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Abstract
Counting poverty measures have gained prominence in the analysis of multidimensional
poverty in recent decades. Poverty orderings based on these measures typically depend on
methodological choices regarding individual poverty functions, poverty cut-offs, and dimen-
sional weightswhose impact onpoverty rankings is oftennotwell understood. In this paperwe
propose new dominance conditions that allow the analyst to evaluate the robustness of
poverty comparisons to those choices. These conditions provide an approach to evaluating the
sensitivity of poverty orderings superior to the common approach of considering a restricted
and arbitrary set of indices, cut-offs, and weights. The new criteria apply to a broad class of
counting poverty measures widely used in empirical analysis of poverty in developed and
developing countries including the multidimensional headcount and the adjusted headcount
ratios. We illustrate these methods with an application to time-trends in poverty in Australia
and cross-regional poverty in Peru. Our results highlight the potentially large sensitivity
of poverty orderings based on counting measures and the importance of evaluating the
robustness of results when performing poverty comparisons across time and regions.

Keywords Multidimensional poverty · Counting measures · Dominance conditions

1 Introduction

Multidimensional counting poverty measures focusing on the number of dimensions in
which individuals experience deprivation are widely used by academics and policymakers
around the world. Since the contributions of Atkinson (2003), Chakravarty and D’Ambrosio
(2006), and Alkire and Foster (2011), many governments and international institutions have
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adopted counting poverty measures in order to monitor poverty trends in developed and
developing countries alike. These measures typically identify the poor using a weighted
count of deprivations and a poverty cut-off representing the minimum level of deprivation
required to be classified as poor.1 Recent examples include World Bank (2016), the ‘Multi-
dimensional Poverty Index’ used by UNDP in its Human Development Reports since UNDP
(2010), and the measures of people at risk of poverty and social exclusion currently used by
Eurostat to assess living conditions in Europe (Eurostat 2014). Moreover, the governments
of Bhutan, Brazil, China, Colombia, El Salvador, Honduras, Malaysia, and Mexico, have
already incorporated this type of measures into their set of national statistics. Meanwhile,
other countries are expressing interest toward future adoption (Alkire et al. 2015).

Poverty evaluations based on those counting measures depend on a range of potentially
arbitrary choices that are likely to influence poverty comparisons. These include the specific
properties of the individual poverty function, the rule employed to identify the multidimen-
sionally poor, and the weights assigned to each of the different dimensions or indicators.
While the sensitivity of poverty estimates to these choices is generally acknowledged, the
common approach in the literature proceeds by evaluating the sensitivity of poverty order-
ings considering a limited and usually arbitrarily chosen set of alternative indices, weights,
and cut-offs (e.g., see Nusbaumer et al. 2012; Alkire and Santos 2014). Although easy to
implement, this type of approach is inferior to the stochastic dominance approach com-
monly used in the income poverty literature, which reduces the problem of testing the
robustness of alternative choices over a large, usually continuous domain, to a smaller set
of finite distributional comparisons. Notwithstanding their widespread consideration in dis-
tributional analysis, including monetary poverty research, the use of dominance conditions
for evaluating the robustness of counting poverty orderings to alternative methodological
choices is still rare. However, the soaring popularity of counting poverty measures, together
with their reliance on a range of potentially arbitrary methodological choices, justifies the
development of testable conditions for gauging the robustness of poverty comparisons based
on the counting approach.

This paper contributes to the existing literature by proposing new dominance criteria for
multidimensional counting poverty measures. In contrast with previous results, our criteria
allow a systematic evaluation of the robustness of poverty comparisons to all the method-
ological choices involved in the use of counting poverty measures. Thus, we derive condi-
tions that are both necessary and sufficient to guarantee the robustness of multidimensional
poverty orderings to the choice of the poverty index, the multidimensional poverty cut-off,
and the vector of dimensional weights used to construct counting poverty scores. The new
conditions are very intuitive and easy to test empirically as they involve the comparison of
frequencies of people deprived in different sets of dimensions. For example, comparing the
proportion of people deprived only in electricity in country A against their equally-deprived
counterparts in country B, comparing the proportion deprived only in electricity and sani-
tation in A versus B, and so forth. Importantly, the new criteria apply to a broad class of
counting poverty measures including the classes of measures proposed by Chakravarty and
D’Ambrosio (2006), Alkire and Foster (2011), and Bossert et al. (2013) and combinations

1Counting poverty measures have a long tradition in the poverty literature. As cited in Atkinson (2003), early
applications of counting measures include the works by Townsend (1979) for the United Kingdom, Erikson
(1993) for Sweden, and Callan et al. (1999) for Ireland. Key recent methodological contributions in this
literature also include Tsui (2002), Bourguignon and Chakravarty (2003), Duclos et al. (2006), Bossert et al.
(2013), and Permanyer (2014).
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thereof; in turn including the multidimensional headcount and the adjusted headcount ratio
indices widely used in poverty research in developed and developing countries.

Existing proposals to analyse the robustness of poverty comparisons have succeeded in
providing robustness tests based on changing a handful of key sets of parametric or func-
tional choices while keeping the others constant. For example, in the case of counting
poverty measures, Lasso de la Vega (2010) showed how to test for the robustness of com-
parisons to alternative poverty identification cut-offs and poverty functions, while keeping
several other parameters constant (poverty lines and dimensional weights). More recently,
Yalonetzky (2014) proposed a robustness test for ordinal variables, alternative functional
forms, deprivation lines and weights, but only useful for extreme poverty identification
approaches (union and intersection). Likewise, Permanyer and Hussain (2017) proposed a
highly flexible robustness test based on first-order dominance conditions applied to multiple
binary variables, but working exclusively under a union approach to poverty identification.

Our results build on the conditions proposed by Lasso de la Vega (2010) to identify
unambiguous rankings for a particular class of poverty indices and poverty cut-offs. Our
results extend hers in a number of ways. Firstly, while conditions in Lasso de la Vega (2010)
apply only to a particular vector of deprivation weights, our new conditions guarantee the
robustness of counting poverty orderings to changes in poverty indices and cut-offs for any
conceivable vector of dimensional weights. Furthermore, we derive a set of useful neces-
sary conditions that allow the analyst to rule out the robustness of poverty comparisons to
changes in poverty functions, identification cut-offs, and dimensional weights. These con-
ditions require only the comparison of the proportion of people deprived in each of the
dimensions and the proportion of people deprived in all dimensions. For the statistical eval-
uation of these and the other conditions in the paper, we propose statistical tests based on
the testing framework for pair-wise population comparisons proposed by Dardanoni and
Forcina (1999) and Hasler (2007). To facilitate the application of the new results we have
developed a Stata software package with documentation to guide practitioners on how to
empirically implement the new dominance conditions. Taken together, we argue the new
methods and software make a useful addition to the existing toolkit available to the research
community for the study of multidimensional poverty.

We illustrate the new dominance conditions with an empirical evaluation of recent
poverty trends in Australia and cross-regional poverty in Peru. Our results highlight the large
sensitivity of poverty comparisons and the difficulty of establishing unambiguous orderings
using counting poverty measures. For instance, our results for Australia show that, under
standard parametric choices used in the literature, multidimensional poverty declined during
the expansionary period between 2002 and 2006 and then started to increase in the aftermath
of the Global Financial Crisis, so that by 2010 poverty levels were higher than in 2006 but
still remained below those observed in 2002. However, the new robustness conditions enable
us to conclude that, while multidimensional poverty in Australia unambiguously declined
between 2002 and 2006, the 2002-2010 and 2006-2010 comparisons are not robust and the
ordering of those years depends on the particular choice of poverty index, poverty cut-offs,
and dimensional weights.

The evaluation of poverty levels across the 25 provinces in Peru also illustrates the lack
of robustness of poverty orderings based on counting measures. In fact, results from the
dominance analysis reveal that only 3 out of the 300 pairwise regional poverty comparisons
appear to be robust to changes in poverty indices, cut-offs, and dimensional weights. We
argue that these results call for caution when monitoring poverty using counting measures
like those currently used by institutions like UNDP and Eurostat. They also highlight the
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importance of systematically evaluating the robustness of poverty orderings based on those
measures. The new conditions and methods proposed in this paper go some way in providing
the analytical tools required for that task.

The rest of the paper proceeds as follows. The next section presents the measurement
framework and the class of counting poverty measures considered in the analysis. Key
poverty statistics and some notation relevant for the derivation of the dominance results are
also discussed in this section. The third section discusses the existing dominance conditions
and develops the new dominance results for counting poverty measures. The fourth section
briefly explains the statistical tests to evaluate the new conditions. The fifth section provides
the empirical illustrations on multidimensional poverty in Australia and Peru. Finally, the
paper closes with some conclusions.

2 The Counting Approach to Poverty Measurement

2.1 Measurement Framework

We consider a population with N ≥ 2 individuals and D > 1 indicators of well-being. Let
X be a matrix of attainments where the typical element xnd denotes the level of attainment
by individual n in dimension d . If xnd < zd , where zd is a deprivation line for dimension
d from a D-dimensional vector of deprivation lines, Z, then we say that individual n is
deprived in indicator d .

Let ynd = I(xnd < zd) where I is the indicator function that takes value 1 if the argu-
ment in parenthesis is true, and 0 otherwise. Let Y denote the N × D deprivation matrix
whose typical element ynd informs whether individual n is deprived in dimension d or not.
There are different ways of defining the elements of matrix Y ranging from simple binary
comparisons to complex logical operations. For example, ynd could be a binary indicator of
access to electricity where ynd = 0 could denote access and ynd = 1 would mean lack of
access. On the other extreme, ynd could also be a complex binary indicator taking the value
of 1 whenever a set of conditions are fulfilled. For example, we could say that ynd = 1 if
at least one construction material (e.g. for floor, walls, roof, etc.) is of substandard qual-
ity, otherwise ynd = 0 (i.e. a type of union approach for ynd ). But we could also say that
ynd = 1 if every adult in the family is illiterate, otherwise ynd = 0 (i.e. a type of intersection
approach for ynd ). Unlike the proposals by Yalonetzky (2014) and Permanyer and Hussain
(2017), the dominance conditions proposed in this paper do not apply directly to the joint
distribution of the variables whose logical combinations lead to matrix Y . Our conditions
build from Y once the rules used to construct the matrix of deprivations are set. Therefore
a change in those rules would require implementing our proposed tests (or any other tests
taking the construction of Y for granted) again.2

2Another potential complication in the construction of matrices X and Y is that some attainments or depri-
vations may not always be observable, either directly or indirectly. This will often depend on the choice and
definition of the well-being indicator, as well as the degree of complexity of the decision rules used to define
deprivations based on several indicators. For example, if a cohabiting couple is surveyed too early into their
partnership before they have children, one will be unable to report the health issues affecting the children.
Likewise, if one or two household heads are surveyed too late into their lives, one will be unable to retrieve
information about the education of children in the household if their children do not live with them anymore
already, unless the heads are asked retrospective questions about their offspring and their memory does not
fail them. This is a challenge common to the literature, e.g. it would affect indices like the UNDP’s MPI (see
Alkire and Santos 2014, table 1).
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In order to account for the breadth of deprivations, most counting measures rely on
individual deprivation scores defined as a weighted count of deprivations. Let W =
(w1, w2, ..., wD) denote the vector of dimensional weights such thatwd > 0 ∧ ∑D

d=1 wd =
1. Let C = Y × WT denote the vector of deprivation scores where WT is the transposed
vector of dimensional weights and let � denote the set of all admissible vectors of depriva-
tion counts. The nth element of vector C is the deprivation score for individual n which is
given by

cn(W) =
D∑

d=1

yndwd,

i.e., the weighted sum of the deprivations experienced by the individual. There is only one
vector of possible values of cn for each particular choice of deprivation lines and weights.
Moreover it is easy to show that the maximum number of possible values is given by:∑D

i=0

(
D
i

) = 2D . The vector of possible values is defined as: V = (v1, v2, ..., vl), where
max l = 2D , vi < vi+j , v1 = 0 and vl = 1.3

Following Alkire and Foster (2011) we characterise the set of multidimensionally poor
with an identification rule ρk(cn) that equals 1 when the individual is poor and 0 otherwise.
The indicator function ρk compares individuals’ cn with a multidimensional cut-off k ∈
[0, 1] ⊂ R+ so that any person n is deemed poor if and only if cn ≥ k. As shown in Lasso
de la Vega (2010), the function ρk is the only identification rule that satisfies the property
of poverty consistency which requires ρk(cn′) = 1 whenever ρk(cn) = 1 and cn ≤ cn′ .

Let P(C(Y,W), k) denote a poverty counting measure depending on the vector of depri-
vation scores, C, and the cut-off k used for the identification rule ρk(cn). This notation
explicitly recognises the role of the vector of deprivations, Y , and the vector of weights, W ,
in determining overall poverty through their influence on the vector of deprivation scores,
C. However, in those parts of the paper where the dependency of C on Y and W is not worth
stating explicitly, we refer to the poverty measure by the simpler notation P(C, k) for ease
of exposition.

Following Foster and Shorrocks (1991) and Lasso de la Vega (2010), we consider a broad
class of social poverty measures satisfying standard axioms in the literature on poverty
measurement including:

Axiom 1 Symmetry (SYM): For all k ∈ (0, 1] and C ∈ �, P(Ċ, k) = P(C, k) if Ċ = �C,
where � is some N × N permutation matrix.

SYM requires that the poverty measure is not affected by the exchange of deprivation
scores across individuals, ensuring that the measure does not put more emphasis on some
individuals than others. The following axiom ensures that poverty evaluations are invari-
ant to replications of the population, allowing the comparison of populations of different
sizes:

Axiom 2 Population-replication invariance (PRI): For all k ∈ (0, 1] and C ∈ �,
P(C, k) = P(CR, k) if CR = (C,C, ..., C) is any replication of the vector of deprivation
scores C.

3As shown by Permanyer (2014, table 1), alternative forms for the deprivation score are possible when
variables are cardinal and not partitioned or dichotomised. However this diversity significantly contracts
when we work with binary deprivation indicators, as is the case in the counting framework.
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The focus axiom is a common axiom in the poverty literature which requires poverty
measures to be unaffected by improvements in the well-being of the non-poor. We
say that Ċ is obtained from C by a simple deprivation score decrease among the non-
poor if 0 ≤ ċi < ci for some individual i with ci < k, while ċj = cj for every
other j �= i. Note this type of transformation simply reduces the level of deprivation
experienced by a non-poor person, where the decline in the deprivation score could be
the result of a reduction in the number of deprivations experienced by the individual, a
decline in the weight of the dimensions in which the person is deprived, or any combi-
nation of the two. The following axiom states the focus property in our multidimensional
setting:

Axiom 3 Poverty focus (FOC): For all k ∈ (0, 1] and C ∈ �, P(Ċ, k) = P(C, k) if Ċ is
obtained from C by a simple deprivation score decrease among the non-poor.

The focus axiom thus ensures that poverty remains unchanged when the poverty score of
a non-poor person decreases.4

We say that Ċ is obtained from C by a simple deprivation score decrease among the
poor if 0 ≤ ċi < ci for some person i with ci ≥ k while ċj = cj for every other j �= i.
The following axiom is a restatement of the dimensional monotonicity axiom by Lasso de
la Vega (2010) establishing how the poverty measure should change when a poor person
experiences a decrease in the deprivation score.

Axiom 4 Monotonicity (MON): For all k ∈ (0, 1] and C ∈ �, P(Ċ, k) < P (C, k) if Ċ is
obtained from C by a simple deprivation score decrease among the poor.

The monotonicity axiom thus ensures that poverty decreases whenever a poor person
experiences a reduction in the deprivation score. Note the axiom does not exclude the pos-
sibility that the poor person is lifted out of poverty as a consequence of the deprivation
decrease.5 The following axiom is a restatement of the distribution sensitivity axiom by
Lasso de la Vega (2010) requiring the poverty measure to be sensitive to the distribution of
deprivation scores among the poor:

Axiom 5 Distribution sensitivity (DS): Let Ċ and C̈ denote the deprivation score vectors
obtained from C by a decrease of size h in the deprivation scores of two poor individuals i

and j , respectively. Then, for all k ∈ (0, 1] and h > 0, P(C, k) − P(Ċ, k) > P (C, k) −
P(C̈, k) if ci > cj ≥ k and both Ċ and C̈ belong to the set of admissible vectors of
deprivation counts �.

Note that axiom DS essentially prioritises the reduction of deprivation scores among
those with higher initial deprivation scores, i.e. the poorest among the poor.

4Alkire and Foster (2011) also introduce a deprivation focus axiom whereby the social poverty measure
should not be affected by an improvement in a wellbeing indicator whose value was already above the
deprivation line, whether the beneficiary person is poor or not. In our context this axiom is not relevant
because we work only with either binary or dichotomised variables, therefore further improvements above
the deprivation line are not considered.
5Alternatively, Alkire and Foster (2011) proposed a monotonicity axiom requiring a poverty measure to
decrease whenever a poor person ceases to be deprived in one indicator. Our monotonicity axiom, following
Lasso de la Vega (2010), is more general in that it allows for decreases in deprivation score due to either
deprivation reductions or changes in the weighting vector.
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Finally, we denote by P1 the class of poverty counting measures P satisfying FOC,
MON , SYM and PRI . And let P2 ⊂ P1 denote the class of social poverty measures satis-
fying DS in addition to those five axioms. In this paper we propose dominance conditions
for these two classes of poverty measures.

2.2 Useful Poverty Statistics

The following poverty statistics are important for the derivation of the dominance condi-
tions. The multidimensional poverty headcount is widely used in poverty analysis based on
counting measures and is given by:

H(C, k) = 1

N

N∑

n=1

I(cn ≥ k). (1)

The measure H(C, k) provides the proportion of people whose poverty score cn is at least
as high as the multidimensional poverty cut-off k. This is a crude measure of poverty that
fails to satisfy the monotonicity axiom as it does not take into account the depth of poverty.
However, as shown in Lasso de la Vega (2010), even if H(C, k) does not belong to the
classes P1 and P2 of poverty measures, the orderings based on the H(C, k) statistic for all
k are useful to identify unambiguous rankings within the class P1.

We also use the adjusted headcount ratio proposed by Alkire and Foster (2011) which
can be expressed as:

M(C, k) = 1

N

N∑

n=1

I(cn ≥ k)cn. (2)

The statistic M(C, k) is defined as the censored population average score, in which the cen-
sorship trait stems from setting the scores of non-poor people to zero, in order to fulfil the
focus axiom. In contrast with H(C, k), M(C, k) takes into account the breadth of depriva-
tion to characterise the overall level of poverty. The measure M(C, k) fails to satisfy the
Distribution Sensitivity axiom and therefore does not belong in the class P2. However, as
we discuss below, unambiguous orderings with respect to M(C, k) for all k imply robust
orderings within the class P2.

To derive the new dominance conditions it is also useful to consider the uncensored
deprivation headcount, which measures the proportion of people deprived in dimension d

irrespective of their deprivation in other dimensions:

Ud(Y ) = 1

N

N∑

n=1

ynd . (3)

3 Dominance Conditions for CountingMeasures

In this section we present the new dominance conditions to assess the robustness of counting
poverty orderings within the classes of poverty measures P1 and P2. These conditions build
on the dominance results derived by Lasso de la Vega (2010). Let P(C(YA, W), k) and
P(C(YB,W), k) refer to the social poverty indices of populations A and B with deprivation
matrices YA and YB , respectively. Let H(C(YA, W), k) and H(C(YB, W), k) refer to their
multidimensional headcounts. The following result sets out the conditions for unambiguous
poverty orderings within the class P1:
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Condition 1 P(C(YA, W), k) ≤ P(C(YB,W), k) for all P in P1 and any identification
cut-off k ∈ (0, 1], if and only if H(C(YA,W), k) ≤ H(C(YB,W), k) for all k ∈ (0, 1].

Proof See Lasso de la Vega (2010, proposition 3, p. 164) which relates H(C(YA,W), k) ≤
H(C(YB,W), k) for all k ∈ (0, 1] to comparisons of poverty measures in P1.

Condition (1) states that poverty comparisons of A and B are robust to the choice of
the poverty function satisfying FOC,MON, SYM, and PRI only when the ordering of
headcount measures is the same for every value of k.

Now let M(C(YA,W), k) and M(C(YB,W), k) refer to the adjusted headcount ratio
of populations A and B, respectively. The following result establishes the conditions for
unambiguous poverty rankings within the class P2:

Condition 2 P(C(YA,W), k) ≤ P(C(YB,W), k) for all P in P2 and any identifica-
tion cut-off k ∈ (0, 1], if and only if M(C(YA, W), k) ≤ M(C(YB,W), k) for all
k ∈ (0, 1].

Proof See Lasso de la Vega (2010, proposition 6, p. 167) which relates M(C(YA,W), k)

≤ M(C(YB, W), k) for all k ∈ (0, 1] to comparisons of poverty measures in P2.

Thus, when the adjusted headcount ratio in population A is never higher than in B for
every value of k then we can claim that poverty in A is never higher than in B for any
poverty measure in P1 satisfying DS (i.e. P2). The following remark links condition (1)
to (2):

Remark 1 If H(C(YA,W), k) ≤ H(C(YB, W), k) for all k ∈ (0, 1] then M(C(YA,W), k)

≤ M(C(YB, W), k) for all k ∈ (0, 1].

Proof From condition (1) we know that H(C(YA,W), k) ≤ H(C(YB,W), k) for all
k ∈ (0, 1] implies P(C(YA,W), k) ≤ P(C(YB,W), k) for all P in P1 and any iden-
tification cut-off k ∈ (0, 1]. Additionally, M is a member of the class P1. Therefore
M(C(YA,W), k) ≤ M(C(YB,W), k) for all k ∈ (0, 1].

Remark (1) states that the existence of dominance within the class P1 implies domi-
nance within the class P2, which is not surprising given that P2 ⊂ P1. Following Lasso
de la Vega (2010, Proposition 7), conditions (1) and (2) can also be restricted to apply
only to a subset of relevant k values, ruling out the lowest ones below a minimum kmin.
In order to proceed this way, we construct censored deprivation scores such that: cn = 0
whenever cn < kmin. Then conditions (1) and (2) apply only to those P(C, k) for
which kmin ≤ k ≤ 1.

The conditions presented above allow us to assess the sensitivity of poverty orderings to
the choice of the social poverty measure. However, these conditions hold only for a par-
ticular choice of dimensional weights. With alternative selection of weights the conditions
would need to be evaluated again as the values of the poverty statistics H and M depend on
the specific values of the multidimensional poverty cut-off and weights.

We propose new dominance conditions to examine the robustness of poverty orderings
to the choice of weighting schemes. First, we present the necessary and sufficient condi-
tions whose fulfilment guarantees, separately, the robustness of conditions (1) and (2) to
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any possible choice of dimensional weights. Then, we present a sufficient condition whose
fulfilment guarantees the robustness of condition (1), as well as the robustness of condition
(Condition (2)) by implication, to any possible choice of dimensional weights. Finally, we
present a set of conditions whose fulfilment is necessary (but insufficient) to guarantee the
robustness of poverty orderings to changes in the poverty index, identification cut-off, and
dimensional weights. The advantage of both the exclusively sufficient and the exclusively
necessary conditions resides in their easier implementation for testing purposes vis-a-vis the
jointly necessary and sufficient conditions. Before presenting the new dominance results,
the next subsection introduces additional notation necessary for the derivation of the new
conditions.

3.1 Additional Notation and Useful Poverty Statistics

We denote by S(D) = {{1}, {2}, ..., {D}, {1, 2}, ..., {1, 2, ...,D}} the power set with all pos-
sible combinations of D welfare dimensions (each denoted by a natural number from 1 to
D) excluding the empty set. The number of elements in S(D) is equal to 2D − 1. Let Os

denote the population subgroup deprived only in the subset of dimensions s ∈ S(D) and let
cs(W) denote the poverty score for those deprived in the dimensions in s when the weight-
ing vector is W (whenever there is no room for ambiguity, we use cs below for ease of
exposition). Thus, for instance, for D = 3, the sets O1, O2,3, and O1,2,3 include, respec-
tively, the persons deprived only in dimension 1, those deprived in dimensions 2 and 3 but
not in dimension 1, and those deprived in the three dimensions. Clearly, Os

⋂
Os′ = ∅ for

all s �= s′.
For each subset s we define the subset headcount ratio, Hs , as the proportion of people

who are deprived only in the subset of dimensions s ∈ S(D). For any s ∈ S(D), the measure
Hs is equal to:

Hs = |Os |
N

, (4)

where |Os | is the number of people deprived exclusively in dimensions s ∈ S(D). For any
weighting vector W , all individuals in Os share the same score denoted by cs(W). Note
that when the whole set of dimensions is considered, H1,2,...,D is the proportion of people
who are deprived in each and every possible dimension, also known as the multidimensional
intersection headcount index (Duclos and Tiberti 2016).

Now we make a crucial distinction between the potential sets of the multidimensionally
poor and the actual set of the multidimensionally poor. The former includes all possible
groups of people that would be deemed poor under all potential combinations of W and k.
The latter refers to the unique set of people that ends up being identified as poor once we
choose and fix a particular combination of W and k. That is, the actual poverty set is an
element of the set of potential poverty sets. Any combination of W and k selects only one
actual poverty set of the poor among all the potential sets (although, of course, different
combinations of W and k could select the same actual poverty set).

We denote by � the set containing all potential poverty sets consistent with any given
identification rule. Any potential poverty set γ ∈ � can be expressed as the union of groups
Os . Meanwhile γ (W, k) ∈ � stands for the unique actual poverty set (among the potential
ones) once W and k are chosen and fixed. That is, γ (W, k) is the set of people for whom
cn(W) ≥ k.

For instance, in the case of D = 2, the set of potential poverty sets is given by � =
{(O1,2), (O1,2

⋃
O1), (O1,2

⋃
O2), (O1,2

⋃
O1

⋃
O2)}, where the first and last elements
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in this set correspond to the cases where the group identified as multidimensionally poor
includes those deprived in all the dimensions and those deprived in any dimension, respec-
tively. Note that because we are only considering identification rules satisfying the property
of poverty consistency, any γ ∈ � must always include the group of those deprived in
all dimensions (O1,2,...,D). Then, for instance, γ (W, 1) = (O1,2) for all W is the actual
poverty set corresponding to the intersection approach to poverty identification. Likewise,
γ (W, k) = (O1,2

⋃
O1) for all W and k such that: w2 < k ≤ w1; and so forth. That is,

the actual poverty set depends on the threshold k and the vector of dimensional weights W

which determines the score cs(W) of the different groups Os .
We define �(γ ) as the proportion of the population belonging in γ , which can be

expressed as follows:

�(γ ) = 1

N

∑

Os⊂ γ

|Os | =
∑

Os⊂ γ

Hs, (5)

For any γ ∈ �, the headcount ratio �(γ ) can be expressed as the sum of the subset
headcount ratios of the sets Os included in γ .

For any γ ∈ �, let γd ⊂ γ denote the subset of the multidimensionally poor in
γ who are also deprived in dimension d . For instance, for D = 2, the sets γ1 and γ2
associated to γ = (O1,2

⋃
O1

⋃
O2) are given by γ1 = (O1,2

⋃
O1) and γ2 =

(O1,2
⋃

O2). For γ = (O1,2
⋃

O1) the sets are γ1 = (O1,2
⋃

O1) and γ2 = (O1,2). For
any γ ∈ � it is easy to show that γ = ⋃D

d=1 γd . Let �d denote the set of all γd that can
be part of a multidimensional poverty set γ . In the case of D = 2, the sets �1 and �2 have
only two elements and are given by �1 = {(O1,2), (O1,2

⋃
O1)} and �2 = {(O1,2), (O1,2⋃

O2)}. The proportion of the population belonging in γd is given by the following
expression:

�(γd) = 1

N

∑

Os⊂ γd

|Os | =
∑

Os⊂ γd

Hs, (6)

It is important to note that for any number of dimensions D:
∑D

d=1 dim(�d) ≤ dim(�).
The sets � and �d will play a key role in the new dominance conditions and they will be
discussed in detail in the next subsection.

3.2 Necessary and Sufficient Conditions

Let �A(γ ) and �B(γ ) denote the proportions of the population belonging in the set γ in A

and B, respectively. The following condition is both necessary and sufficient to guarantee
unambiguous poverty orderings within the class of measures P1:

Condition 3 The following three statements are equivalent:

1. P(C(YA,W), k) ≤ P(C(YB,W), k) for all P ∈ P1, all poverty thresholds k ∈ (0, 1]
and all weighting vectors, W .

2. H(C(YA,W), k) ≤ H(C(YB,W), k) for all poverty thresholds k ∈ (0, 1] and all
weighting vectors, W .

3. �A(γ ) ≤ �B(γ ) for all γ ∈ �.
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Proof The equivalence between statements (1) and (2) follows immediately from condition
(1). To complete the proof we show the equivalence between statements 2 and 3.

To prove the sufficiency of the condition, note that the multidimensional headcount ratio
H can be expressed in terms of the number of people in the groups Os who are deemed
poor for a particular combination of W and k, as per expression 7:

H(C(Y,W), k) = 1

N

N∑

n=1

I(cn(W) ≥ k) = 1

N

∑

s∈S(D)

I(cs(W) ≥ k)|Os |

=
∑

Os⊂ γ (W,k)

Hs = �(γ (W, k)). (7)

Now note that, for any given D, there is only a finite number of potential poverty sets, γ ,
because these sets are unions of 2D − 1 disjoint sets Os . Hence the number of γ sets only
depends on D; i.e. it is independent of W or k. By contrast, the actual observed poverty
set, γ (W, k), depends on W and k. Therefore, by Eq. 7 we know that even though W and
k are continuous variables, H(C(Y, W), k) can only take a finite number of values (for
a given Y ) from a vector of the proportions of the population in each potential poverty
set γ .

Then, by definition, if H(C(YA, W), k) ≤ H(C(YB,W), k) for all poverty thresholds
k ∈ (0, 1] and all weighting vectors,W , then the proportion of people in all potential poverty
sets is never higher in A versus B. This is exactly what is meant by the expression �A(γ ) ≤
�B(γ ) for all γ ∈ �.

To prove the necessity, let’s assume there is a weighting vector W ′ and poverty thresh-
old k′ such that: H(C(YA,W ′), k′) > H(C(YB, W ′), k′). Then, by Eq. 7 we would get:
�A(γ (W ′, k′)) = H(C(YA, W ′), k′) > H(C(YB, W ′), k′) = �B(γ (W ′, k′)).

Condition (3) implies that dominance within the class P1 can be evaluated by comparing
the headcounts ratios of all potential poverty sets, �(γ ). Essentially, condition (3) trans-
forms the problem of assessing the robustness of poverty comparisons to infinite alternatives
(since W and k are continuous and the class P1 is not finite) into a much simpler evaluation
of a finite number of headcount ratio comparisons based on �(γ ).

The following result establishes the necessary and sufficient conditions for unambiguous
poverty orderings within the class P2:

Condition 4 The following three statements are equivalent:

1. P(C(YA,W), k) ≤ P(C(YB,W), k) for all P ∈ P2, all poverty thresholds k ∈ (0, 1]
and all weighting vectors, W .

2. M(C(YA, W), k) ≤ M(C(YB, W), k) for all poverty thresholds k ∈ (0, 1] and all
weighting vectors, W .

3. �A(γd) ≤ �B(γd) for all γd ∈ �d and d = 1, ...,D.

Proof The equivalence between statements (1) and (2) follows immediately from condition
(2). We complete the proof by demonstrating the equivalence between statements (2) and
(3). For this latter purpose, note first that, for a given combination of weights and multidi-
mensional cut-off, the adjusted headcount ratio,M , can be expressed as the weighted sum of
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the relative frequencies of the sets γd , i.e. �(γd), included in the set of multidimensionally
poor γ associated to that particular combination of k and W :

Let γd(W, k), i.e. the set of people for whom cn(W) ≥ k and ynd = 1, be a subset of
γ (W, k). Then:

M(C(Y, W), k) = 1

N

N∑

n=1

I(cn(W) ≥ k)cn(W) = 1

N

N∑

n=1

I(cn(W) ≥ k)

D∑

d=1

wdynd

=
D∑

d=1

wd�(γd(W, k)), (8)

where γ (W, k) = ⋃D
d=1 γd(W, k). Based on Eq. 8, the difference in adjusted headcount

ratios can then be expressed as:

M(C(YA, W), k) − M(C(YB, W), k) =
D∑

d=1

wd [�A(γd(W, k)) − �B(γd(W, k))]. (9)

Now, just as in the case of γ , the sets γd stem from unions of sets Os , of which there are
only 2D −1. Therefore the number of sets γd is also finite, dependent on D and independent
of W and k; whereas the actual observed sets, γd(W, k) for d = 1, 2, ...,D, depend on W

and k.
Therefore, if �A(γd) − �B(γd) ≤ 0 for every γd ∈ �d and all �1, �2,..., �D , then, by

Eq. 9, it must be the case that [M(C(YA,W), k) − M(C(YB,W), k)] ≤ 0 for all weights,
W , and poverty thresholds, k, which proves the sufficiency part of the equivalence.

Now assume that, for some γd , [�A(γd) − �B(γd)] > 0. Then we could find a
combination of W and k (e.g. k = 0 with wd → 1), such that [M(C(YA,W), k) −
M(C(YB,W), k)] > 0. But this contradicts statement (2). Therefore it must be true that
�A(γd) is not greater than �B(γd) for all γd ∈ �d and d = 1, ...,D.

The following remark establishes the link between conditions (3) and (4):

Remark 2 If H(C(YA,W), k) ≤ H(C(YB, W), k) for all k ∈ (0, 1] and any vector of
weights, W , then M(C(YA, W), k) ≤ M(C(YB,W), k) for all k ∈ (0, 1] and any weighting
vector, W .

Proof This remark is an extension of remark (1) to any possible vector of weights. From
condition (3) we know that H(C(YA,W), k) ≤ H(C(YB,W), k) for all k ∈ (0, 1] and any
vector of weights, W , implies that P(C(YA,W), k) ≤ P(C(YB,W), k) for all P ∈ P1, for
any weighting vector, W , and poverty threshold k ∈ (0, 1]. Additionally, M is a member
of the class P1. Therefore M(C(YA,W), k) ≤ M(C(YB,W), k) for all k ∈ (0, 1] and any
weighting vector, W .

Remark 2 implies the existence of dominance for the class of poverty measures P2 ⊂ P1
whenever there exists dominance within the class P1 of poverty measures.

3.3 General Sufficient Conditions

Conditions (3) and (4) provide a simple way to ascertain the existence of dominance in
poverty comparisons based on counting measures. However, testing those conditions may
require comparing a large number of statistics. In fact, as we show in the next section,

F. Azpitarte et al.350



the number of elements in the sets � and �d increases exponentially with the number of
dimensions involved in the poverty comparisons. With that concern in mind, we derive a
set of useful conditions which are much easier to implement in practice, especially when
D is relatively large, as they require a much smaller number of statistics. Firstly, we derive
a sufficient condition whose fulfillment guarantees a robust pairwise poverty ordering for
any poverty measures in the most general classes P1 and P2, as well as, the measures H

and M . Secondly, in the next subsection, we introduce two necessary conditions whose
violation implies that no unambiguous poverty ordering can be established when comparing
two populations.

Let HA
s and HB

s denote the subset headcounts for s ∈ S(D) in populations A and B,
respectively. The sufficient condition is the following:

Condition 5 If HA
s ≤ HB

s for all s ∈ S(D) , then P(C(YA,W), k) ≤ P(C(YB,W), k) for
all P ∈ P1, all poverty thresholds k ∈ (0, 1] and all weighting vectors W .

Proof From equation (5) we know that, for any γ ∈ �, the measure �(γ ) can be expressed
as a sum of subset headcounts. Therefore if all the subset headcounts of A are never higher
than those of B, then the value of �A(γ ) will never be higher than �B(γ ) for any γ ∈ �.
From condition (3) this implies that P(C(YA, W), k) ≤ P(C(YB,W), k) for all P ∈ P1,
any poverty cut-off, k, and weighting vector, W .

Note that this sufficient condition applies to the M index and the class P2, both included
in P1. It also applies to the index H . This is because, by conditions (3), dominance within
the class P1 implies dominance within the class P2, as well as the poverty index H . Being
just sufficient, a violation of condition (5) does not rule out poverty dominance of A over B.
However, as shown in the necessary condition (6) below, if condition (5) is violated because
HA

(1,2,...,D) > HB
(1,2,...,D), then we can actually conclude that A does not dominate B. Hence

a combination of condition (5) and the necessary conditions of the next subsection, can go
a long way in ascertaining pairwise poverty dominance (or lack thereof) when D is large.

3.4 General Necessary Conditions

We derive two useful necessary conditions which are easy to implement, as they require one
and D statistics, respectively. The first of these necessary conditions is the following:

Condition 6 If P(C(YA,W), k) ≤ P(C(YB, W), k) for all P ∈ P1, all poverty thresholds,
k, and weighting vectors, W , then: HA

(1,2,...,D) ≤ HB
(1,2,...,D).

Proof From condition (3) we know that, when P(C(YA, W), k) ≤ P(C(YB,W), k) for
all W and k, then �A(γ ) ≤ �B(γ ) for all γ ∈ �, which implies that �A(O1,2,...,D) =
HA

(1,2,...,D) ≤ HB
(1,2,...,D) = �B(O1,2,...,D).

Condition (6) states that whenever multidimensional poverty in population A is lower
than in population B for every possible weighting vector, W , and identification cut-off, k,
then it must be the case that the percentage of people deprived in every dimension in A (i.e.
following an intersection approach to poverty identification) cannot be higher than the per-
centage of people from B in the same situation. This is a simple but powerful condition: it
basically means that we can rule out the possibility of dominance between two populations
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by simply comparing the percentage of people deprived in all dimensions in each popula-
tion. Note that this condition applies to multidimensional headcount index, H , as well as
the measures in the class P1 (including the indices in the class P2 and the index M).

The second necessary condition is:

Condition 7 If P(C(YA,W), k) ≤ P(C(YB, W), k) for all P ∈ P1, all poverty thresholds,
k, and weighting vectors, W , then: UA

d ≤ UB
d for all d ∈ {1, 2, ...,D}.

Proof Note that for all d ∈ {1, 2, ...,D}, it is easy to show that the set including all
those individuals deprived in dimension d is one of the potential poverty sets γ included
in �.

Let Q1 be the set of people deprived in dimension 1. Then U1 is the proportion of people
in Q1. Also, by definition, Q1 = (O1

⋃
O1,2

⋃
O1,3

⋃
...

⋃
O1,...,D), which means that

Q1 ∈ �, i.e. Q1 is a potential poverty set (for example, if we choose W and k such that:∑D
d=2 wd < k < w1 then Q1 will be the actual observed poverty set). Likewise, all the Qd

for d = 1, 2, ...,D are potential poverty sets (i.e. elements of the set �).
Then, from condition (3) we know that, when P(C(YA,W), k) ≤ P(C(YB,W), k) for

all W and k, then �A(γ ) ≤ �B(γ ) for all γ ∈ �, which implies UA
d ≤ UB

d for all
d ∈ {1, 2, ...,D}.

Condition (7) states that if poverty in population A is unambiguously lower than in B

then it must be the case that all the uncensored deprivation headcount ratios in A cannot
be higher than their respective counterparts from B. This is, again, a simple but powerful
condition: without comparing the relative frequencies of all elements in the sets � and �d , if
there exists just one variable d for which UA

d > UB
d , then we can rule out the possibility that

A unambiguously dominates B according to any poverty measure in P1 (including those in
P2 and M) and the multidimensional headcount H .

4 Application of the NewDominance Conditions

The application of the dominance conditions derived in the previous section requires two
things from the analyst: the set of poverty statistics (M , H , Hs , �, �d , Ud ) relevant to
each condition; and a testing framework to evaluate whether differences in those statistics
between populations are statistically significant. In this section we address these two issues.

4.1 Number of Statistics Needed to Evaluate Dominance

The evaluation of the dominance conditions requires the computation and comparison of a
number of statistics which varies with the number of welfare dimensions. Table 1 shows the
number of statistics involved in conditions 1-7 for values of D from 2 to 5. In general, con-
ditions (1) and (2) involve a small number of statistics vis-a-vis the conditions applicable to
the case of variable weights, i.e. (3) and (4). This is not surprising as the first two conditions
permit to assert poverty dominance within the classes P1 and P2 only for a given vector
of dimensional weights. Thus, for any vector of weights, conditions (1) and (2) require the
comparison of the indices H(C(Y, W), k) and M(C(Y,W), k) for all relevant values of the
threshold k. These values depend on the specific vector of weights and it is easy to show
that the number of relevant values is never greater than

∑D
i=0

(
D
i

) = 2D .
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Table 1 Number of statistics
involved in each dominance
condition

Statistic D = 2 D = 3 D = 4 D = 5

Fixed weights

Necessary & sufficient

Condition 1 H(C, k) 4 8 16 32

Condition 2 M(C, k) 4 8 16 32

Variable weights

Necessary & sufficient

Condition 3 �(γ ) 4 18 166 7,579

Condition 4 �(γd) 3 10 63 690

Sufficient

Condition 5 Hs 3 7 15 31

Necessary

Condition 6 H(1,2,...,D) 1 1 1 1

Condition 7 Ud 2 3 4 5

The necessary and sufficient conditions (3) and (4) are the most demanding of all con-
ditions since they require the comparison of all the sets γ and γd belonging to the sets �

and �d , respectively. While derivation of these sets is trivial when D is small, it gets more
complex as the number of dimensions increases. This is because the number of elements in
� and �d grows fast with D as the combinations of groups Os that can make up the set of
the multidimensionally poor rise exponentially with the number of dimensions.

In order to derive the sets � and �d we developed two search algorithms that identify the
combinations of Os that can form any plausible poverty set γ and their dimensional com-
ponents γd .6 The key to the identification of the potential poverty sets in these algorithms is
the consistency property of the poverty identification function ρk (Lasso de la Vega 2010).
This property requires that, for any two sets Os and Os′ with cs ≤ cs′

, if the set Os belongs
in a given poverty set γ then that must also be the case of the set Os′ . Thus, for instance, if
a poverty set γ includes the group O1 comprising those deprived only in dimension 1, then
it must also include all those sets Os with larger cs′

involving combinations of deprivation
in dimension 1 and any other dimensions. For instance, in the case of D = 3, if O1 belongs
to any set γ then that must also be the case of the groups O1,2, O1,3, and O1,2,3, including
those deprived in dimensions 1 and 2; 1 and 3; and 1, 2, and 3; respectively.

As Table 1 shows, the number of potential poverty sets grows more than exponentially
for conditions (3) and (4); with the number of dimensions jumping from 18 when D = 3 to
7,579 when D = 5, in the case of condition (3). Although smaller, the number of sets γd

required to evaluate condition (4) also grows significantly fast, with D reaching 690 when
D = 5.

The sufficient condition (5) involves the comparison of the subset headcounts Hs for
all combinations of dimensions s in the power set S(D). The number of elements in this
set, excluding the empty set, is equal to 2D − 1 which gives the number of statistics to be
compared. Finally the necessary conditions (6) and (7) are the easiest to evaluate as they
require, respectively, the comparison of the percentage of people deprived in all dimensions,

6The algorithms gamma and gammad are coded in Stata version 14.0 and are included as part of the Stata
package Domcount specifically developed to empirically implement the new dominance conditions. The
package is available at https://drive.google.com/file/d/0B4MaiGQpsjKqeUlvQWJhUWpJbk0/view.
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and the uncensored deprivation headcounts Ud reporting the proportion of people deprived
in each of the dimensions.

In practice, the evaluation of dominance conditions (3), (4), and (5) may require the
comparison of fewer statistics than those listed in Table 1. This occurs whenever any of
the sets involved in a given dominance condition (e.g., γ , γd , Os) are empty in the pair of
compared distributions simultaneously.7 As it happens, in this paper’s empirical illustrations
none of the sets was empty which means that all statistics had to be compared.

4.2 A General Testing Framework

To test the dominance conditions we propose an intersection-union, multiple comparison
test which is convenient for its simplicity, generally low size, and decent power for pair-
wise population comparisons (Dardanoni and Forcina 1999; Hasler 2007). Evaluating each
of the dominance conditions requires computing and comparing R ≥ 1 sample statistics
in the forms of sample means — e.g. the indices H and M for all relevant values of k in
conditions(1) and (2) or the probabilities �(γ ) in condition (3) —which are asymptotically
standard-normally distributed (i.e. the assumptions of the central limit theorem hold).

Let z(r) = XA(r)−XB(r)

SE[XA(r)−XB(r)] , where XA(r) is a sample mean for A (e.g. the index M

for a given value of k) and SE[XA(r) − XB(r)] is the standard error of the difference
XA(r) − XB(r). We propose the following null and alternative hypotheses:

Ho : z(r) = 0 for all r = 1, 2, ..., R

Ha : z(r) < 0 for all r = 1, 2, ..., R

When testing these hypotheses we reject the null in favour of the alternative if
max{z(1), z(2), ..., z(R)} < zα < 0, where zα is a left-tail critical value, and α is both the
size of a single-comparison test as well as the overall level of significance of the multiple-
comparison test. It is not difficult to show that, generally, the overall size of the test will be
lower than α. Given the nature of the conditions, if we reject the null in favour of the alter-
native hypothesis then A dominates B in the sense of being deemed less poor for a broad
class of poverty measurement choices (which depends on the condition in question).

The formula of the specific z-statistics varies across conditions as different conditions
look at different aspects of the distribution of deprivations. Below we present the statistics
used for each condition.

4.2.1 Test of conditions 1 and 2

For condition (1) we use z-statistics of the form:

z(k) = HA(C, k) − HB(C, k)
√

σ 2
HA(C,k)

NA + σ 2
HB(C,k)

NB

, (10)

where the expression for the variance is:

σ 2
H(C,k) = H(C, k)[1 − H(C, k)]. (11)

7We thank an anonymous referee for pointing this out.
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For condition (2) we use the same statistic but replacing H(C, k) with M(C, k), and noting
that the variance in this case is given by:

σ 2
M(C,k) = 1

N

N∑

n=1

[cn]2I(cn ≥ k) − [M(C, k)]2 (12)

4.2.2 Test of conditions 3 and 4

These conditions require the comparison of the measure of the sets γ ∈ � and γd ∈ �d . To
this purpose, for condition (3) we consider statistics of the form:

z(γ ) = �A(γ ) − �B(γ )
√

σ 2
�A(γ )

NA + σ 2
�B(γ )

NB

, (13)

where �(γ ) is given by expression (5) and the variances is:

σ 2
�(γ ) = �(γ )[1 − �(γ )]. (14)

For condition (4) the formulae are the same but simply replacing �(γ ) with �(γd).

4.2.3 Test of condition 5

This condition compares the subset headcounts Hs for all combinations of dimensions s in
the power set S(D). We use the following statistic:

z(s) = HA
s − HB

s√
σ 2

HA
s

NA +
σ 2

HB
s

NB

, (15)

where Hs is given by Eq. (4) and the variance:

σ 2
Hs

= Hs[1 − Hs]. (16)

4.2.4 Test of condition 6 and 7

For the necessary condition (7) we use z-statistics of the form:

zd = UA
d − UB

d√
σ 2

UA
d

NA +
σ 2

UB
d

NB

, (17)

where the variance is given by the expression:

σ 2
Ud

= Ud [1 − Ud ]. (18)

These formulae can also be used for condition (6) but noting that evaluating this condition
requires only the comparison of the percentage of people deprived in all possible dimensions
which is given by H1,2,...,D .
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5 Empirical illustrations

5.1 Poverty in Australia in the 2000s

We use the new dominance results to evaluate the robustness of poverty trends in Australia
over the first decade of the 21st century. This was a period of strong income growth in
which Australia outperformed most developed countries. This was particularly true during
the period 2001-2007, where incomes grew at an average rate above 3 per cent largely driven
by the mining boom and favourable trends in commodity prices. Although to a lesser extend
than the US and European countries, Australia’s economic performance was also affected
by the Global Financial Crisis (GFC) as reflected in the rapid increase in unemployment
between April 2008 and June 2009 (from 4.1 to 5.7 per cent). This negative shock, together
with the declining mining boom, led to slower income and employment growth in the period
2008-2010 relative to the pre-GFC years.

We evaluate poverty trends in Australia using data from the Household Income and
Labour Dynamics in Australia (HILDA) survey. This is a nationally representative survey
initiated in 2001, which collects detailed socio-economic information from more than 7,000
households and their members every year. For the illustration we consider three indicators
of economic disadvantage: a binary income poverty indicator equal to 1 if the household’s
annual disposable income is below 60 per cent of the median equivalent income; an asset-
poverty indicator which is equal to 1 when the household lacks enough assets to sustain
its members above the income poverty line for three months; and a measure of financial
hardship equal to 1 whenever the household reports that at least three of the following cir-
cumstances occurred along the financial year: could not pay electricity, gas or telephone
bills on time; could not pay the mortgage or rent on time; pawned or sold something; went
without meals; was unable to heat the home; asked for financial help from family, friends,
or community organizations. For the income and wealth poverty indicators, the income and
wealth variables were adjusted by household size using the OECD modified equivalence
scale that assigns a value of 1 to the first adult, 0.5 to subsequent adults in the household,
and 0.3 to every member under the age of 15. The unit of analysis for poverty comparisons is
the individual and each individual is assigned the value of the poverty indicators computed
at the household level.

Table 2 shows the prevalence of the poverty indicators for the years 2002, 2006, and
2010. The levels of economic deprivation declined substantially during the years of strong
economic growth that preceded the GFC. Income and wealth poverty rates fell, respectively,
about 2 and 1.4 percentage points from 2002 to 2006. The income and wealth gains led to
a decline in the proportion of people experiencing financial hardship which, by 2006, was
more than 1.7 percentage points below that in 2002. By contrast, economic disadvantage
increased in the years following the GFC. By 2010 the income and wealth poverty rates
were above those of 2006 but still below the levels observed at the start of the decade.

Figure 1 shows the multidimensional headcount H(k) (horizontal axis) and the adjusted
headcount ratio M(k) (vertical axis) for the years 2002, 2006, and 2010 assuming equal

Table 2 Poverty indicators in
Australia(%) Year Income Wealth Financial hardship

2002 18.47 8.36 6.65

2006 16.55 6.97 4.93

2010 18.21 7.39 5.89
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Fig. 1 M(k) and H(k) indices (equal weights)

weights for the three dimensions. Estimates of the indices are displayed for each relevant
values of the poverty threshold k (1, 2/3, and 1/3, from the origin outward). A point in
the graph thus represents the vector (H, M) for a year and poverty cut-off, such that, for
a given value of k, points located further away from the origin indicate higher levels of
multidimensional poverty. Inspection of the figure reveals a substantial decline in poverty
in the years preceding the GFC. Our estimates of M and H for 2002 are larger than those
for 2006 for any relevant value of k. This positive trend was partially reversed in the years
following the GFC. Indeed, poverty estimates for 2010 are greater or equal than those in
2006 for any poverty cut-off. Despite this change, poverty levels by 2010 were still lower
than those at the start of the decade.

To evaluate whether the poverty orderings based on the H(k) and M(k) indices for the
case of equal weights coincide with those of any measure in the classes P1 and P2 we apply
the dominance conditions (1) and (2). Tables 3 and 4 present the statistics required to test
each of those conditions.8 For this and all subsequent tests, we present the results for all
pairwise comparisons such that the statistic in each cell serves to test whether the year in
the column dominates (i.e., has less poverty than) the year in the row. For conditions (1)
and (2), the statistics in the tables correspond to the maximum value of the z(k) statistics
(k = 1, 2/3, 1/3) relevant for each pairwise comparison.9 When comparing 2002 with
2006, we find statistical evidence to reject the hypothesis of equal poverty in favour of the
alternative whereby poverty declined between the two years. Thus, under the assumption of

8These statistics, as well as those used to test the other conditions, were computed using the Stata
program robust included in the Stata package Domcount available at https://drive.google.com/file/d/
0B4MaiGQpsjKqeUlvQWJhUWpJbk0/view.
9Note that the statistics in the column for 2006 are the same for conditions (1) and (2). This is because, for
the statistics based on both the M and H measures, the maximum difference between 2006 and the other two
years occurs for k = 1, and we know that H(1) = M(1).
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Table 3 Test of condition 1
(maximum statistics).
Ho : H(C(YA,W), k) =
H(C(YB,W), k) for all k versus
Ha : H(C(YA,W), k) <

H(C(YB,W), k) for all k

�
�B

A
2002 2006 2010

2002 0.00 −4.70 −1.14

2006 5.64 0.00 3.54

2010 3.19 −1.49 0.00

equal weights, using standard significance levels we can conclude that poverty in 2006 was
lower than in 2002 for any poverty index in the class P1. Based on our estimates, we cannot
unambiguously assert that poverty levels in 2010 were different to those in 2006. However,
the results for 2010 and 2002 show that the level of poverty in 2010 was still below that
in 2002, although this results holds only for the class P2 of poverty measures as we fail to
reject the null hypothesis for condition (1).

These dominance results apply only to the case of equal weights. Nothing a priori ensures
that they will hold under different weighting schemes. Can we unambiguously claim that
poverty in 2006, or 2010, was lower than in 2002 regardless of the choice of dimensional
weights? In order to answer this question we now turn to the new poverty dominance
conditions.

We start the analysis looking at the necessary conditions as these allow us to rule out the
existence of dominance by checking only a limited number of conditions. Table 5 shows the
statistics to test the necessary condition (7) which involves the comparison of the uncen-
sored deprivation headcount Ud of the different dimensions. The value reported in each cell
corresponds to the maximum value of the zd statistics (d = 1, 2, 3) relevant for each pair-
wise comparison. A sufficiently large negative value of the statistic is taken as evidence
against the null hypothesis and the failure to reject this hypothesis means that we can rule
out the existence of dominance between the compared years. Interestingly, our results rule
out the existence of dominance for all pairwise comparisons except that between 2006 and
2002. Thus, we cannot establish any unanimous ranking for any of the poverty comparisons
involving 2002 versus 2010 and 2006 versus 2010. This result illustrates the sensitivity of
multidimensional poverty orderings based on counting poverty measures to the choice of
dimensional weights and poverty cut-off.

In order to evaluate whether poverty in 2006 was unambiguously lower than in 2002 we
use the necessary and sufficient conditions. Table 6 shows the statistics required to test the
sufficient condition (5). This condition involves the comparison of the subset headcounts
and the rejection of the null hypothesis implies that the sufficient condition for dominance is
satisfied. Using standard levels of significance, we find no statistically significant evidence
to reject the null in any pairwise comparison. In particular, the value of the statistic for
the comparison of 2006 against 2002 is 0.07, which implies that the dominance of 2006
over 2002 cannot be unambiguously asserted using the sufficient condition. However, this
result does not rule out the possibility of dominance, since condition (5) is sufficient but not
necessary.

Table 4 Test of condition 2
(maximum statistics).
Ho : M(C(YA,W), k) =
M(C(YB,W), k) for all k versus
Ha : M(C(YA,W), k) <

M(C(YB,W), k) for all k

�
�B

A
2002 2006 2010

2002 0.00 −4.70 −2.41

2006 6.30 0.00 3.86

2010 3.19 −1.49 0.00
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Table 5 Test of necessary
condition 7 (maximum statistics).
Ho : UA

d = UB
d for all

d ∈ [1, 2, ...,D] versus
Ha : UA

d < UB
d for all

d ∈ [1, 2, ...,D]

�
�B

A
2002 2006 2010

2002 0.00 −3.82 −0.50

2006 5.60 0.00 3.26

2010 2.69 −1.22 0.00

Table 7 shows the statistics to evaluate the necessary and sufficient condition (3). Eval-
uating this condition requires the comparison of the measure of all poverty sets γ ∈ �.
Interestingly, the result for the comparison of 2006 and 2002 suggests there is enough evi-
dence to reject the null and therefore to assert that poverty by 2006 was unambiguously
lower than in 2002 for any poverty measure in P1 (including those in P2 and the index M)
and the measure H , and any choice of dimensional weights and poverty cut-off.

5.2 Inter-provincial Poverty Comparisons in Peru

For our second illustration we consider multidimensional poverty comparisons across the 25
provinces of Peru, known as departments. According to a wide dashboard of development
indicators, the coastal departments (Tacna, Moquegua, Arequipa, Ica, Lima, Callao, Ancash,
La Libertad, Lambayeque, Piura, and Tumbes) feature lower deprivation headcounts vis-a-
vis highland departments (Puno, Cusco, Apurimac, Ayacucho, Huancavelica, Junin, Pasco,
Huanuco, and Cajamarca) and rainforest departments (Madre de Dios, Ucayali, Loreto, San
Martin, and Amazonas). Particularly, rainforest and southern highland departments (Puno,
Cusco, Apurimac, Ayacucho, and Huancavelica) are known for having the most acute levels
of material and non-material deprivation.

For the empirical exercise we use data from the 2013 Peruvian National Household
Surveys (ENAHO). Our multidimensional poverty measure relies on four dimensions, and
on the household as the unit of analysis. Firstly, household education, comprising two indi-
cators: (1) school delay, which is equal to one if there is a household member in school age
who is delayed by at least one year, and (2) incomplete adult primary, which is equal to one
if the household head or his/her partner has not completed primary education. The house-
hold is considered deprived in education if any of these indicators takes the value of one.

The second dimension considers two indicators on infrastructure dwelling conditions: (i)
overcrowding, which takes the value of one if the ratio of the number of household members
to the number of rooms in the house is larger than three; and (ii) inadequate construction
materials, which takes the value of one if the walls are made of straw or other (almost
certainly inferior) material, if the walls are made of stone and mud or wood combined with
soil floor, or if the house was constructed at an improvised location inadequate for human
inhabitation. The household is deprived in living conditions if any of the above indicators
takes the value of one.

The third dimension is access to services. The household is deemed deprived in this
dimension if any of the following indicators takes the value of one: (i) lack of electricity for

Table 6 Test of sufficient
condition 5 (maximum statistics).
Ho : HA

s = HB
s for all s ∈ S(D)

versus Ha : HA
s < HB

s for all
s ∈ S(D)

�
�B

A
2002 2006 2010

2002 0.00 0.07 1.05

2006 4.70 0.00 3.33

2010 3.19 0.29 0.00
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Table 7 Test of necessary and
sufficient condition 3 (maximum
statistics). Ho : �A(γ ) =
�B(γ ) for all γ ∈ � versus
Ha : �A(γ ) < �B(γ ) for all
γ ∈ �

�
�B

A
2002 2006 2010

2002 0.00 −3.45 −0.50

2006 6.79 0.00 4.27

2010 3.78 −0.50 0.00

lighting, (ii) lack of access to piped water, (iii) lack of access to sewerage or septic tank, and
(iv) lack of access to a telephone landline. The fourth dimension is household vulnerability
to dependency burdens. The household is deprived or vulnerable if household members who
are younger than 14 or older than 64 are three times or more as numerous as those members
who are between 14 and 64 years old (i.e. in working age).

We start the analysis looking at the ranking of regions assuming equal weights for
the four dimensions of poverty. Figure 2 shows the M and H measures for the Peruvian
departments for the relevant values of the poverty threshold k. Interestingly, there appear to

Fig. 2 M(k) and H(k) indices (equal weights). Note: AM=Amazonas, AN=Ancash, AP=Apurimac, AR=
Arequipa, AY=Ayacucho, CA=Cajamarca, CAL=Callao, CU=Cusco, HUA=Huancavelica, HU=Hunuco,
IC=Ica, JU= Junan, LL=La Libertad, LA=Lambayeque, LI=Lima, LO=Loreto, MD= Madred de Dios, MO=
Moquegua, PA=Pasco, PI=Piura, PU=Puno, SM=San Martin, TA=Tacna, TU=Tumbes, UC=Ucayali
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be three regional “poverty clusters”. The panels feature on their bottom left a cluster with
low values of H and M , made exclusively of coastal departments (Callao, Lima, Tacna,
Moquegua, Arequipa, Ica, La Libertad). Meanwhile, on the top right, we see a cluster
with high values of H and M made mainly of rainforest (Ucayali, Loreto, Madre de Dios,
Amazonas) and highland (Cajamarca, Huanuco, Huancavelica, Pasco, Ayacucho, Puno)
departments. The other departments appear with intermediate values of H and M . Naturally
the size of the bottom left cluster increases with the values of k.

We evaluate the robustness of poverty comparisons between Peruvian departments using
the new dominance results. In particular, we apply the dominance conditions (1) and (2) to
evaluate whether the poverty orderings based on the H(k) and M(k) indices for the case of
equal weights coincide with those of any measure in the classes P1 and P2. Furthermore,

Table 8 Poverty dominance between Peruvian departments, 2013

Equal weights Variable weights

Condition 1 Condition 2 Condition 3 Condition 4

DS DD DS DD DS DD DS DD

Amazonas 0 12 0 13 0 0 0 0

Ancash 4 0 5 0 0 0 0 0

Apurimac 1 0 3 0 0 0 0 0

Arequipa 11 0 11 0 0 0 0 0

Ayacucho 1 0 2 0 0 0 0 0

Cajamarca 0 0 0 0 0 0 0 0

Callao 5 0 5 0 0 0 0 0

Cusco 3 3 3 3 0 0 0 0

Huancavelica 1 0 3 0 0 0 0 0

Huanuco 1 3 1 3 0 2 0 2

Ica 2 1 2 1 0 0 0 0

Junin 2 2 2 2 0 1 0 1

La Libertad 9 0 9 0 1 0 1 0

Lambayeque 5 0 5 0 0 0 0 0

Lima 13 0 13 0 2 0 2 0

Loreto 0 9 0 12 0 0 0 0

Madre de Dios 1 3 1 3 0 0 0 0

Moquegua 4 0 4 0 0 0 0 0

Pasco 1 1 2 1 0 0 0 0

Piura 2 3 2 3 0 0 0 0

Puno 0 3 1 5 0 0 0 0

San Martin 0 8 0 8 0 0 0 0

Tacna 5 0 5 0 0 0 0 0

Tumbes 0 5 0 6 0 0 0 0

Ucayali 0 18 0 19 0 0 0 0

Total 71 71 79 79 3 3 3 3

Note: DS and DD indicate, for each condition, the number of comparisons (out of 24) in which each
department dominates and is dominated, respectively
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we assess the robustness of poverty orderings within those classes to changes in the dimen-
sional weights using the necessary and sufficient conditions (3) and (4). Table 8 presents
the dominance results. For each of the 25 departments, and for conditions (1) to (4), we
report the number of comparisons (out of a maximum of 24 per department) in which each
department dominates, and the number in which each department is dominated.10

Several results from Table 8 are noteworthy. Firstly, the probability of finding unambigu-
ous rankings of regions is remarkably low, even when dimensional weights are held constant
and equal across dimensions. Thus, only 71 of the 300 pairwise regional comparisons are
robust to changes in the individual poverty function and poverty cut-off when weights are
set equal across dimensions. This number slightly increases up to 79 when the narrower
class of poverty functions P2 is considered instead of P1. Inspection of the table reveals that
rainforest regions are in general the most dominated (i.e. have more poverty) of all regions.
The Amazonas and Ucayali departments appear to be the poorest ones as they are domi-
nated by 13 and 19 departments, respectively. In contrast, coastal regions such as Arequipa
and Lima are the most dominant (i.e. have less poverty) with the latter dominating up to 13
regions. Interestingly, the number of unambiguous poverty comparisons significantly drops
when weights are allowed to vary. In fact, only 3 of the 300 pairwise poverty comparisons
are found to be robust. This means that the vast majority of regions cannot be unambigu-
ously ranked in terms of multidimensional poverty as their comparison will depend on the
particular combination of poverty index, cut-off, and dimensional weights.

6 Concluding remarks

In this paper we sought to derive new dominance conditions to evaluate the sensitivity of
poverty orderings based on counting measures. Widely used to monitor poverty trends in
developed and developing countries, counting measures depend on a range of methodolog-
ical choices including dimensional weights, poverty functions, and poverty cut-offs. As the
empirical evidence presented in this paper clearly shows, poverty comparisons based on
counting measures are highly sensitive to those choices which calls for new methods to
systematically evaluate the robustness of those comparisons.

Poverty analyses based on counting measures typically test the robustness of counting
poverty comparisons by recalculating the indices with alternative choices of parameters
(e.g. dimensional weights). In principle, we do not see any inconvenient with that approach,
as long as those alternative parameters are in themselves meaningful to the researcher. The
problem, we argue, is to use such a limited and arbitrary approach to make general robust-
ness statements regarding poverty comparisons, i.e. in relation to both tested and untested
sets of parameters. In that sense, we state that our dominance approach is superior: it enables
us to examine robustness over a vast domain of alternative parameter values and choices of
functional forms, relying on a finite and tractable battery of testable conditions.

Building on the results in Lasso de la Vega (2010), we propose fundamental conditions
whose fulfilment is both necessary and sufficient to ensure that poverty comparisons are
robust to changes in individual poverty functions, dimensional weights and poverty cut-off.
However, since these conditions may be cumbersome to implement when the number of
variables is large,11 we also derived two useful conditions whose fulfillment is necessary,

10The statistics used to test those conditions are not reported here for the sake of space but are available upon
request.
11Even though we have also rendered a ready-to-use algorithm available to Stata users.
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but insufficient, for robust first- and second-order poverty comparisons. While these condi-
tions are insufficient, they are fewer in number and much easier to compute. Furthermore,
when they are not met we can immediately rule out the robustness of poverty orderings.
We also provided a useful sufficient condition whose fulfillment guarantees the existence
of poverty dominance for a broad class of poverty measures and any choice of dimensional
weights and poverty cut-off. Though this condition is not necessary (hence its violation
would not preclude the existence of a dominance relationship), it also bears the advantage of
a much easier implementation vis-a-vis the set of jointly necessary and sufficient conditions.

Moreover, above and beyond the conditions derived in this paper, it is also possible to
derive sets of necessary and sufficient conditions which guarantee robust poverty compar-
isons for a restricted subset of weights, as well as for broader sets of weights (e.g. admitting
zero values). Likewise further useful necessary conditions are derivable if we opt to restrict
the set of admissible weighting vectors, or the domain of k cut-offs, or both jointly. Some
examples are available upon request. The development of general methods for the deriva-
tion of conditions whose fulfillment guarantees partial robustness, i.e. full robustness only
to combinations of subsets of parameters (e.g. joint restrictions on weights and cut-offs,
etc.) is left for future research.

Finally, the empirical application to Australia and Peru illustrated the usefulness of the
new robustness conditions. In the Australian case, we learned that the rapid expansion in
the early 2000s led a to significant reduction in poverty. Based on our dominance results,
we can claim that poverty in Australia by 2006 was unambiguously lower than in 2002 for a
broad range of poverty measures and this comparison is robust to the choice of dimensional
weights and poverty cut-off. By contrast, the apparent trend of poverty increasing from
2006 to 2010 but leading to overall lower poverty levels compared to 2002, did not prove
robust to every conceivable combination of the aforementioned parameters. Meanwhile, in
the Peruvian case, we learned that only a handful of cross-province comparisons pass the
full-robustness test when we allow dimensional weights and poverty cut-offs to vary freely.
In other words, the seemingly robust results showcasing rainforest regions as poorer than
most of the rest of the country and Lima and Arequipa less poor than most of the rest, cru-
cially depended on a particular choice of dimensional weights. Hence, the poverty reduction
experience in Australia between 2002 and 2006, together with the cross-province compar-
isons in Peru in 2013, provide two extreme empirical examples of the relative degrees of
robustness that one could, in theory, expect when performing poverty comparisons with
multidimensional counting measures.
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