov-Krasovskii functional. Compared to Gu (1997);
Seuret and Gouaisbaut (2013, 2015), the resulting LMIs
have a lower order, contain less decision variables, and
were proved to be feasible for small delays if the derivative-
dependent feedback stabilizes the system.

LMIs can be used to study sampled-data implementation
of stabilizing controllers with artificial delays. This has
been done in Liu and Fridman (2012) via discretized
Lyapunov functionals with a Wirtinger-based term and
in Seuret and Briat (2015) by employing impulsive sys-
tem representation and looped Lyapunov functionals. The

⋆ Supported by Israel Science Foundation (grant No. 1128/14).
E-mail: antonselivanov@gmail.com

high-order LMIs obtained in Liu and Fridman (2012) and
Seuret and Briat (2015) contain many decision variables,
which make them hard to solve numerically. Using the
ideas of Fridman and Shaikhet (2016, 2017), simple LMIs
for sampled-data delay-induced stabilization were derived
in Selivanov and Fridman (2018). These conditions were
proved to be feasible for a small enough sampling period
if the continuous-time derivative-dependent feedback sta-
bilizes the system.

In this paper, we improve the results of Selivanov and
Fridman (2018). Namely, we show that one can always
take consecutively sampled measurements to approximate
the output derivative while Selivanov and Fridman (2018)
required distant measurements (cf. (7) and (18)). This
novelty allows to use less memory when one uses time-
delays to implement derivative-dependent feedback. Such
improvement is achieved by representing the errors due
to sampling in a different way: the errors used to be
multiplied by sampling-dependent gains but now they are
multiplied by constant gains (see Remark 3). We provide
linear matrix inequalities that allow to find admissible
sampling period and can be used for robustness analysis
with respect to system uncertainties. The results are
demonstrated by two examples: 2D uncertain system and
the Furuta pendulum.

Auxiliary lemmas

Lemma 1. (Wirtinger’s inequality). Let f : [a, b] → R
n be

an absolutely continuous function with a square integrable
first derivative such that f(a) = 0 or f(b) = 0. Then for
any 0 ≤ W ∈ R

n×n,
∫ b

a

fT (t)Wf(t) dt ≤
4(b− a)2

π2

∫ b

a

ḟT (t)Wḟ(t) dt.

Proof is given in Liu et al. (2010).

Lemma 2. (Jensen’s inequality). Let ρ : [a, b] → [0,∞)
and f : [a, b] → R

n be such that the integration concerned
is well-defined. Then for any 0 < Q ∈ R

n×n,



[

∫ b

a

ρ(s)f(s) ds

]T

Q

[

∫ b

a

ρ(s)f(s) ds

]

≤

∫ b

a

ρ(s) ds

∫ b

a

ρ(s)fT (s)Qf(s) ds.

Proof is given in Solomon and Fridman (2013).

2. DERIVATIVE IMPLEMENTATION USING
SAMPLED-DATA CONTROL

Consider a linear system

ẋ = Ax+Bu,

y = Cx,
x ∈ R

n, u ∈ R
m, y ∈ R

l, (1)

of relative degree two, i.e.,

CB = 0, CAB 6= 0. (2)

For such systems, it is common to look for a stabilizing
controller in the form

u = K̄0y + K̄1ẏ, K̄0, K̄1 ∈ R
m×l (3)

Remark 1. Appropriate K̄0 and K̄1 can always be found
if (1) is a square (m = l) minimum-phase system with
detCAB 6= 0 (Ilchmann and Sangwin (2004)).

The controller (3) depends on the output derivative, which
is hard to measure directly. Instead, the derivative can be
approximated by the finite-difference

ẏ(t) ≈ y1(t) =
y(t)− y(t− h)

h
, h > 0. (4)

This approximation leads to the delay-dependent control

u(t) = K̄0y(t) + K̄1y1(t) = K0y(t) +K1y(t− h), (5)

where y(t) = 0 for t < 0 and

K0 = K̄0 +
1

h
K̄1, K1 = −

1

h
K̄1. (6)

If (1) is stable under (3), it can be stabilized by (5) with
a small enough delay h > 0 (French et al. (2009)).

In this paper, we assume that only sampled in time mea-
surements y(tk) are available to the controller, where k ∈
N0 and tk = kh are the sampling instants with a sampling
period h > 0. The derivative-dependent controller (3) is
implemented as the sampled-data controller (cf. (5))

u(t) = K̄0y(tk) + K̄1y1(tk) = K0y(tk) +K1y(tk−1),

t ∈ [tk, tk+1), k ∈ N0 (7)

with y(t−1) = 0 and Ki from (6).

We will show that the sample-data controller (7) stabilizes
the system (1), if (3) stabilizes (1) and the sampling period
h > 0 is small enough. Moreover, we will derive LMIs that
allow to find appropriate h.

First, we present the estimation error ẏ(t) − y1(t) in a
convenient integral form.

Lemma 3. If y ∈ C1 and ẏ is absolutely continuous, then
y1 defined in (4) satisfies

y1(t) = ẏ(t) +

∫ t

t−h

t− h− s

h
ÿ(s) ds. (8)

Proof. Taylor’s expansion with the remainder in the inte-
gral form gives

y(t− h) = y(t)− ẏ(t)h−

∫ t

t−h

(t− h− s)ÿ(s) ds.

Reorganizing the terms, we obtain

y1(t) =
y(t)− y(t− h)

h
= ẏ(t) +

∫ t

t−h

t− h− s

h
ÿ(s)ds.

�

Since

ẏ
(1)
= C[Ax+Bu]

(2)
= CAx, (9)

we have ÿ = CAẋ, which is piecewise-continuous. There-
fore, ẏ is absolutely continuous. For t ∈ [tk, tk+1), we
present the sampled signals as

y(tk) = y(t)−
∫ t

tk
ẏ(s) ds,

y1(tk) = y1(t)−
∫ t

tk
ẏ1(s) ds

(8)
= ẏ(t) +

∫ t

t−h
t−h−s

h
ÿ(s)ds−

∫ t

tk
ẏ1(s) ds.

(10)

Substituting (10) into (7), we obtain

u(t) = K̄0y(t) + K̄1ẏ(t) + δ0(t) + δ1(t) + κ(t), (11)

where

δ0(t) = −K̄0

∫ t

tk

ẏ(s) ds,

δ1(t) = −K̄1

∫ t

tk

ẏ1(s) ds,

κ(t) = K̄1

∫ t

t−h

t− h− s

h
ÿ(s) ds.

Then the closed-loop system (1), (11) takes the form

ẋ = Dx+B[δ0(t) + δ1(t) + κ(t)], (12)

where D = A + BK̄0C + BK̄1CA. The system (1), (3)
is equivalent to ẋ = Dx. Therefore, if (1), (3) is stable,
then D is Hurwitz. The theorem below guarantees that
the errors δ0, δ1, and κ do not ruin the stability of (12).

Theorem 1. Consider an LTI system (1) of relative degree
two, i.e., satisfying (2).

(i) The sampled-data feedback (7) with a sampling pe-
riod h > 0 and controller gains (6) exponentially
stabilizes (1) if there exist

0 < P ∈ R
n×n, P2, P3 ∈ R

n×n,
0 < W0 ∈ R

m×m, 0 < W1 ∈ R
m×m, 0 < R1∈R

m×m

such that 1

N =













N11 N12 PT
2 B PT

2 B PT
2 B

∗ N22 PT
3 B PT

3 B PT
3 B

∗ ∗ −π2

4 W0 0 0

∗ ∗ ∗ −π2

4 W1 0
∗ ∗ ∗ ∗ −R1













< 0,

where
N11 = DTP2 + PT

2 D,
N12 = P − PT

2 +DTP3,

N22 = −P3 − PT
3 + h2

[

K̄0C
]T

W0

[

K̄0C
]

+ h2
[

K̄1CA
]T (

W1 +
1
4R1

) [

K̄1CA
]

with D = A+BK̄0C +BK̄1CA.
(ii) If the derivative-dependent feedback (3) with con-

troller gains K̄0, K̄1 ∈ R
m×l stabilizes (1), then there

exists a sufficiently small sampling period h > 0
such that the sampled-data feedback (7) with the
controller gains (6) stabilizes (1).

1 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/ROCOND18



Proof. (i) For t ≥ h consider the functional

V = V0 + Vδ0 + Vδ1 + Vy1 + Vκ,

where
V0 = xTPx,

Vδ0 = h2

∫ t

tk

[

K̄0ẏ(s)
]T

W0

[

K̄0ẏ(s)
]

ds

−
π2

4

∫ t

tk

δT0 (s)W0δ0(s) ds, t ∈ [tk, tk+1),

Vδ1 = h2

∫ t

tk

[

K̄1ẏ1(s)
]T

W1

[

K̄1ẏ1(s)
]

ds

−
π2

4

∫ t

tk

δT1 (s)W1δ1(s) ds, t ∈ [tk, tk+1),

Vy1 = h

∫ t

t−h

(s− t+ h)
[

K̄1ÿ(s)
]T

W1

[

K̄1ÿ(s)
]

ds,

Vκ =

∫ t

t−h

(t− h− s)2

4

[

K̄1ÿ(s)
]T

R1

[

K̄1ÿ(s)
]

ds.

Since δ̇0(t) = −K̄0ẏ(t) and δ0(tk) = 0, Lemma 1 implies
Vδ0 ≥ 0. Similarly, Vδ1 ≥ 0. Therefore, V ≥ 0. Calculating
the derivatives, we obtain

V̇0 = 2xTPẋ,

V̇δ0 = h2
[

K̄0ẏ
]T

W0

[

K̄0ẏ
]

− π2

4 δT0 W0δ0,

V̇δ1 = h2
[

K̄1ẏ1
]T

W1

[

K̄1ẏ1
]

− π2

4 δT1 W1δ1.

(13)

The functional Vy1 is introduced to compensate the term
h2[K̄1ẏ1]

TW1[K̄1ẏ1] in the above expression. We have

V̇y1 = h2
[

K̄1ÿ
]T

W1

[

K̄1ÿ
]

− h
∫ t

t−h

[

K̄1ÿ(s)
]T

W1

[

K̄1ÿ(s)
]

ds
Lem.2
≤ h2

[

K̄1ÿ
]T

W1

[

K̄1ÿ
]

−
∫ t

t−h

[

K̄1ÿ(s)
]T

dsW1

∫ t

t−h

[

K̄1ÿ(s)
]

ds.

Differentiating (4), we obtain

ẏ1 =
1

h

∫ t

t−h

ÿ(s) ds.

The latter and (9) lead to

V̇y1 ≤ h2
[

K̄1CAẋ
]T

W1

[

K̄1CAẋ
]

− h2
[

K̄1ẏ1
]T

W1

[

K̄1ẏ1
]

. (14)

The term −h2[K̄1ẏ1]
TW1[K̄1ẏ1] will cancel the first term

of V̇δ1. Since (9) implies ÿ = CAẋ, we have

V̇κ = h2

4

[

K̄1ÿ(t)
]T

R1

[

K̄1ÿ(t)
]

−
∫ t

t−h
s−t+h

2

[

K̄1ÿ(s)
]T

R1

[

K̄1ÿ(s)
]

ds
Lem.2
≤ h2

4

[

K̄1CAẋ
]T

R1

[

K̄1CAẋ
]

− κTR1κ.

(15)

Instead of substituting (12) for ẋ, we will use the following
descriptor representation of the system (12):

0 = 2[xTPT
2 + ẋTPT

3 ][−ẋ+Dx+Bδ0 +Bδ1 +Bκ]. (16)

Summing up the right-hand sides of (13), (14), (15), and
(16), we obtain

V̇ ≤ νTNν,
where ν = col{x, ẋ, δ0, δ1, κ}. Thus, the condition N < 0
implies exponential stability of the system (1), (7).

(ii) We show that N < 0 is feasible for small enough h.
Since (1), (3) is stable, there exists 0 < P ∈ R

n×n such
that PD +DTP < 0. Then, there exist P2, P3 such that

Λ =

[

PT
2 D +DTP2 P − PT

2 +DTP3

∗ −P3 − PT
3

]

< 0.

To see this, one can take P2 = P , P3 = εI and apply the
Schur complement to obtain

PD +DTP +
ε

2
DTD < 0,

which is true for small ε > 0. Taking W0 = W1 = R1 =
h−1Im and applying the Schur complement, we obtain that
N < 0 holds if

Λ + hF < 0,

where F is some matrix independent of h. Clearly, the
latter holds for small enough h. �

Remark 2. (Polytopic uncertainty). The results of Theo-
rem 1 are applicable to polytopic-type uncertain A. In-
deed, by applying the Schur complement to the square in
A terms, we obtain that N < 0 is equivalent to

















0

h
[

K̄1CA
]T (

W1 +
1
4R1

)

N̄ 0
0
0

∗ ∗ ∗ ∗ ∗ −
(

W1 +
1
4R1

)

















< 0, (17)

where N̄ coincides with N except for the block

N̄22 = −P3 − PT
3 + h2

[

K̄0C
]T

W0

[

K̄0C
]

.

The LMI (17) is affine in A, therefore, if A resides in the
uncertain polytope

A =

M
∑

j=1

µjA
(j), 0 ≤ µj ≤ 1,

M
∑

j=1

µj = 1,

one needs to solve 2 (17) simultaneously for the M vertices
A(j) applying the same decision matrices P2, P3, W1, R1.

Remark 3. In Selivanov and Fridman (2018), the system
(1) was studied under the sampled-data feedback

u(t) = K0y(tk)+K1y(tk−q), t ∈ [tk, tk+1), k ∈ N0, (18)

where q is an integer delay. In the analysis, the errors
due to sampling y(tk) − y(t) and y(tk−q) − y(t − qh)
were multiplied by K0 and K1 that grow when qh → 0.
Consequently, one had to increase the discrete delay q
while reducing the sampling period h to maintain K0

and K1 bounded. Here, the errors due to sampling are
multiplied by K̄0 and K̄1 that do not depend on h (see
δ0 and δ1 below (11)). This allows to use q = 1 (cf. (7)
and (18)) and, therefore, smaller memory is required to
implement (7) (see Example 1).

3. EXAMPLES

Example 1 (Liu and Fridman (2012)). Consider the system

ẋ(t) =

[

0 1
g 0

]

x(t) +

[

0
1

]

u(t), y(t) = [1 0]x(t) (19)

with the uncertainty g ∈ [−0.1, 0.1]. This system is of
relative degree two and cannot be stabilized by sampled-
data controller u(t) = Ky(tk), t ∈ [tk, tk+1). Consider the
sampled-data controller (7) with

K̄0 = −0.25, K̄1 = −0.0499.

2 MATLAB codes for solving the LMIs are available at
https://github.com/AntonSelivanov/ROCOND18



Fig. 1. Furuta pendulum 3

These gains were obtained by taking K0 = −0.35, K1 =
0.1 as in Liu and Fridman (2012) and using (6) with h =
0.499 (the largest h obtained in Liu and Fridman (2012)).
The LMIs of Remark 2 are feasible for h ∈ (0, 0.258].
Taking h = 0.258 in (6), we deduce that the sampled-data
controller (7) with

K0 = −0.4434, K1 = 0.1934, tk = 0.258 · k

exponentially stabilizes (19). The system (19) under the
sampled-data controller (18) with q = 3 has been studied
in Liu and Fridman (2012); Seuret and Briat (2015);
Selivanov and Fridman (2018). In our case q = 1, which
leads to a smaller memory used in the implementation.

Example 2 (Ortega-Montiel et al. (2017)). Consider a
linearized model of Furuta pendulum given by (1) with

[

A B
C 0

]

=

















0 1 0 0 0
37.377 −0.515 0 0.142 −35.42

0 0 0 1 0
−8.228 0.113 0 −0.173 43.28

1 0 0 0 0
0 0 1 0 0

















(20)

and x = col{θ, θ̇, φ, φ̇}, where θ is the angular position of
the pendulum and φ is the angle of the rotational arm (see
Fig. 1). The control input u is proportional to the motor
induced torque. Using the pole placement, we find that for

K̄0 = [1.2826 0.0013] , K̄1 = [0.1209 0.0086]

the eigenvalues of D defined below (12) are −1, −1.1,
−1.2, −1.3. Therefore, the derivative-dependent controller
(3) stabilizes the system (1), (20). The conditions of
Theorem 1 are feasible for h ∈ (0, 0.103]. Taking h = 0.103
in (6), we deduce that the sampled-data controller (7) with

K0 = [2.4566 0.0845] , K1 = [−1.1740 −0.0832] ,

and tk = 0.103 · k exponentially stabilizes the Furuta
pendulum (1), (20).
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