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Accurate soil moisture information is very important for real-time flood forecasting. Although satellite soil moisture observations
are useful information, their validations are generally hindered by the large spatial difference with the point-based measurements,
and hence they cannot be directly applied in hydrological modelling. This study adopts a widely applied operational hydrological
model Xinanjiang (XAJ) as a hydrological validation tool. Two widely used microwave sensors (SMOS and AMSR-E) are evaluated,
over two basins (French Broad and Pontiac) with different climate types and vegetation covers. The results demonstrate SMOS
outperforms AMSR-E in the Pontiac basin (cropland), while both products perform poorly in the French Broad basin (forest). The
MODIS NDVT thresholds of 0.81 and 0.64 (for cropland and forest basins, resp.) are very effective in dividing soil moisture datasets
into “denser” and “thinner” vegetation periods. As a result, in the cropland, the statistical performance is further improved for both
satellites (i.e., improved to NSE = 0.74, RMSE = 0.0059 m and NSE = 0.58, RMSE = 0.0066 m for SMOS and AMER-E, resp.). The
overall assessment suggests that SMOS is of reasonable quality in estimating basin-scale soil moisture at moderate-vegetated areas,

and NDVT is a useful indicator for further improving the performance.

1. Introduction

Soil moisture is one of the most important state variables
in a hydrological model [1]. During real-time flood fore-
casting, satellite soil moisture can be used to match the
model with the current observations prior to its use in
forecasting mode—termed as updating or data assimilation
[2]. This procedure is particularly essential during unusual
hydrological events and after a long period of dryness [3-10].
However conventional in situ measurements are currently
limited to discrete measurements at particular locations.
Furthermore they are too sparse to represent the spatial
soil moisture distribution and are therefore not suitable for
basin level studies [7, 11-14]. Alternatively, satellite remote
sensing techniques are a major tool in observing soil moisture
information at a large scale [15], which provide near real-time
global coverage. Several frequency bands have been used in
soil moisture remote sensing including visible light, infrared,
and microwave [8, 16-21]. In this study, the focus is on the
state-of-the-art microwave-band sensors. The Soil Moisture

and Ocean Salinity (SMOS, [20]) is adopted in this study.
The reason for choosing SMOS over the Soil Moisture Active/
Passive mission (SMAP, [19]) is due to the longer period
of data records. In addition, for comparison purpose,
the Advanced Microwave Scanning Radiometer on Earth
Observing System (AMSR-E, [22]) is also used in the evalu-
ation of SMOS. The AMSR-E radiometer was one of the first
sensors to measure surface soil moisture as a routine product
[22, 23].

In this study, a widely used operational hydrological
model Xinanjiang (XAJ) is used directly for the satellites
soil moisture evaluation, which is more scale-matched than
the in situ point-based observations. Two basins (French
Broad and Pontiac, resp.) with different climate types and
vegetation covers are adopted. Furthermore MODIS Nor-
malized Difference Vegetation Index (NDVI) is used to
further improve the performance which has not been used
in the previous literature [4-7, 10, 24-28]. The novelty of
this study is hence to provide a comprehensive hydrological
comparison study between SMOS and AMSR-E retrieved soil
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FIGURE 1: Locations of the Pontiac basin (PB; 1500 km?) and the French Broad basin (FBB; 2448 km?) with flow gauges and NLDAS-2 grids

over river network maps.

moisture observations, with the aid of NDVI information for
further enhancements. All soil moisture datasets evaluated
in this study are procured for the period of January 2010 to
October 2011, a period during which both SMOS and AMSR-
E products are available for the study areas.

2. Study Areas and Datasets

Two study areas are selected in the middle and east of US,
respectively. The French Broad basin (FBB; 2448 km?) is a
densely vegetated study area, which is located in the western
North Carolina of the US (35.609°N, 82.579°W), influenced
primarily by the maritime temperate climate [29]. The major
land use of this basin is mixed forest [30, 31] on Ultisols soil
[32]. The average altitude of the basin is 819 m above mean sea
level (MSL) and the average annual rainfall is 1383 mm. The
basin generally does not have significant human impacts [33].
Meanwhile, the Vermilion River at Pontiac (PB; 1500 km?)
is selected as the moderately vegetated study area, which is
located in mid-Illinois of the US (40.878°N, 88.636°W). Its
major climate type is hot summer continental climate [29];
and its land cover is predominantly cropland [30, 31] on
Mollisols soil [32]. The average altitude of the basin is 188 m
MSL and average annual rainfall is 867 mm. The layouts of
both basins are shown in Figure 1 along with the locations
of their flow gauges, meteorological stations, NLDAS-2 grids,
and distribution of river networks.

The NLDAS-2 [34] precipitation and potential evapotran-
spiration (PET) at 0.125° spatial resolution and daily temporal
resolution (converted from hourly resolution) are used to run
the XAJ model. As shown in Figure 1, there is a total of 27
NLDAS-2 grids covering the entire FBB and 20 NLDAS-2
grids for the PB. Both PET and precipitation datasets have
been calculated into one basin-scale dataset by using the
weighted average method for the usage in the lumped XAJ
model. For FBB, the USGS daily flow data from January 2010
to December 2012 are used for XA] model’s calibration and

validation. The datasets from the first 24 months (January 1,
2010, to December 31, 2011) have been used for the calibration
and the remaining 12 months (January 1, 2012, to December
31, 2012) are used for the validation purpose. Meanwhile for
PB, due to missing data, the USGS daily flow data from
January 2010 to April 2011 are used for calibration and the
period of May 2011 to December 2011 is used for validation.

All soil moisture datasets evaluated in this study are
procured for the period of January 2010 to October 2011,
a period during which both SMOS and AMSR-E products
are available for the study areas. Daily SMOS Level 3 data is
obtained from the SMOS Barcelona Expert Center (SMOS-
BEC), and the daily AMSR-E Level-3 surface soil moisture
product is obtained from the National Snow and Ice Data
Center (NSIDC). The daily air temperature at the nearest
meteorological stations (i.e., Asheville station and Pontiac
station for FBB and PB, resp.) for both basins is provided by
the NOAA National Climatic Data Center [35]. In addition
the MODIS 16-day Level-3 NDVI (MODI13Cl1) dataset is
acquired from the NASA/USGS Land Processes Distributed
Active Archive Center (LP DAAC) with a spatial resolution
of 0.05".

Like most operational hydrological models, XAJ treats a
basin as a single unit (i.e., lumped); therefore, for all the
satellite datasets, only the pixels that are within the basin area
are collected and converted into one basin-scale dataset by
using the weighted average method.

3. Methodology

3.1. The SMOS Product. The SMOS retrieves data of emitted
microwave radiation at the frequency of 1.4 GHz (L-band)
with a spatial resolution of 35-50km [20, 27, 36]. SMOS
offers a global coverage at the equator crossing the times
of 6 am (local solar time (LST), ascending) and 6 pm
(LST, descending) [37]. In this study the daily SMOS Level-
3 soil moisture product (SMOS) is used. Its stability and
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robustness have been improved by utilizing data filtering,
spatial averaging, and multiorbit vegetation parameters in
the retrieval method [38, 39]. The data is available from
the SMOS-BEC website (http://cp34-bec.cmima.csic.es). It
is found that, in much of the world, ascending SMOS soil
moisture retrieval was better than that from the descending
retrieval [40], which is expected because at dawn soil is often
in near hydraulic equilibrium [41]. For this reason, only the
daily SMOS ascending overpass is used in this study.

3.2. The AMSR-E Product. The AMSR-E was launched in
June 2002 on the Aqua satellite, which was operated by
the National Aeronautics and Space Administration (NASA).
AMSR-E carried out passive microwave measurements with
a single 55° incidence angle at six different frequencies: 6.9,
10.7, 18.7, 23.8, 36.5, and 89.0 GHz, all dual-polarized, with a
spatial resolution around 50 km. The global swath coverage is
achieved every two days or less, separately for ascending and
descending passes, except for a small region near the poles.
The crossing times are 1:30 am (LST, descending) and 1:30 pm
(LST, ascending) [22]. The available datasets are from June
2002 to October 2011. On this latter date, AMSR-E on board
the NASA Aqua satellite stopped producing data due to a
problem with its antenna rotation [40].

Various algorithms have been developed to derive AMSR-
E soil moisture. The two most adopted ones are the
NASA (NSIDC) and the VUA-NASA retrieval algorithms. In
response to Radio Frequency Interference (RFI), NSIDC uses
only the X-band (10.7 GHz) frequency AMSR-E data, while
the VUA-NASA algorithm is separately applied to both C-
(6.925 GHz) and X-band AMSR-E observations [42]. A lot of
studies have already been carried out to compare the accuracy
between VUA-NASA and NSIDC [8, 42-44]; therefore the
comparison work is not repeated here. In this paper the
AMSR-E-NASA (NSIDC) [23] product is used.

3.3. XA] Hydrological Model. In hydrology, Soil Moisture
Deficit (SMD) or depletion is an important soil moisture
indicator, which demonstrates the amount of water to be
added to a soil profile to bring it to the field capacity [45, 46].
The SMD equation is shown as

SMD = FC - SMC, )

where FC is the field capacity, which is considered as the
upper limit in hydrological modelling for soil water storage;
SMC is the soil moisture content. It can be seen the SMD is
opposite to the SMC, so the larger the SMC, the smaller the
SMD.

It has been shown that the three-layer XAJ model is very
useful in modelling SMD from the hydrological data [47-
51]. There are some alternative XAJ formats [52-54], but this
paper uses its original form because it is the most commonly
used format. The XAJ model is a relatively simple operational
lumped rainfall-runoff model; its main concept is the runoff
generation on repletion of storage, which means that runoft is
not generated until the soil water content of its aeration zone
reaches the field capacity. The flowchart of the XAJ model
is shown in Figure 2. The structure of XAJ model includes

an evapotranspiration unit, runoff production unit, and
a runoff routing unit. The model includes three soil layers
(upper, lower, and deep) which represent the three evap-
otranspiration components. The runoff component is also
known as a water balance model which simulates lumped
values of runoff with given rainfall (P) and PET datasets. The
simulated effective rainfall (runoff) is then routed as river
flow through a routing module to the basin outlet, in which
the Muskingum routing method is applied in this study. The
16 X AJ parameters are calibrated in this study by finding the
optimal performance of the model [50, 55]. The three-layer
SMDs are generated to determine the effect of drying and
wetting on the basin soil storage. In this study only the upper
layer’s SMD is used to compare with the two satellites soil
moisture retrievals, because it is more scale-matched.

3.4. Performance Indicators. In this study the SMOS and
AMSR-E are evaluated against the X AJ derived top layer SMD
(referred to as SMD1). The five performance indicators: Nash-
Sutcliffe Efficiency (NSE) [56], Pearson product moment
correlation coeflicient (r), correlation significance ¢-test (t),
Spearman rank correlation coefficient (rg,), and Root Mean
Square Error (RMSE), are used in this study. NSE is the
most common and important performance measure used in
hydrology and it is calculated using the following equation:

Z?:l (yi - xi)2

NSE = 1 - 2
Y (%= %)

2)

where x; is the observed values and y; is the simulated values.
n is the number of data pairs.

Pearson product moment correlation coefficient (r) is
used to evaluate the linear relationship between two variables,
which is defined as

;= n(Xxy) - (Xx) X ) ‘
VnZx2 - (Cx)] [nZ v - (S )]

3)

The two-tail ¢-test is a statistical hypothesis test used to
examine the statistical significance of r to ascertain that there
is evidence of an association between the two variables. If the
calculated t value is within the critical range (the critical range
can be found in a t-test look-up table, based on different
confidence levels (CI)), we accept the null hypothesis (HO)
that there is no correlation between x and y variables [57].
On the other hand, if the ¢ value falls outside the critical
range, then there is a relationship between x and y variables
(denoted as HI). The equation is given as

r

= ———-.
VA=) (-2) @

Spearman rank correlation coefficient (ry,) is a nonpara-
metric technique for evaluating the degree of correlation
between two independent variables [58]. Due to its ability to
cope with nonlinear correlation as well as linear correlation,


http://cp34-bec.cmima.csic.es

4 Advances in Meteorology
Input P, PET
WM IMP
Output Pervious Impervious
ET : area area
R RB
Noncontri- | Contri-
bution bution
area area

1-IMP-a a

Tension SM
: RS QS
: water EX
WUM

EU - WU Free
S WLM water | g E Output
c :Cs dX
ED : WD :
KG KKG
RG QG

FIGURE 2: Adopted flowchart of the XAJ model [50], where WU, WL, and WD represent the upper, lower, and deep soil layers’ areal mean
tension water storage, respectively; EU, EL, and ED stand for the upper, lower, and deep soil layers’ evapotranspiration output, respectively; S
is the areal mean free water storage; a is the portion of the subcatchment which is currently producing runoff; IMP is the factor of impervious
area in a catchment; RB is the direct runoff produced from the small portion of impervious area; R is the total runoft generated from the
model with surface runoff (RS), interflow (RI), and groundwater runoff (RG) components, respectively. These three runoff components are
then transferred into QS, QI, and QG and combined as the total subcatchment inflow (T) to the channel network. The flow outputs from each
subcatchment Q are then routed to the catchment outlet to produce the final flow result (TQ).

it is used in addition to r for a more comprehensive compar-
ison.

_ 6 er'lzl dlz (5)

b
n*—n

ry =1

where d; is the difference between ranks for each soil moisture
data pair (x;, ;).

Root Mean Square Error (RMSE) is described by the
following equation:

1< )
RMSE = 1|~ —x) 6
”,-zzl(y’ x;) (6)

4. Results and Discussion

4.1. XAJ Simulations for SMDI Estimation. The performance
of the XAJ model is determined by the NSE coefficient as its
objective function. There are 16 parameters in total used for
XAJinitialization, and the optimal values with their initializa-
tion values used in this study are shown in Table 1. As a result,
the overall performance is represented by the NSE value of
0.81 and 0.86 for the calibration and 0.80 and 0.83 during
the validation for PB and FBB, respectively. In this study
SMDI1 generated from XA]J is selected as a benchmark given

the fact that the XAJ is capable of simulating the hydrological
processes in the basin, even though the model is calibrated
using flow. The time series plots of rainfall and flow during
the calibration and validation periods are shown in Figure 3.
The modelling outcomes reveal that the XAJ model tends
to match the measured flow rather well while there is a
slight overestimation of low flows for PB and a relatively
small underestimation of flow for FBB during the calibration.
On the other hand, for the validation period, there is an
overestimation of the overall flow simulation for PB, while,
for FBB at some parts of the validation, the flow simulation
deviates slightly from the observed flow, especially at the
low-flow parts of the hydrograph. Nevertheless, during most
of the flow events, the XAJ model has a good performance
and all NSE values are sufficiently high for an acceptable
hydrological model. More details on XAJ flow modelling in
PB basin and FBB basin are discussed in Zhuo et al. [26] and
Zhuo et al. [59], respectively.

4.2. Comparison of SMDI, SMOS, and AMSR-E Soil Moisture
over Two Selected Sites. The time series of ET, SMDI, and
two satellite soil moisture products (SMOS and AMSR-E) are
compared in Figure 4 for the two selected basins.

The PB is the site mainly covered by cropland subjected to
frequent frozen soil events during winter periods. The time



TaBLE 1: The XAJ model parameters used in the Pontiac basin (PB) and the French Broad basin (FBB), respectively.

Symbol Model parameters Unit Optimal value Range
SM Areal mean free water capacity of the surface soil layer, which represents the maximum possible deficit of free water storage mm 31.48; 46.37 10-50
KG Outflow coefficients of the free water storage to groundwater relationships [—] 0.10; 0.35 0.10-0.70
KSS Outflow coefficients of the free water storage to interflow relationships [—] 0.19; 0.10 0.10-0.70
KKG Recession constants of the groundwater storage [—] 0.31;0.98 0.01-0.99
KKSS Recession constants of the lower interflow storage [—] 0.01; 0.01 0.01-0.99
CS Recession constant in the lag and route method for routing through the channel system with each subbasin [—] 0.26; 0.58 0.10-0.70
WUM Averaged soil moisture storage capacity of the upper layer mm 46.96; 40.49 30-50
WLM Averaged soil moisture storage capacity of the lower layer mm 39.08; 135.00 20-150
WDM Averaged soil moisture storage capacity of the deep layer mm 30.11; 389.01 30-400
IMP Percentage of impervious and saturated areas in the catchment % 0.00; 0.00 0.00-0.10
Exponential parameter with a single parabolic curve, which represents the nonuniformity of the spatial distribution of the soil
B . . [—] 0.70; 0.80 0.10-0.90
moisture storage capacity over the catchment
C Coeflicient of the deep layer that depends on the proportion of the basin area covered by vegetation with deep roots [—] 0.49; 0.50 0.10-0.70
EX Exponent of the free water capacity curve influencing the development of the saturated area [—] 1.93; 1.29 1.10-2.00
L Lag in time [—] 0.00; 0.00 0.00-6.00
\% Parameter of the Muskingum method m/s 0.43; 0.61 0.40-1.20
dXx Parameter of the Muskingum method [—] 0.18; 0.00 0.00-0.40

£S0[0109)9]N UT sROURAPY
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FIGURE 3: Daily rainfall and flow time series during the calibration and validation with the simulated hydrographs from the XAJ model in PB

((a), (b)) and in FBB ((c), (d)).
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FIGURE 4: Comparisons among actual ET, SMD1, SMOS, and AMSR-E for PB (a) and for FBB (b); ET shown here is scaled down to 1/40 of

its original value.

series plots of soil moisture demonstrate a high variability
with seasons and follow a strong seasonal cycle, with pin-
nacles normally occurring in winter (January and February)
where ET is at the lowest amount. On the other hand, the high

temperature and increased ET during summer time (April-
September) lead to an overall drier surface soil. Furthermore,
it can be seen that, due to frozen soil, SMOS is not able to
provide valid measurements until late February; this is clearly
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an issue, which has been reported in previous studies [60, 61].
For XAJ simulated result, ET can lead to a significant SMD1
(i.e., soil is near to the wilting point) when there is less rainfall.
On the other hand, when ET rates are low while rainfall wets
up the soil profile, a surging graph can be obtained in SMD1.

The FBB is located in a densely covered forest region
and is subject to high-intensity rainfall events. Generally
speaking, the seasonal dynamic is reproduced by the SMOS
retrievals, while AMSR-E product stays almost the same
(fluctuating around 0.15 m*/m?) during the whole monitor-
ing period. As a result, there is a much wider range of values in
the SMOS product than in the AMSR-E one. Furthermore the
successive rainfall events are not well captured by both prod-
ucts (refer to Figure 3 for the rainfall plot). For the XAJ simu-
lated result, the SMD1 is significantly decreased (soil moisture
reaching the field capacity) when ET is small and rainfall
amount is intense, especially during the winter season.
Contrarily, considerable ET and relatively less rainfall lead
to increasing SMD1 during the summer season. Generally
speaking, there is a good agreement on soil moisture tempo-
ral dynamics between SMD1 and SMOS. However, AMSR-E
dataset demonstrates a rather poor performance.

In addition to the time series plots, the correlations
between SMOS and AMSR-E have been explored and plotted
for the two study areas (Figure 5). Over PB, it is clear to see
that the values of AMSR-E soil moisture (~0.1-0.3 m*/m?)
are evidently smaller than the SMOS observations (~0.1-
0.6 m3/m3), with a correlation coefficient at r = 0.60. For
FBB, the SMOS measurements can range between 0.05 and
0.4m’/m’ while AMSR-E datasets stay at almost the same
level throughout, with a low correlation coefficient obtained
(r = 0.29). These results demonstrate that there is a much
better agreement of soil moisture measurements between
SMOS and AMSR-E in the cropland.

4.3. Hydrological SMD Simulations,
Using SMOS and AMSR-E

4.3.1. Approach Based on Whole Year Data. This approach
shows a more direct comparison between the overall per-
formance of SMOS and AMSR-E datasets against the XAJ
SMD1 as the target. The calibration and validation datasets are

selected from two parts. In each month, two-thirds of the data
are chosen as calibration and the other third as validation, so
that both calibration and validation are representative of all
the seasons [7]. In this approach, the linear fittings (least-
squares fitting) are evaluated with the equations shown in
Figure 6. The goodness of fit is indicated by NSE and
RMSE. To further check the linearity between SMDI and
soil moisture products (SMOS and AMSR-E), the r,, and r
correlation statistics between them are calculated.

For the cropland PB, although both soil moisture prod-
ucts show robust correlations with the benchmark SMDI
(r > 0.5), the performance of SMOS surpasses AMSR-E
during both calibration and validation periods. This could
be explained by the relatively longer wavelength of L-band
(~21 cm) than the X-band (~2.8 cm), so that the impact from
crop cover is significantly less for SMOS. The similar results
of the calculated correlation statistics (r and rsp) reveal that
there is no strong nonlinearity for both SMOS and AMSR-E
products; hence the linear fitting method used here is suitable.

Over FBB (forest), the similar results between r and o
indicate that the linear algorithm is appropriate. However
the performance of both products is very poor, especially
with the correlation coefficients only at » = —0.13 for SMOS
and r = 0.15 for AMSR-E, respectively. Therefore a t-test is
further implemented to examine the significance of the cal-
culated correlations. The t values for SMOS and AMSR-E are
generated as —1.17 and 1.41, respectively, which fall outside the
critical value ranges at 70% CI (+1.04) and 80% CI (£1.29),
respectively. In other words, there exist correlations between
SMD1 and SMOS at 70% CI and between SMDI and AMSR-
E at 80% CI; however their correlations are rather weak.
These poor results could be partially explained by the densely
covered canopy in this basin (i.e., covered by a combination
of evergreen needleleaf and deciduous broadleaf), where both
L-band and X-band microwaves are not able to penetrate.

4.3.2. Approach Based on Temperature for Frozen and Non-
frozen Discriminations. Although satellites struggle to mea-
sure soil moisture during the frozen condition, their informa-
tion contents are not always zero especially during the fuzzy
transitional period between the frozen and unfrozen con-
ditions so it is still useful to show the frozen situations. In
addition, it is useful to show the performance of satellites soil
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moisture data over the whole time period for completeness
so that readers can see the contrasting results. This approach
represents a comparison between the simulated SMDs from
SMOS and AMSR-E against the XAJ SMD1 calibrated on
temperature-based discriminated datasets. In this section,
the soil moisture products (SMOS and AMSR-E) are divided
into frozen and nonfrozen datasets based on air temperature,
where the air temperature threshold is set as 0°C in this
study [62]. The main reason behind separating frozen and
nonfrozen datasets is that satellite soil moisture retrievals
can be highly inaccurate under frost soil condition. Although
many previous studies [40, 62-64] directly filter out frozen
soil observations at the early stage of their investigations, it
will still be interesting to see how big is the impact of the
frozen soil moisture data on the overall result. Similar to
Section 4.3.1, the calibration and validation datasets are firstly
divided into two lots, and further from each month two-
thirds of the data are taken as calibration and the other third
as validation. Since similar results are again found between r
and r, for frozen and nonfrozen conditions, only linear curve
fitting is considered here. Generally speaking, all retrieved
frozen soil moisture (~0.01-0.016 m*/m?) is significantly less
than that under the nonfrozen condition (~0.05 m>/m?). This
phenomenon could be partially explained by the change of
the surface roughness and the emission signal due to the
frozen surface, which artificially increasing the brightness
temperature, hence reducing soil moisture [65].

For PB (cropland), it is clear to see that temperature
is useful in discriminating data into frozen and nonfrozen
groups and soil moisture estimation under nonfrozen condi-
tion performs remarkably better than that under the frozen
condition. By excluding the freezing soil moisture, the
performance of the SMOS derived SMD (Figure 7(a)) is
improved markedly for both calibration (NSE = 0.66, RMSE
= 0.0073 m) and validation (NSE = 0.67, RMSE = 0.0068 m)
periods. However when combined with the frozen data, the
result as expected dropped dramatically (NSE = 0.25, RMSE
= 0.014 m). On the other hand, the AMSR-E derived SMD
(Figure 7(b)) cannot achieve satisfying results under both
frozen and nonfrozen conditions.

For the forest site (FBB), both derived SMDs (SMOS
and AMSR-E) exhibit dampened outcomes (Figures 7(c)
and 7(d)). Nevertheless slightly better results of RMSE are
observed under nonfrozen condition for both derived SMDs,
during the validation period. This result reveals that, for the
chosen forest area, none of the products (SMOS and AMSR-
E) is capable of generating good quality SMD information,
regardless of temperature conditions.

4.3.3. Approach Based on MODIS NDVI for Denser and
Thinner Vegetation Period Discriminations. Studies carried
by Carlson et al. [17] and Wang et al. [66] illustrate that
there exists a relationship between surface soil moisture and
NDVI. Therefore this section presents the comparison results
between the derived SMDs from SMOS and AMSR-E against
the XAJ SMDI1 calibrated on NDVI based discriminated
datasets (in another words, to use different algorithms for
various vegetation coverage situations). This is because soil

moisture under denser vegetation period and thinner veg-
etation period behave dissimilarly; hence it is possible that
more accurate SMD estimation could be gained by making
the algorithms separately. Our method using the NDVTI as
an indication of the density of vegetation coverage is more
accurate than the method used in Srivastava et al. [7], who
roughly classified the data by seasons (i.e., the denser vegeta-
tion season is from March to November, while the thinner
vegetation season is from the rest months). It is important
to note that the evaluation of this approach is only based on
nonfrozen soil moisture datasets. The SMDI and soil moisture
products (SMOS and AMSR-E) are plotted with the MODIS
NDVI datasets at the two selected basins in Figure 8. The
overall NDVI shows similar fluctuation in pattern with both
remotely sensed soil moisture retrievals and SMDL. It is clear
that soil moisture peaks (where SMDI is bottomed) when
NDVI decreases to the lowest, because ET is reduced due
to blighted crops. Oppositely, less soil moisture values are
observed (where SMDI reaches highest points) during the
summer season when NDVI is high, except the AMSR-E
retrievals in FBB.

In order to discriminate the soil moisture datasets into
denser and thinner vegetation periods, NDVI thresholds of
0.81 and 0.64 are used for PB and FBB, respectively (i.e.,
the data with NDVI > threshold are classified into the denser
vegetation group and the data with NDVI < threshold are
classified into the thinner vegetation group). The NDVI
threshold is found by using the trial and error method so that
the best NSE performance can be achieved hydrologically.
Due to the small quantity of datasets in both denser and thin-
ner vegetation periods, the leave-one-out cross-validation
method is carried out instead, which is useful in reducing the
overfitting problem [67]. As discussed in previous sections,
only linear curve fitting is considered here.

As presented in Figure 9 and Table 2, for the cropland
(PB), the comparisons of the derived SMDs (from SMOS
and AMSR-E) with XAJ SMDI demonstrate higher degrees
of goodness of fit with vegetation coverage based algorithms.
The validation of SMOS derived SMD has improved from
NSE = 0.67 and RMSE = 0.0068 m to NSE = 0.74 and RMSE
= 0.0059 m, while the validation result of AMSR-E derived
SMD has increased greatly from NSE = 0.14 and RMSE =
0.0075m to NSE = 0.58 and RMSE = 0.0066 m. This large
improvement in the NSE for AMSR-E is caused by the fact
that the NDVI threshold separates the data points (above 0.81
NDVI) of AMSR-E, which shows a limited sensitivity to soil
moisture as a result of the restricted penetration capacity and
dense vegetation cover (as seen from Figure 8(a)). Further-
more, in terms of RMSE, the thinner vegetation period soil
moisture datasets perform better for both SMOS and AMSR-
E; nevertheless it is worse if NSE is considered for the AMSR-
E case. It is believed that the RMSE should be considered here
because, theoretically, denser canopy would result in poorer
satellite soil moisture measurements [7]. Generally speaking,
the performance of SMOS in the cropland is better than that
with the AMSR-E product based on both NSE and RMSE
indicators.

Over the FBB (forest), this NDVI based approach is not a
success and therefore only the statistical results are shown in
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Table 2. The thinner vegetation period soil moisture dataset
is not improved as expected. This is because FBB is covered
with a combination of evergreen needleleaf and deciduous
broadleaf [31], which means the basin is almost always
covered with dense canopies. Nevertheless some good results
have been reported over other forest types, such as over
tropical forest [68], spruce forest [4], and boreal forests [69].
In addition to the vegetation impact, the maritime temperate
climate may also cause the poor performance, because it can
lead to less seasonality and variations in the soil moisture [7].

5. Discussion
In this study there are several points that need to be discussed.

First. The performance of SMOS in the cropland is better
than AMSR-E based on both NSE and RMSE indicators.
Similar results were discovered in Al-Yaari et al. [40] and

Wagner et al. [62]. However it should be pointed out
that the SMOS product is significantly less available than
AMSR-E’s, especially on rainy days [70]. Frequent revisit
time is important for hydrological applications, especially to
obtain adequate measurements of surface wetting and drying
between precipitation events [22]. Hence it might be valuable
to use data fusion technology between SMOS and AMSR-E
for a wider range of hydrological applications.

Second. Although the combined “denser vegetation period”
and “thinner vegetation period” algorithms improve the SMD
derivation accuracy for both satellite soil moisture products
in the PB, further improvement is still needed. Due to
the poor spatial resolution from the satellites microwave
bands, higher spatial resolutions of soil moisture could be
realized by utilizing downscaling methods [6, 71], such as by
using the soil moisture outputs from land surface models
(e.g., Noah and Variable Infiltration Capacity (VIC) models),
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TABLE 2: Performance statistics of individual algorithm under each approach, as well as the performance of the combined algorithm under
each approach. DVP stands for denser vegetation period and TVP means thinner vegetation period.

Validation (individual algorithm)

Validation (combined algorithm)

Basins Approaches Soil moisture products
NSE RMSE (m) NSE RMSE (m)
Whole year SMOS (all) — — 0.53 0.0084
AMSR-E (all) — — 0.16 0.010
SMOS (f; _
(frozen) 3.11 0.034 0.25 0.014
Temperature-based SMOS (nonfrozen) 0.67 0.0068
PB (middle of AMSR-E (frozen) -2.40 0.030 0.057 0.013
US) AMSR-E (nonfrozen) 0.14 0.0075 . .
M DVP
SMOS (DVP) 0.66 0.0083 074 0.0059
NDVI based SMOS (TVP) 0.70 0.0051
AMSR-E (DVP
( ) 0.72 0.0086 0.58 0.0066
AMSR-E (TVP) 0.42 0.0061
Whole year SMOS (all) — — 0.023 0.012
AMSR-E (all) — — —-0.0013 0.010
M fi -
SMOS (frozen) 0.00066 0.032 204 0.013
Temperature-based SMOS (nonfrozen) -0.12 0.0081
FBB (east of AMSR-E (frozen) —-0.00057 0.030 _171 0.012
Us) AMSR-E (nonfrozen) ~0.070 0.0079 ' '
M DVP
SMOS ( ) 0.12 0.012 0.16 0.011
NDVI based SMOS (TVP) —0.059 0.019
AMSR-E (DVP -
( ) 0.073 0.015 0.084 0.012
AMSR-E (TVP) 0.033 0.018

distributed hydrological models, and other bands of remote
sensing (e.g., thermal infrared). Moreover the linear NDVI
based method performs rather well for the cropland over
hot summer continental climates. Therefore this approach
could be generalized for ungauged basins by applying the
regionalization concept as devoted to the index flood [72, 73].

Third. Other hydrological indices such as Catchment Wetness
Index (CWI) can also be used to compare with the satellite
soil moisture. However CWI is a lumped soil moisture
indicator covering the whole root zone. Therefore it is not
directly useful in a multilayer conceptual hydrological model
such as XAJ. As a result choosing the right hydrological state
variable to link with the satellite soil moisture observations as
described in this study is important.

Fourth. Ideally we hope that the satellite footprint is the same
size as the catchment area; however, it is not always possible
to achieve this with existing sensors. If the satellite footprint
is smaller than the catchment, then it is not an issue because
the aggregation of the satellite pixels within the catchment
can be matched to the catchment area. On the other hand, if
the satellite footprint is larger than the catchment area,
this could be a problem because if the soil moisture is
unevenly distributed, the catchment soil moisture could be
very different to the average soil moisture as measured by the
large satellite footprint (for example, if the catchment is

located in the drier part of the footprint, its soil moisture
would be overestimated, whereas the opposite would happen
for the wetter part of the footprint) [28]. A better way to
handle this is through spatial downscaling using data fusion
techniques (e.g., to combine coarse microwave data with fine
surface temperature data), which should be explored in the
future.

Finally although we desire to include more satellite prod-
ucts with extended time period and over a larger number of
study basins, it is not feasible to explore all possible cases
within one study due to limited time and resource, as well as
the restricted overlap in time between different soil moisture
products. Furthermore the two catchments studied here
represent the two extreme conditions of the hydrological
catchment land cover types, so they act like an envelope to
cover a wide range of hydrological catchments. The reason
for excluding the bare soil situation in this study is because for
most operational hydrological models, such as XA]J, they are
not designed to be used in arid areas. This study will stimulate
further studies on satellite remote sensing of soil moisture in
the hydrological community.

6. Conclusions

This study demonstrates that the linear algorithm has its
capability in converting remotely sensed soil moisture into
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hydrological SMD. Both SMOS and AMSR-E perform better
over the cropland under the hot summer continental cli-
mate than the forest basin under the maritime temperate
climate. In addition, the performance is further improved by
removing frozen soil moisture datasets using the temperature
information from the local meteorological stations. Since the
canopy attenuates microwave, the MODIS NDVI datasets
are deployed to further discriminate nonfrozen data into
the denser vegetation period and the thinner vegetation
period. This approach shows even better performance than
the approach without considering the density of the vege-
tation coverage factor. Overall SMOS outperforms AMSR-E
in most cases, except during the denser vegetation period.
As presented in Discussion, although many studies have
reported similar results as explored in this paper, there are
other studies in which AMSR-E soil moisture products are
better than SMOS’s. Therefore the results are mixed in various
comparisons and indicate that more studies in this area are
required to find out when and where the SMOS product is
better than the AMSR-E’s and vice versa. On the other hand,
the SMOS product is significantly less available than AMSR-
E, especially on rainy days. Therefore a possible data fusion
method could be implemented between the SMOS and the
AMSR-E for a more effective application in hydrological
modelling.
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