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Abstract—Soil moisture is important in the triggering of many 

types of landslides. However, in-situ soil moisture data are rarely 
available in hazardous zones. The advanced remote sensing 
technology could provide useful soil moisture information. In this 
study, an assessment has been carried out between the latest 
version of the European Space Agency Climate Change Initiative 
soil moisture product and the landslide events in a northern Italian 
region in the 14-year period 2002-2015. A clear correlation has 
been found between the satellite soil moisture and the landslide 
events, as over four-fifths of events had soil wetness conditions 
above the 50% regional soil moisture line. Attempts have also been 
made to explore the soil moisture thresholds for landslide 
occurrences under different environmental conditions (land cover, 
soil type, and slope). The results showed slope distribution could 
provide a rather distinct separation of the soil moisture thresholds, 
with thresholds becoming smaller for steeper areas, indicating 
dryer soil condition could trigger landslides at hilly areas than in 
plain areas. The thresholds validation procedure is then carried 
out. 45 rainfall events between 2014-2015 are used as test cases. 
Contingency tables, statistical indicators, and Receiver Operating 
Characteristic analysis for thresholds under different exceedance 
probabilities (1% - 50 %) are explored. The results have shown 
that the thresholds using 30% exceedance probability provide the 
best performance with the hitting rate at 0.92 and the false alarm 
at 0.50. We expect this study can provide useful information for 
adopting remotely sensed soil moisture in the landslide early 
warnings. 
 

Index Terms—Emilia Romagna, European Space Agency (ESA) 
Climate Change Initiative (CCI) v04.2, landslide, natural hazards, 
satellite remote sensing, soil moisture. 
 

I. INTRODUCTION 

ANDSLIDE is one of the most common and dangerous 
natural hazards worldwide, causing severe direct impacts 

on human lives, public and private properties and lifelines [1]. 
Moreover it can lead to indirect damages to the whole society, 
ranging from the reduction of productivity force, a decline of 
industrial revenue to mental trauma and the break of an 
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economic system [2-4]. Early warnings and predictions are 
therefore essential for mitigating such impacts. The most 
common way of real-time landslide forecasting relies on 
rainfall thresholds, which has been adopted worldwide due to 
its simplicity [5]. However, in many cases, early warnings 
based solely on rainfall is not adequate, because soil moisture 
conditions play a crucial role in the initiation of landslides [6-
13]. 

Although the importance of soil moisture condition has been 
widely recognized in landslides forecasting, the direct usage of 
soil moisture data in the area is still limited. In most cases, only 
the antecedent precipitation indices (i.e., precipitation 
accumulated during a given period before landslide triggered; 
[14-16]) are adopted to approximate soil moisture. However, 
such an approach is not recommended by many studies due to 
the weak relationships found between the antecedent 
precipitation and the real soil moisture variations [17-19]. This 
is due to not all precipitation enters the soil layer when reaching 
the earth surface, instead, parts of them become direct runoff 
[20, 21]. In addition, evapotranspiration plays an important role 
in the soil moisture temporal evolution, which also leads to the 
weak relationships as aforementioned. Therefore, it is important 
to use the actual soil moisture information for landslide studies. 

Generally, soil moisture can be estimated through in-situ 
measurements, models, and remote sensing. In-situ 
measurements can provide the highest accuracy among all the 
three methods, but it only gives point-based measurements. 
Since soil moisture has a high variability in both space and time 
especially in steep mountainous areas, a dense soil moisture 
network is normally required at those high-risk areas for 
monitoring purposes. Some studies have been carried out to 
explore the usefulness of in-situ soil moisture for landslide 
applications [9, 18, 22, 23]. Unfortunately, in many remote 
areas, soil moisture stations are not available or only are 
sparsely distributed in those non-hazardous areas, due to high 
installation and maintenance cost (e.g., in our study area, 
although there is a total of 19 in-situ soil moisture sensors 
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installed, nearly all of them are installed in the plain areas where 
landslides never occurred). Another technique to obtain 
continuous soil moisture variations relies on land surface 
/hydrological modelling [7, 24-27]. However, model-based 
methods tend to suffer from time drifts problem (e.g., error 
accumulation over times), require a large number of accurate 
data inputs and are normally computationally intensive 
particularly for large monitoring areas. Alternatively, remote 
sensing is an advanced technology in soil moisture monitoring 
on a global scale [28-30]. There have been enormous 
investments by various organisations such as ESA (European 
Space Agency), NASA (National Aeronautics and Space 
Administration) and EUMETSAT (European Organisation for 
the Exploitation of Meteorological Satellites), in a wide range 
of soil moisture observational programs (e.g., ENVISAT 
(Environmental Satellite), ASCAT (Advanced Scatterometer), 
AMSR-E (Advanced Microwave Scanning Radiometer for 
EOS), SMOS (Soil Moisture and Ocean Salinity), and SMAP 
(Soil Moisture Active Passive)). However, despite their free 
availabilities, studies attempting to use them for landslide-
related applications are nearly absent [25]. To our knowledge 
so far only five pioneering studies have been carried out by 
Brocca et al. (2016; 2012) [25, 31] with ASCAT, and Ray and 
Jacobs, (2007), Ray et al., (2011; 2010) [32-34] with AMSR-E, 
which all have illustrated the effectiveness of utilising satellite 
soil moisture for landslide predictions and monitoring, despite 
coarse resolution and the shallow soil depth sensed by satellite 
sensors . Such a significant gap between the satellite soil 
moisture data abundancy and the landslide studies scarcity 
demonstrates the necessity of further research in this area. 
Particularly, since more satellite soil moisture data are 
becoming available, further studies using different data sources 
should be carried out. On the other hand, soil moisture 
thresholds can be useful information for landslide hazards early 
warnings (e.g., to work together with rainfall thresholds), 
however such a research has rarely been carried out [25, 35]. 

Therefore, the aim of this paper is to further explore the 
usefulness of remotely sensed soil moisture products for 
landslide applications with the latest satellite soil moisture data. 
In addition, it is attempted to investigate the soil moisture 
triggering conditions for landslide occurrences based on 
different environmental features (i.e., land cover, soil type, 
slope), as using only one threshold for a large study area is not 
appropriate [36], after which, thresholds are validated 
statistically. Here the state-of-the-art ESA Climate Change 
Initiative (CCI) soil moisture product (CCI-SM hereafter) is 
chosen because the program is the first of its kind in merging 
multiple active and passive microwave sensors to produce a 
long-term (>30 years), harmonized satellite soil moisture 
datasets [37]. CCI-SM has been demonstrated with good 
agreements with the in-situ observations globally [38-40]. The 
large physiographic variability, together with the maturity of 
landslide data records, make Italy an ideal place for this study. 
Here an Italian region called Emilia Romagna is chosen for this 
purpose. The study period is from 2002 to 2015, where both the 
landslide records and the CCI-SM datasets are the most 
complete. Details regarding the study area, and different data 

used are provided in Section II . Methodologies for thresholds 
validation are described in Section III . The satellite soil 
moisture evaluation result is covered in Section IV. Section V 
shows the landslide relationships with the satellite soil 
moisture. The attempts of exploring soil moisture thresholds as 
well as their validations are presented in Section VI . Section 
VII includes further discussions about the results, potential 
future works, and conclusions.  

II. STUDY AREA AND DATASETS 

A. Study Area 

The Emilia Romagna Region is located in the north of Italy 
and is one of the country’s most populated areas (Figure 1). The 
region’s topography changes from hilly and mountainous 
sectors in S-SW to wide plains towards NE, and its elevation 
can vary from 50 m up to 2125 m over a distance approximately 
50 km running north to south [41, 42]. The mountainous part 
(about 13,200 km2) belongs to the northern Apenines chain, 
which is a complex fold and thrust arcuate orogenic belt that 
was formed due to the closure of the Ligurian Ocean and the 
subsequent collision of the European and continental margins 
which started in the Oligocene.  

The region has a mild Mediterranean climate with distinct 
warm and dry season from May to October, and a cool and wet 
season from November to April. The mean annual rainfall 
averaged over the whole area is about 1000 mm, but it can reach 
around 2000 mm in the highest mountains. The Emilia 
Romagna Region is extremely prone to landslides, with one-
fifth of the hilly and mountainous territory covered by active or 
dormant landslide deposits. The majority of them were caused 
by earth-flows after the Last Glacial Maximum and the 
expansion during the wet seasons of the Holocene which 
created superimposition of new earth-flows. Intense and 
prolonged rainfall events are the main triggering factors for 
reactivation of those pre-existing deposits, followed by snow 
melted by warm rain. Although the landslides in the area do not 
normally cause casualties, they lead to a considerable number 
of damages to the properties and local infrastructures. Each year 
the cost for the purpose of property rebuilt and area regeneration 
is around €33 million. 

B. The CCI-SM Products 

The first version of the CCI-SM was released in 2012, which 
was the first multi-decadal, global satellite-observed soil 
moisture product. It is produced by merging information from 
both active and passive microwave space-borne instruments, 
into three harmonised products: a merged ACTIVE (1991-
2016), a merged PASSIVE (1978-2016), and a COMBINED 
(1978-2016) active + passive microwave product. Compare 
with its first release, the latest version which is adopted in this 
study (v04.2, released in early 2018) includes a large number of 
advancements, for instance incorporates various new satellites, 
extends temporal coverage to 1978-2016, merges all active and 
passive Level-2 products directly to generate the COMBINED 
product (previously, this was created from the ACTIVE and 
PASSIVE products) [43], and uses a new blending approach to 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microwave-sensors
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compute a weighted average of measurements from all sensors 
that are available at a certain point in time. Comparatively, 
microwave bands have more advantages in soil moisture 
estimation than other spectral bands, mainly because they have 
longer wavelengths, so they can penetrate deeper into the soil 
and have more ability to pass through cloud and some 
vegetation cover [21]. As a result, CCI-SM can provide soil 
moisture information in the upper few centimetres of soil. CCI-
SM is in the format of volumetric water content (m3/m3), with 
a daily temporal resolution, and 0.25-degree spatial resolution 
globally.  
The active data used in the newest version of the CCI-SM are 

generated by the Vienna University of Technology (TU Wien) 
based on observations from the C-band scatterometers on board 
of the European remote sensing satellite-1 (ERS-1), ERS-2 and 
Meteorological operational satellite – A (MetOp-A) and 
MetOp-B. The passive data set are produced by the VU 
University Amsterdam in collaboration with NASA based on 
passive microwave observations from Nimbus 7 Scanning 
Multi-channel Microwave Radiometer (SMMR), Defense 
Meteorological Satellite Program (DMSP) Special Sensor 
Microwave Imager (SSM/I), Tropical Rainfall Measuring 
Mission’s (TRMM) Microwave Imager (TMI), Aqua AMSR-
E, Coriolis WindSat, Global Change Observation Mission-
Water "Shizuku" (GCOM-W1) AMSR2, and SMOS. The CCI-
SM is continuously being upgraded, although SMAP is not 
currently considered, it is expected to be included in its future 
releases. In this study, the CCI-SM COMBINED product is 
used. 

C. Landslide Database Discrimination 

The adopted historical landslides catalog is from the Emilia 
Romagna Geological Survey, which holds a large collection of 
landslides data sourced from parochial archives, technical 
documentation, reports to local authorities, national, regional 
and local newspapers [41]. The catalog only contains records of 
landslides that caused damages, therefore small-sized ones 
occurred in remote areas were likely to be undetected. Although 
the catalog does not contain all the occurred landslides 
information it is an accurate inventory of those that caused 
certain damages. The information in the catalog includes 
location, date of occurrence, the uncertainty of date, landslide 
characteristics (dimensions, type, and material), triggering 
factors, damages, casualties, and references. Unfortunately, the 
complete information is not available for all the landslides and 
in many cases, they are missing. Based on the available 
information, two rules are set to decide if a landslide data could 
be used for the analysis purpose: 1) rainfall-induced only; 2) the 
time of occurrence should be in daily accuracy. Moreover the 
catalog period for the selection process is between 2002 and 
2015 only, which is during the period when CCI-SM is the most 
complete. Given these restrictions, about four-fifths of data 
cannot fulfil them and were hence deleted. As a result, a total 
of 239 events are retained. The individually retained landslides 
are mapped as single pinpoints in Figure 2, with Digital 
elevation model (DEM) information also shown in the 
background.  The spatial distribution of landslides is very 

heterogeneous, and it is controlled by the distribution of the 
weak rock units as well as by the location of the critical rainfall 
events during the considered period. 

D. Other Datasets 

1) In-situ data 
Among the 19 installed in-situ soil moisture sensors within 

the study area, only one sensor installed at San Pietro 
Capofiume (latitude 44° 39' 13.59", longitude 11° 37' 21.6") 
provides long-term surface soil moisture information (at 10 cm). 
The rest of the sensors are either absent from valid data (e.g., 
no data, or very big data gaps) or do not cover the study period 
at all. Therefore, only the San Pietro Capofiume station is used 
for the CCI-SM evaluation purpose. The San Pietro Capofiume 
site is typical of the agricultural area of the Po River valley. The 
soil moisture data measurements are carried out by the Regional 
Agency for Environmental Protection of Emilia Romagna 
Region at seven different depths in the soil between 10 cm and 
180 cm.  Time Domain Reflectometry (TDR) equipped with 
dataloggers is used for automatic data collection. The 
volumetric water content (m3/m3) has been recorded in a daily 
timestep between 2006 and 2017 [44]. Here only the data 
covered by the study period is collected (i.e., 2006-2015 for the 
evaluation of CCI-SM). The rain gauge network of the study 
area consists of over 200 tipping-bucket rain gauges. For the 
purpose of rainfall event selections, daily rainfall data covering 
the whole area are collected and analysed for years 2014 and 
2015.  
2) Environmental data 

In addition to the soil moisture and landslide information, 
environmental features (i.e., land cover, soil type, and slope) are 
obtained from different sources. The reasons for choosing those 
features are because they have been found with important roles 
in landslide occurrences [45]. The ESA CCI land cover map 
(v2.0.7) is used here. The map describes the Earth’s terrestrial 
surface in 37 original land cover classes at 300 m resolution. 
The classification is based on the United Nations Land Cover 
Classification System [46]. The reason for choosing the CCI 
land cover map is similar to the CCI-SM’s because we aim to 
exploit the full range of available datasets from remote sensing 
technologies (i.e., from ESA and relevant European missions). 
The soil type map is from the SoilGrids-World Reference Base 
class (TAXNWRB), which categorises the world into 118 
unique soil classes. SoilGrids is a system for automated soil 
mapping based on state-of-the-art spatial predictions methods. 
It provides a collection of updatable soil property and class 
maps of the world at 250 m spatial resolutions produced using 
automated soil mapping based on machine learning algorithms 
[47]. The slope information over the study region is calculated 
by using the Shuttle Radar Topography Mission (SRTM) 3 Arc-
Second Global (~ 90m) DEM datasets. The reason for choosing 
SRTM DEM data is because it is of high quality and is the most 
used free DEM data worldwide. The coverage of this dataset is 
near global extending from 60° north to 56° south in latitude 
[48]. Although more detailed information of elevation, land use 
and soil type could be sourced for the study area, the global 

https://en.wikipedia.org/wiki/Remote_sensing
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datasets are chosen here because they are freely available 
globally, which can make this study exportable worldwide.   

III.  METHODOLOGIES 

In order to perform the calibration and validation of the soil 
moisture thresholds, landslides and CCI-SM datasets are 
divided into two periods: 2002-2013 for the construction of 
thresholds, and 2014-2015 for the validation purpose. The 
definition of soil moisture thresholds is based on finding the soil 
moisture triggering levels (thresholds) using different 
exceedance probabilities (percentiles), e.g., a 5% exceedance 
probability is based on calculating the 5% percentile value of 
the soil moisture observations in correspondence of the 
landslide events. The adoption of exceedance probability is a 
common way to determine rainfall-thresholds in the landslide 
early warning, which is therefore used in this study to explore 
its usage for soil moisture threshold determinations.   

During the validation period, 45 rainfall events are selected 
as the test cases for the threshold’s performances. To separate 
rainfall events from rainfall datasets, a one-day dry period (i.e., 
a period without rainfall) is used [49-51]. Since most of the 
landslides included in the datasets are shallow which respond 
quickly to rainfall, therefore a one-day approach is suitable 
here. The events generated through each rain gauge are then 
combined, and with visual analysis, the rainfall event periods 
for the whole study area are finally selected. The rainfall events 
data are shown in Section VI .  

The validation methods used are based on Gariano et al. 
(2015) [52]. Here the soil moisture thresholds can be considered 
as a binary classifier of the soil moisture conditions that are 
likely or unlikely to lead to landslides. Based on such an 
assumption, the landslide occurrences can either be true (T) or 
false (F), and the threshold predictions can either be positive (P) 
or negative (N). As a result, there are four outcomes (Figure 3a), 
i.e., true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN) [53]. A true positive is an outcome 
where the threshold correctly predicts the occurrences of 
landslides; similarly, a true negative is an outcome where the 
threshold correctly predicts the unoccurrences of landslides; 
a false positive (i.e., false alarm) is an outcome where the 
threshold is reached, but in reality landslides do not occur; and 
a false negative (i.e., missing alarm) is an outcome where 
threshold failed to predict the occurrences of landslides. Based 
on the four possible outcomes, three statistical indicators can be 
calculated. 

 The Hit Rate (HR), which is the proportion of the events that 
are correctly predicted. It can be calculated as: ܴܪ ൌ ்்ାிே                   (1) 

ranges between 0 and 1, with the optimal value as 1.                                        
The False Alarm Rate (FAR), which is the proportion of 

positive predictions when the event did not occur. It can be 
calculated as: ܴܣܨ ൌ ிிା்ே                                              (2) 

ranges between 0 and 1, with the optimal value as 0. 

The Hanssen and Kuipers skill score (HK) [54], which is the 
forecasting accuracy for the events with and without landslides. 
It can be calculated as: ܭܪ ൌ ܴܪ െ  (3)                                           ܴܣܨ
ranges between -1 and 1, with the optimal value as 1. 

The predicting performance of different exceedance 
probability levels is examined by using a Receiver Operating 
Characteristic (ROC) analysis [55, 56]. The analysis is based on 
the ROC plot with HR against FAR as seen in Figure 3b. Each 
point in the plot represents each exceedance probability level 
scenario. The optimal result (the red point) is achieved when 
the HR equals 1 and the FAR equals 0. The closer the point to 
the optimal performance point, the better the prediction ability 
is. Hence the Euclidean distances (d) between individual points 
and the optimal points are calculated to judge which scenario is 
the best. 

For the validation study, each threshold determined for each 
of the slope class is used for summarising the numbers of T, F, 
P, and N events. Those numbers are then combined to 
determine the overall statistical indicators (i.e., HR, FAR, HK).  

IV.  RESULTS OF CCI-SM EVALUATION  

To use the CCI-SM, the initial step is to evaluate its 
reliability. For this purpose, the CCI-SM is compared with the 
in-situ observations over the period of 2006 to 2015. Figure 4 
illustrates the comparison result between the satellite and the in-
situ soil moisture. It can be seen CCI-SM is able to monitor the 
overall seasonal and temporal changes of soil moisture. Only 
for some cases: for instance, during dry periods, CCI-SM shows 
clear wetter conditions than observed; as well as during the 
2013 winter, CCI-SM is not able to capture the sudden 
increment of soil moisture. The sudden rise of soil moisture 
could be the result of frozen soil condition, which affects the 
accuracy of satellite data [57]. It should be noted since the study 
area only has one soil moisture station that provides valid 
observations, it is impossible to quantitatively evaluate the CCI-
SM in this study. However, the temporal comparison does 
indicate a general agreement between the CCI-SM and the 
ground observations. 

V. LANDSLIDE EVENTS AND RELATIONSHIPS WITH CCI-SM 

To investigate the influence of soil moisture condition on 
landslides, we use the wetness conditions measured on the day 
when landslides occurred. The reason for not using the 
antecedent soil moisture condition plus rainfall data on the day 
is because the purpose of this study is to explore the relationship 
between soil moisture and landslides solely. In general, soil 
moisture is a predisposing factor for slope instability, while 

TABLE I 
PERCENTAGE OF LANDSLIDE EVENTS EXCEED THE GRID SOIL MOISTURE 

CONDITION AT DIFFERENT PERCENTILES. 

Percentile (%) Percentage of events exceeded (%) 
95 24 
90 41 
80 52 
70 72 
60 79 
50 83 
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rainfall is the triggering factor. The same rainfall can trigger or 
not a landslide depending on the soil moisture content at the 
time of the rainfall event. The wetness conditions measured on 
the day of the landslide implicitly account for both the initial 
soil moisture and the effective rainfall absorbed by the ground, 
and can be a robust indicator of the hydrological condition of 
the slope. Only after the evaluation of the soil moisture product, 
rainfall information can then be used together with the 
antecedent soil moisture information for forecasting and 
monitoring purposes. After investigating the soil moisture 
conditions over all the satellite grids, it has been found during 
most of the landslide events, the soil is always among those 
wettest days within a year. Here the results of the four selected 
satellite grids are presented (Figure 5). From the figure, it can 
be seen soil moisture in correspondence to landslide events (in 
red star points) is most often in the top third range of the areal 
soil moisture (blue lines). It is clear the soil moisture variations 
at each satellite grids behave differently, for instance Figure 5a 
is generally wetter than Figure 5d. Therefore, it is necessary to 
investigate the relationship between landslides and soil 
moisture based on different grids. A comparison between 
landslide soil wetness conditions and the satellite grids soil 
moisture at 95%, 90%, 80%, 70%, 60%, and 50% percentiles 
are hence explored (Figure 6). It is interesting to observe that 
several landslide events occurred at very low soil moisture 
conditions. This is because soil moisture is not the only factor 
responsible for landslide. The stability of a slope, in fact, is 
influenced by a number of different factors such as 
deforestation, river erosion, or human activities that in some 
cases can prevail slope hydrology. The percentage of landslide 
events that exceed the conditioned (i.e., different percentiles) 
grid soil moisture is also calculated as shown in Table I. It is 
clear over half of the events are above the 80% percentile line, 
and over four-fifths of events are above the 50% percentile line. 
Those results indicate high soil moisture indeed plays an 
important role in triggering landslides. 

VI.  THE EVALUATION  OF SOIL MOISTURE THRESHOLDS FOR 

LANDSLIDE OCCURRENCES 

A. Whole Study Area 

The above analysis has shown that there is a correlation 
between landslide events and soil moisture product CCI-SM. 
The next step is to establish if the spatial variation of soil 
moisture can be used to improve the thresholds for landslides 
occurrence at the regional scale. 

As a first attempt, we can compute the critical soil moisture 
for landslide occurrences over the whole study region. With a 
5% exceedance probability, which is commonly adopted for 
landslide threshold studies to exclude the outlier cases [36]. The 
threshold for the whole region is 0.23 m3/m3, which is smaller 
than the areal mean soil moisture at 0.33 m3/m3. This is because 
in mountainous regions, landslides can be triggered at relatively 
low soil moisture due to the influence of other instability 
factors.  

Using one single threshold for the whole area is clearly not 
appropriate. For instance, some areas are always wetter than 

others, and that does not indicate those areas are more prone to 
landslides (e.g., wetter soil due to irrigation does not link with 
a high occurrence of landslides). Therefore, in order to identify 
landslides susceptibility, it is important to investigate how the 
different environmental factors can influence the soil moisture 
threshold. Here land cover, soil type, and slope information are 
taken into considerations. 

B. Land Cover Discriminations 

Land cover can play an important role in the occurrence of 
landslides. To study the effects of land cover on landslide, the 
study area is first categorised into 20 land cover types based on 
the selected land cover map (Figure 7). It is found the 
Herbaceous areas have the largest extent (37%), followed by 
Tree (22%), Cropland (21%), and other types. However, from 
Figure 8a, it can be seen the largest number of landslides occur 
under the Tree cover (n = 88) and the Cropland (n = 40), and 
Herbaceous is only on the fourth place (n = 32). Moreover, 
although Mosaic cropland makes up only 6% of the overall land 
use, the number of landslides occurred on it is relatively high (n 
= 37). The reason is that Mosaic cropland is mostly found in the 
high mountainous area, whereas the Herbaceous is mainly in 
the plain area. Some landslides also occurred in urban areas (six 
events during the study period). The soil moisture triggering 

TABLE II  
RAINFALL EVENTS INFORMATION 

Starting date  Ending date Duration  
(days) 

Rainfall  
intensity 
(mm/day) 

Number of 
Landslide 

events Year Month Day  Year Month Day 

2014 1 13  2014 1 24 12 20.50 2 

2014 1 28  2014 2 14 18 13.61 0 

2014 2 26  2014 3 6 9 13.35 0 

2014 3 22  2014 3 27 6 11.08 0 

2014 4 4  2014 4 5 2 18.98 0 

2014 4 27  2014 5 4 8 12.13 0 

2014 5 26  2014 6 3 9 5.05 0 

2014 6 14  2014 6 16 3 18.29 0 

2014 6 25  2014 6 30 6 11.39 0 

2014 7 7  2014 7 14 8 7.84 0 

2014 7 21  2014 7 30 10 15.35 0 

2014 8 31  2014 9 5 6 5.67 0 

2014 9 10  2014 9 12 3 11.84 0 

2014 9 19  2014 9 20 2 23.04 0 

2014 10 1  2014 10 1 1 14.51 0 

2014 10 10  2014 10 17 8 13.01 0 

2014 11 4  2014 11 18 15 18.28 0 

2014 11 25  2014 12 7 13 7.58 0 

2014 12 13  2014 12 16 4 6.24 0 

2015 1 16  2015 1 17 2 14.87 0 

2015 1 21  2015 1 23 3 7.13 0 

2015 1 29  2015 2 10 13 9.98 0 

2015 2 13  2015 2 17 5 6.62 1 

2015 2 21  2015 2 26 6 11.84 4 

2015 3 3  2015 3 7 5 11.69 1 

2015 3 15  2015 3 17 3 9.00 0 

2015 3 21  2015 3 27 7 12.09 2 

2015 4 3  2015 4 5 3 16.62 0 

2015 4 17  2015 4 18 2 6.99 0 

2015 4 26  2015 4 29 4 11.23 0 

2015 5 15  2015 5 16 2 8.83 0 

2015 5 20  2015 5 27 8 10.58 1 

2015 6 8  2015 6 11 4 6.47 0 

2015 6 16  2015 6 19 4 13.44 0 

2015 6 23  2015 6 24 2 6.07 0 

2015 7 22  2015 7 25 4 6.05 0 

2015 8 9  2015 8 10 2 24.69 0 

2015 8 15  2015 8 19 5 10.69 0 

2015 8 23  2015 8 24 2 7.88 0 

2015 9 13  2015 9 14 2 24.66 1 

2015 9 23  2015 9 24 2 7.50 0 

2015 10 1  2015 10 7 7 13.73 0 

2015 10 10  2015 10 19 10 9.40 0 

2015 10 27  2015 10 29 3 20.33 0 

2015 11 21  2015 11 25 5 13.78 1 
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levels for each land cover type are explored. The CCI-SM 
product can be used to evaluate the soil moisture threshold 
associate to each land cover type. For this purpose, land cover 
data has been rescaled to the CCI grid, that is, land cover types 
with small coverages are aggregated to those with large 
coverages. As a result, there is a total of three major land cover 
types remained: Cropland, Herbaceous and Tree cover. The 
corresponding soil moisture threshold at 5% exceedance are 
0.23 m3/m3, 0.24 m3/m3, and 0.22 m3/m3. It is clear there are no 
distinct differences in the soil moisture thresholds among the 
various land covers. One possible reason is the peculiar spatial 
distribution of the three land cover types. Although Cropland 
and Herbaceous are mainly in the plain areas, and Tree cover is 
mainly in the mountainous regions, they all have some parts 
distributed outside of their major zones (i.e., Cropland and 
Herbaceous have some areas covered in mountainous zones, 
while Tree cover is also found in the plain areas). As a result, 
their thresholds are similar to the one over the whole area. 
Hence the use of the land cover feature for discriminating soil 
moisture thresholds is not suitable in this case. 

C. Soil Type Discriminations 

Different types of soil have different physical-mechanical 
properties that affect the hydrologic response to rainfall and the 
stability of the slope (e.g., soil permeability, cohesion force, 
shear strength and etc.). To study the effects of soil types on 
landslides, the study area is divided into 21 soil regions based 
on the soil map shown in Figure 9. From the map, it can be seen 
the Gleyic Solonetz covers the largest area (70%), followed by 
the Fibric Histosols (13%), the Haplic Andosols (7%), the 
Haplic Phaeozems (6%), and other types. Similarly, the number 
of landslide events under Gleyic Solonetz type is also the 
highest (Figure 8b). However, the second most frequent class is 
by Haplic Phaeozems. Compare with the coverage area of 
Haplic Phaeozems in the study region, the number of induced 
landslides is extremely high. This is because Haplic Phaeozems 
is mainly found on steep, unstable slopes made of loose material 
derived from the weathering weak sandstone-pelite rocks. Due 
to the small extent of Haplic Phaeozems in the region 
(aggregated by data rescaling procedure), only the Gleyic 
Solonetz type remains for the evaluation of the soil mositure 
threshold. The threshold for Gleyic Solonetz is calculated to be 
0.23 m3/m3, which is the same as one found through the whole 
area exploration. This result is expected, as Gleyic Solonetz 
holds the most landslide events and covers the majority areas. 
However only one threshold is clearly not useful, as hazards can 
also occur in the Haplic Phaeozems type. Therefore, soil type is 
not recommended for the discrimination of soil moisture 
thresholds in this study area. 

D. Slope Angle Discriminations 

Slope angle is one of the most important factors that controls 
the stability of a slope. Therefore, it is useful to investigate the 
relationship between slope angle and landslides occurrence in 
the study area. The slope angle map of the Emilia-Romagna 
region is generated using the selected DEM data as illustrated 
in Figure 10.  It can be seen the slope angle can exceeds 50o in 

some areas. Steep zones are mainly found near the river valley 
areas and at close to the main watershed divide at the Southern 
boundary. To work with the CCI-SM, slope data has been 
rescaled (i.e., averaged) to the CCI grids accordingly. 
Furthermore, for the purpose of thresholds calculations, slope 
data has been statistically divided into four groups, so all groups 
hold the same amount of coverage areas. It can be seen in Figure 
8c, the landslides numbers agree with the average slope angle: 
the steeper the area, the higher the number of the landslide 
incidences. The soil moisture thresholds are then calculated for 
the different slope groups. Since group 0.40-0.84 o only has one 
landslide event reported, it is removed from the analysis. As a 
result, the thresholds for the remained three groups are: 0.84-
4.15o (0.37 m3/m3), 4.15- 11.23o (0.24 m3/m3), and 11.23-20.44o 
(0.20 m3/m3).  It can be seen that the threshold differences 
between the plain areas and the steep areas are significant (i.e., 
85% higher). The distinct results indicate the usefulness of 
slope information for thresholds discriminations. The spatial 
distribution of the calculated thresholds can be then generated 
(Figure 11). The map clearly shows that the critical soil 
moisture content is lower for the steep slopes that characterize 
the southern part of the region (close to watershed divide) 
around the hilly Southern boundary, and higher for the mild 
slopes to the North. This result well agrees with the general 
geology of the area, that in the southern part is characterised by 
the outcrop of sandstone rocks that form steep slopes covered 
by a thin layer of permeable sandy soil. These slopes are highly 
unstable, and commonly fail at low water content because of 
the steepness and the high hydraulic conductivity of the soil. 
The thresholds calculated via the slope angle discrimination 
method is then validated in the next section. 

It is noted although it should be more informative to use the 
original slope data (from the 90 m DEM data) for each of the 
landslide event than the mean-slope method, we have found 
such an approach could not provide distinct thresholds among 
slope groups. This is because their corresponding soil moisture 
grid is large (0.25-degree), so for instance, if five landslides 
distributed in both high- and low-slope areas occurred within a 
CCI-SM grid, they would be assigned with the same soil 

TABLE III  
THE RESULTS OF TP, FN, FP, TN, AND STATISTICAL INDICATORS (HR, FAR, HK, 

D), UNDER DIFFERENT EXCEEDANCE PROBABILITY LEVELS (P). THE BEST 
PERFORMANCES OF HK AND D ARE HIGHLIGHTED 

P (%). TP FN FP TN HR FAR HK d 

1 13 0 5349 313 1.00  0.94  0.055  0.94  
2 13 0 5227 435 1.00  0.92  0.077  0.92  
3 13 0 5057 605 1.00  0.89  0.107  0.89  
4 13 0 5004 658 1.00  0.88  0.116  0.88  
5 13 0 4936 726 1.00  0.87  0.128  0.87  
6 13 0 4742 920 1.00  0.84  0.162  0.84  
7 13 0 4623 1039 1.00  0.82  0.184  0.82  
8 13 0 4471 1191 1.00  0.79  0.210  0.79  
9 13 0 4384 1278 1.00  0.77  0.226  0.77  
10 13 0 4341 1321 1.00  0.77  0.233  0.77  
15 13 0 3947 1715 1.00  0.70  0.303  0.70  
20 13 0 3535 2127 1.00  0.62  0.376  0.62  
25 12 1 3325 2337 0.92  0.59  0.336  0.59  
30 12 1 2858 2804 0.92  0.50  0.418  0.51  
35 10 3 2731 2931 0.77  0.48  0.287  0.53  
40 9 4 2629 3033 0.69  0.46  0.228  0.56  
50 7 6 2208 3454 0.54  0.39  0.148  0.60  
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moisture value. Therefore, in this case only the mean-slope 
method is further proceeded. 

E. The Validation of Thresholds Using Slope Angle 
Discrimination Conditions  

A preliminary threshold model for landslides occurrence at 
regional scale can be derived by combining the average slope 
angle and the CCI soil moisture. The threshold is here defined 
as the critical value of soil moisture above which landslides are 
likely to occur. These values are different for the different 
territorial units according to the average value of slope angle. 

In this assessment, it is important to optimize the threshold 
values of soil moisture in order to reduce the number of missing 
alarms (when the threshold is too high) and false alarms (when 
the threshold is too low). In our case, we use the slope angle as 
discrimination conditions and consider 17 different exceedance 
probabilities (from 1% to 50%). The validation is then carried 
out to test the thresholds under 45 rainfall events (Table II ). The 
rainfall events are in the ranges of 1 day to 18 days, and the 
average rainfall intensities are between 5.05 mm/day and 24.69 
mm/day. During each event, the number of landslides occurred 
is also shown. In combination with the satellite grids, there is a 
total of 5662 different outcomes of the TP, FN, FP and the TN. 
The statistical scores are calculated based on those outcomes, 
and ROC analysis is also carried out. Table III  summaries the 
results of TP, FN, FP and TN, as well as the four statistical 
indicators of HR, FAR, HK, and d for the 17 cases. Taking a 5% 
exceedance probability, all the occurred landslides (13 recorded 
landslide events) during the selected rainfall events are 
predicted by the thresholds (TP); however the FP is very high 
(4936 cases). Accordingly, for the 5% exceedance probability, 
HR=1.00 and FAR=0.87. With an exceedance probability of 
50%, the HR drops from 1.00 (13 TP and zero FN) to 0.54 
(seven TP and six FN), while the FAR improves from 0.94 
(5349 FP and 313 TN) to 0.39 (2208 FP and 3454 TN). The 
worst HK result is observed in 1% scenario (HK=0.055), while 
the best one is obtained by the 30% scenario (HK=0.418). The 
ROC curve is plotted in Figure 12. In the figure, each blue point 
represents a scenario with a selected exceedance probability 
level. The top flat part of the curve corresponds to HR=1.00 
scenarios (1-20% exceedance probability levels). It can be seen 
with different exceedance probabilities, FAR can be reduced 
without sacrificing the HR rate. The Euclidean distances d 
between blue points and the optimal point (the red dot) are also 
calculated as shown in Table III . Similar to the HK 
performance, the largest distance is again observed by the 1% 
scenario (d = 0.94), while the smallest distance is achieved by 
the 30% scenario (d = 0.51). Based on the HK result, the most 
suitable thresholds are obtained by the 30% exceedance 
probability. 

VII.  DISCUSSIONS AND CONCLUSIONS 

In this study, the relationship between the CCI-SM and the 
landslide events has been assessed in the Emilia Romagna 
region for the period between 2002 and 2015. Additionally, 
attempts have been made to find the soil moisture thresholds for 
landslides occurrences under different environmental 

conditions (i.e., land cover, soil type, and slope). Specifically, 
the temporal comparison between CCI-SM and in-situ 
observations shows a general agreement between the datasets. 
A clear relationship has been found between the CCI-SM and 
the landslide events, as over half of the landslide events occur 
above the wettest 20% soil moisture, and over four-fifths of 
events occur above the wettest 50% soil moisture. Those results 
indicate high CCI-SMs indeed relate to the triggering of 
landslides. Detailed analysis of the environmental features 
allows identifying a few differences between thresholds. Of the 
three factors used, only the slope distribution results in a clear 
separation of the thresholds, with thresholds becoming smaller 
for steeper areas. The empirical evidence confirms that wetter 
soil is required to trigger landslides in milder slopes than in 
steeper slopes. The fact that the slope is more distinctive than 
the other environmental conditions (land cover and soil type) 
should not be surprising, as the slope is a key factor for earth 
stabilities. Further validation studies based on the slope 
discrimination conditions is then carried out, which is important 
to reduce the false predictions. 17 different exceedance 
probability levels from 1% to 50% are used to explore the best 
thresholds scenario. Selection of the optimal threshold is based 
on three statistical indicators, and the results demonstrate the 
best performance is obtained by the 30% exceedance 
probability. 

It is important to point out the validation conclusion made 
here is based on the best compromise between the minimum 
number of incorrect landslide predictions (FP and FN) and the 
maximum number of correct predictions (TP and TN) without 
considering additional weighting factors. However, in real 
applications, weightings should be considered, for example the 
cost of missing alarms could be much more expensive than the 
cost of false alarms or vice versa. Therefore, thresholds decision 
makings at different regions should depend on the cost of each 
situation accordingly. On the other hand, the impacts of hazards 
at one region can also be distinct at different times, for example 
a school over the weekends or holidays, when no one need to 
be evacuated should have totally different sets of thresholds 
when comparing with the one during the term-times. Therefore, 
thresholds should change both spatially and temporally (i.e., 
dynamically). To realise such a target, an agent-based dynamic 
model could be very useful, and the results found in this study 
can be put into such a model for landslide hazards early 
warnings [58].  

Although our study shows a clear relationship between the 
CCI-SM and the landslide occurrences, the temporal coverage 
of CCI-SM for the study region is still limited. CCI is aimed at 
producing long-term over 30 years soil moisture data globally, 
however, in the study area, the data are mostly unavailable 
before the year 2002. Comparing with the  
comprehensive data records of the landslide which started in the 
year 1899, the shorter coverage of satellite data leads to a large 
cut of usable landslides cases. This is because satellites 
dedicated for soil moisture observations are only initiated in 
2002, with the launch of AMSR-E. The data scarcity issue 
could be solved by fusing satellite data with land surface 
modelled soil moisture (e.g., Noah-Multiparameterization Land 
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Surface Model) to provide an extended period of datasets. 
Machine learning technologies [59] such as Support Vector 
Machines could be used for such purposes. 

Since satellite soil moisture observations are only 
representative of a shallow soil layer, it limits their usage in 
hydrological and landslide applications. One potential approach 
to minimise the problem is by using the exponential filter (also 
called Soil Water Index) to calculate the corresponding root-
zone soil moisture [60]. An exploration has been carried out by 
using the recursive formulation as described in [60]. It has been 
found the resultant root-zone soil moisture (the optimal T 
parameter is determined as 2 days) cannot perform as well as 
the original CCI-SM data for landslide predictions. The main 
reason we suspect is due to the large data gaps in the CCI-SM 
product (i.e., CCI-SM is not continuously available, and 
sometimes the data gap can be more than 10 days), therefore the 
exponential filter equation which largely depends on the soil 
moisture data from the last time step is not suitable in this case. 
However, if in the future satellites are capable of providing 
more temporally consistent soil moisture observations, the 
suggested method could have the potential to provide good 
landslide prediction results. 

Furthermore, it has been found the large grid sizes of satellite 
data can hinder the further environmental threshold studies, 
because feature types with small coverage areas are aggregated 
by those with large coverages areas (i.e., a large number of 
landslide events have been reported in the Haplic Phaeozems 
soil type, but due to its small coverage area, threshold cannot 
be calculated). A potential solution is to increase the satellite 
data resolution by downscaling methodologies. Higher 
resolution data sources such as satellite visible/ infrared data 
can be used for such a purpose.  

Another issue is related to the landslide data. Since most 
landslide catalogs only record events that are experienced by 
people (e.g., from victims, local newspapers, and reports), 
many events in the rural areas are undetected. As a result, when 
investigating the soil moisture thresholds, the outcome could be 
biased, i.e., the false alarm can be inaccurately high. In order to 
expand the catalog, remote sensing images and Geographical 
Information Systems (GIS) can be useful.  

With the encouraging results obtained, future investigations 
will be to use the satellite antecedent soil moisture information, 
together with rainfall data (e.g., rainfall thresholds or forecasted 
rainfall data) for landslide early warning.  Moreover, satellite 
soil moisture data can also be used in physically based models 
for landslides predictions. The results presented here are only 
valid for this specific investigated case study, therefore further 
studies analysing the relationship between satellite soil 
moisture and landslides over a wider range of catchments and 
with more environmental features are needed. 
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