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a b s t r a c t

This paper reports on a study to assess the feasibility of creating an intuitive environmental sound mon-
itoring system that can be used on-location and return meaningful measurements beyond the standard
LAeq. An iOS app was created using Machine Learning (ML) and Augmented Reality (AR) in conjunction
with the Sennheiser AMBEO Smart Headset in order to test this. The app returns readings indicating
the human, natural and mechanical sound content of the local acoustic scene, and implements four vir-
tual sound objects which the user can place in the scene to observe their effect on the readings. Testing at
various types of urban locations indicates that the app returns meaningful ratings for natural and
mechanical sound, though the pattern of variation in the ratings for human sound is less clear. Adding
the virtual objects largely has no significant effect aside from the car object, which significantly increases
mechanical ratings. Results indicate that using ML to provide meaningful on-location sound monitoring is
feasible, though the performance of the app developed could be improved given additional calibration.
� 2019 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Environmental sound and the soundscape approach

In the field of environmental sound monitoring, the prevailing
measurement is the LAeq, which indicates the average A-weighted
Sound Pressure Level (SPL) dose received at a measurement loca-
tion over a period of time [1]. This is simple to understand but does
not give any real detail on the content of the sound scene, which
can be key in its impact on those experiencing it. Measuring LAeq
creates a flattening effect, in that all sounds are considered to have
the same value (or lack thereof). This has been termed the ‘‘noise
approach” [2], where sound is managed by suppression – reducing
absolute levels regardless of source – and is the model followed by
the vast majority of legislation covering the issue [3].

More recently, however, drawing inspiration fromMurray Scha-
fer’s seminal work The Soundscape [4], an alternative known as the
‘‘soundscape approach” has been emerging. The term ‘soundscape’
is defined in the ISO12913 standard as the ‘‘acoustic environment
as perceived or experienced and/or understood by a person or peo-
ple, in context” [5]. The key to this approach is the idea that human
reaction to environmental sound is not uniform, and that the con-
tent of the sound sources have a significant effect on this. This
leads to the conclusion that some environmental sound should

be ‘‘perceived as a resource” rather than ‘‘managed as a waste”
[2]. The soundscape approach therefore requires sound sources
to be differentiated in order to be effective, and this is perhaps
why it has not seen more widespread adoption. Whilst LAeq is sim-
ple to measure using off-the-shelf devices, gathering data for the
soundscape approach has typically involved in situ soundwalks
[1,6] or extensive listening tests [7,8], both of which are time-
consuming, expensive, and difficult to reliably replicate.

1.2. Sound monitoring using smartphones

Modern mobile smartphone devices have provided a new ave-
nue for environmental sound monitoring, and many apps have
been created for this purpose. Most of these apps reflect the noise
approach, featuring an implementation of a sound level meter
[9,10], sometimes coupled with other environmental measure-
ments such as air quality [11]. A comprehensive list is available
in [12]. Some apps created for research projects have used the
potential of mobile devices for crowd-sourcing data to create noise
maps showing geographical distributions of LAeq measurements
[13–16], similar to the type specified in the Environmental Noise
Directive (END) [17]. Maps created using mobile crowd-sensing
can potentially be more up-to-date and higher resolution (depend-
ing on user engagement) than the simulations typically used to
create maps for compliance with the END. It has also been pro-
posed to use noise maps created using smartphone data to suggest
noise abatement interventions [18].
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By contrast, there have been very few apps which use the
soundscape approach. The Hush City app [12] seeks to ‘‘integrate
the soundscape approach with the noise-based one” by creating
‘quietness’ maps based on sound level measurements in conjunc-
tion with a questionnaire that users fill in at test locations. This
is certainly a step towards incorporation of the soundscape
approach, but the use of questionnaires is subject to some of the
same problems previously outlined in relation to listening tests
and soundwalks.

1.3. Machine learning for sound monitoring

There has recently been research into using Machine Learning
(ML) techniques to analyse and identify sounds in everyday acous-
tic environments. Whilst most previous work using ML in audio
focuses on speech recognition or music analysis, the recent series
of DCASE (Detection and Classification of Acoustic Scenes and
Events) challenges [19] have been the focal points of a large
increase in research for using ML to identify everyday sounds.
The EigenScape database [20] was created specifically to provide
a basis for development of ML techniques for soundscape analysis.

While use of ML on smartphones for speech recognition and
music identification is widespread, there have been very few apps
designed to conduct environmental sound recognition. Apps by
Cordeiro and Barbosa [21], and Lu et al. [22] classify incoming
sounds as either speech, music or ‘environmental’. These classes
have limited use for the soundscape approach, however, as all
environmental sound is conflated in a manner essentially similar
to the noise approach. Lane et al. [23] created a classifier to run
on mobile devices that categorised environmental sound as either
music, traffic, voicing or ‘other’. This could be more useful for the
soundscape approach, but the classifier has not been implemented
in any available app.

1.4. Augmented reality audio

On the cutting edge of current smartphone technology is Aug-
mented Reality (AR), whereby virtual objects are superimposed
onto a live camera feed of the real world environment. Apple’s
ARKit [24] can track features in the device’s surroundings to enable
a smooth AR experience, and is emerging as a viable tool not only
for gaming, but also for interior design and measurement applica-
tions such as IKEA Place [25] and Housecraft [26].

The Sennheiser AMBEO Smart Headset (ASH) [27], shown in
Fig. 1, is an accessory for iOS devices that can be used to extend
AR to the audio domain. The ASH features microphones built into
each earpiece, which can be used to record binaural audio. The
‘Transparent Hearing’ mode allows incoming audio to be relayed
instantly to the in-ear speakers. This can be blended with audio
from the device to create an augmented audio scene in a similar
manner to ARKit’s handling of visuals.

Whilst spatial audio, often used in conjunction with Virtual
Reality (VR), is an established delivery format for auralisations of
soundscapes [28,8], few studies have been done which incorporate
AR audio. This is despite the suggestion from Hong et al. that it
could be ‘‘useful for projects that involve altering the soundscapes
of existing locations. . .[enabling] soundscape researchers to fuse
the virtual sound sources seamlessly with real sound” [28].
Kınayoğlu [29] created a system to test the perceptions of subjects
to altered on-location acoustic scenes, replacing local sound with
spatial soundscapes created using recordings from other locations.
Whilst this system featured head-tracking for realistic sound spa-
tialisation, this was not true AR as the existing location sound
was completely overlaid by the virtual sound scene – there was
no microphone component in this system to create a blend of real
and virtual audio.

1.5. Aims and objectives

This study seeks to find whether it is feasible to create an intu-
itive measurement system for environmental sound monitoring
that runs on a handheld device and uses machine learning tech-
niques to provide meaningful readings beyond the standard LAeq.
These readings should have relevance to human soundscape per-
ception. To this end, an iOS app was created that uses the ASH
combined with machine learning technologies to provide a more
nuanced measurement of environmental audio in accordance with
the soundscape approach.

An AR component of the app was also designed in order to test
the usefulness of the output from the ML component in terms of
assessing interventions that might be added to the environment
to affect its soundscape. The app allows users to place virtual
objects, having both a sonic and visual component, into the envi-
ronment. These can be moved and altered by the user, with the
augmented scene available for listening and also passed to the
ML component for analysis.

The App was developed with two goals in mind:

1. Provide a simple interface for the measurement of acoustic
environment properties beyond LAeq.

2. Using AR technology, allow users to test the effects on these
measurements of potential alterations to the environment.

There are clear applications for this kind of app in soundscape
research, but also more broadly in urban planning, where AR could
assist with exterior design, or testing proposed alterations of public
spaces.

2. App development

2.1. Soundscape taxonomy

Recent research into soundscape perception [7,8] has used
three main groups of environmental sound sources:

� Natural: The sounds of all manner of fauna except humans,
together with sound created by weather and geological forces
including rainfall, wind and flowing water.

Fig. 1. The Sennheiser AMBEO Smart Headset, showing earpieces with binaural
microphones, control unit and connector.
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� Mechanical: Sounds from machinery, including transport and
construction.

� Human: Non-mechanical sounds indicative of the presence of
humans. This primarily consists of speech, but also footsteps,
music and laughter.

Some previous work (with origins in soundecology and biodi-
versity research) [30–32] uses an alternative taxonomy, classifying
sounds as anthrophony, which broadly speaking groups human and
mechanical sounds together, or biophony and geophony, which split
natural sounds into those produced by animals and those produced
by geological forces. Whilst this taxonomy is no doubt useful for
soundecology applications, a great deal of research on human
soundscape perception has shown most responses are dependent
on two components, sometimes labelled pleasantness, most
affected by the natural/mechanical balance, and eventfulness,
mainly dependent on the presence of human sounds [33–35]. This
is reflected by the use of Valence (positive/negative emotional
state) and Arousal (apathetic/excited emotional state) assessment
scales in [8]. It was therefore decided that the app should display
ratings for natural, mechanical, and human sounds, which could
be used to estimate pleasantness and eventfulness.

2.2. Core ML model creation

Since we are interested in the overall content and character of
sound scenes in general, rather than on detection of individual
sources in particular, we used an Acoustic Scene Classification
(ASC) framework [36] for the ML models. The usual goal of ASC
is for the model to assign a label to incoming audio clips indicating
the class of location the clip was recorded in. In this work, specific
scene classifiers were reappropriated to provide estimates for the
prevalence of the human, natural, and mechanical components of
scenes.

Apple’s Core ML library [37] was used to create an object within
the app that performs analysis on the audio incoming from the
ASH. Core ML includes a tool that can translate certain models cre-
ated using the scikit-learn Python library [38] into an iOS-
compatible format.

Models were trained using audio from the EigenScape database
[20]. Mel-Frequency Cepstral Coefficient (MFCC) features were
extracted from the zeroth-order (mono-omni) channel in a manner
similar to the baseline models in [19,20]. Classifiers were trained
for all eight location classes present in the EigenScape database
(Beach, BusyStreet, Park, PedestrianZone, QuietStreet, Shop-
pingCentre, TrainStation and Woodland). Since EigenScape fea-
tures eight examples of each location class, models were trained
on six recordings and tested on the remaining two. In [20], MFCCs
were extracted using the librosa library [39], but since this app
requires MFCC features to be extracted on the iOS device in real-
time, the aubio library [40] was used as an alternative, as it is com-
patible with both iOS and Python. The library was configured to
extract 20 MFCC coefficients, covering the frequency range up to
approximately 11 kHz. In [20], Gaussian Mixture Models are used
to classify sound, whilst this work uses Support Vector Classifiers
(SVCs) for compatibility with Core ML. Features were extracted
from frames of 2048 samples using rectangular windows with no
overlap, resulting in 84,375 training frames for each class.

Fig. 2 shows the performance of the eight models in a confusion
matrix. It can been seen that whilst the models for BusyStreet and
Woodland perform well, models for the other scenes were gener-
ally inaccurate. This was not so much a problem for this work,
however, as the primary interest here is in reporting of alternative
metrics for sound scenes, rather than precise scene classifications.

From these results, the BusyStreet classifier was chosen to pro-
vide mechanical ratings, with the Woodland classifier chosen for

natural ratings. The prevalence of vehicle sound in the BusyStreet
scenes and birdsong in most Woodland scenes make them largely
representative of these sound categories, an assumption reinforced
by listening tests conducted in [7]. Choosing a model for human
ratings was less simple, as the most obvious classifier – Pedes-
trianZone – did not perform accurately. The ShoppingCentre classi-
fier was instead chosen for this purpose as, whilst only successful
at identifying 50% of the ShoppingCentre scenes, misclassifying
TrainStation scenes the remaining 50% of its output, both of these
scenes have a relatively large human sound component.

Each of these models produces a rating indicating the probabil-
ity that MFCC features extracted from incoming audio frames came
from an acoustic scene similar to those they were trained on. In
[20], the model returning the highest probability is used to gener-
ate a scene label. In this app, these probabilities are reappropriated
as ratings for each sound source group, which are displayed to the
user. In essence, we obtain estimates for the three components by
measuring the similarity of the incoming audio to the three chosen
scene models.

2.3. AR audio implementation

2.3.1. AR audio sources

In order to implement AR audio as well as visuals, custom
objects were required to couple 3D graphics with realistic audio
sources using binaural processing. Apple’s SceneKit objects have
a built in audio player instance for ‘‘3D audio” [41], but in testing
it was found these use standard stereo panning only. Apple’s audio
framework (AVFoundation) does, however, include an object called
the AVAudioEnvironment node, which features an option to use
high-quality Head-Related Transfer Function (HRTF) rendering for
binaural output. Our custom object therefore adds an audio player
to the standard SceneKit node object, with the ‘position’ parameter
of the audio set to mirror the visual position of the node.

2.3.2. AR acoustic barrier object

In addition to AR audio sources, an object was created to simu-
late the addition of an acoustic barrier to a scene. Acoustic barriers
are a fairly common noise abatement intervention in deployment
along the side of roads or railway lines [42]. Sound is attenuated
primarily by diffraction - the barrier blocks the direct path, so
sound must travel over the top to reach the receiver. The path
length difference d is critical to the attenuation performance of
the barrier, and is calculated as the difference between the length
of the diffracted path from source to receiver (over the barrier) and

Fig. 2. Confusion matrix showing performance of the aubio-extracted MFCC-
trained SVCs (percentage correct classifications).
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the blocked direct path. Eq. (1) shows how attenuation A varies
with d and sound wavelength k [42].

A ½dB� ¼ 10 log10 3þ
40d
k

� �

ð1Þ

The result of this is that the larger the path length difference,
the greater the attenuation, with high frequencies attenuated more
than low frequencies [42,43]. In practise, this means that barriers
are most effective when placed close to the sound source or
receiver.

To simulate the effect of adding a sound barrier to the scene, our
virtual barrier selectively filters the real-world sound picked up by
the ASH before this is relayed to the listener as part of the complete
augmented audio mix. This is achieved by using a stereo low-pass
filter (LPF), blending with the dry signal from the ASH mics and
panning its output with respect to the angle between the listener
and the barrier.

With regards to calculating the path length difference, there is
no way at present to measure the distance between the virtual bar-
rier object and the various sound sources making up a real-world
scene, however the distance to the receiver (listener) is known.
The cutoff of the LPF, representing the amount of high-frequency
attenuation provided by the barrier, is therefore calculated based
on the distance between the camera position and the virtual bar-
rier. The cutoff is set at 20 Hz if the user is directly next to the bar-
rier, and reaches 20 kHz once the user moves 10 metres away,
effectively neutralising the filter’s perceptual effect and mimicking
the negligible impact of real-world sound barriers given very small
path length differences. This gives a reasonable illusion of the
attenuation of high-frequency sound incoming from a certain
direction as the user turns the camera and moves around in the
scene. Future versions of this app could incorporate more sophisti-
cated models of barriers and outdoor sound propagation as defined
in ISO 9613 [44].

2.4. App structure

2.4.1. User interface

The various interface elements of SoundscapeAR are shown in
Fig. 3. The main window of SoundscapAR (Fig. 3a) shows the live
camera feed and any active virtual objects. There are three sub-
views performing various functions that can be shown and hidden
by the user using the three small buttons in the lower right of the
interface.

The AR status window is visible on startup and indicates
whether ARKit has detected a plane. Detection of a real-world hor-
izontal flat surface (usually corresponding to the floor) is necessary
before ARKit is able to properly track the environment. Once the
plane is detected, a text indicator turns green and the window
becomes redundant. The user can now proceed to place objects.

The AR objects window is shown in Fig. 3b. There are four vir-
tual objects available for the user to place – car, bird, water foun-
tain and barrier. These are represented by four icons that show red
or green to indicate whether each object is active. This view also
shows crosshairs over the live camera feed. Tapping on each icon
places the corresponding object into the virtual scene at the posi-
tion on the detected plane indicated by the crosshairs. The user can
then drag the virtual object to fine-tune the positioning, if desired.
Tapping on the icon again removes the object from the scene.

The Audio analysis window, pictured in Fig. 3c, shows the out-
put probabilities from the Core ML object. By default, the window
shows a 1-s rolling average. The user can also select a 1-min
average recording mode similar to that used by SPL meters to
record LAeq.

2.4.2. Audio flow

Fig. 4 shows the structure of the audio signal flow through the
SoundscapAR app. The binaural audio input from the ASH is fil-
tered by the stereo LPF if the barrier object is active before being
mixed with audio from any active virtual sources. The main mixer
output is then passed to the ASH speakers.

An MFCC feature extractor powered by aubio processes frames
of 2048 samples sourced from a tap applied to the main mixer out-
put. The extracted MFCCs are sent to the Core ML object, which
returns probability ratings for human, natural, and mechanical
audio sources in near real-time. This process is illustrated by the
dotted lines in Fig. 4. In this way, with all virtual objects disabled,
the user can record ‘clean’ ratings for an acoustic scene. Virtual
objects can then be placed and the scene re-analysed to observe
any effect on the ratings the added objects may have.

Fig. 3. Various views of the SoundscapAR interface, showing virtual objects added
to real scenes, as well as the user interface for adding/removing objects, and the
readout of soundscape parameter ratings.
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3. Testing

3.1. Methodology

To test the effectiveness of the app for environmental sound
monitoring and the effects of the virtual objects, the app was
loaded to an iPhone 7 and taken to 6 locations around the city of
York in the UK. These locations, mapped in Fig. 5, were chosen to
represent a good variety of urban environments, including busy
streets (Bishopthorpe Road, Exhibition Square), pedestrian areas
(Shambles Market), more natural areas (Rowntree Park), and loca-
tions that combine these characteristics (York Piccadilly, Tower
Gardens).

The audio analysis feature was used to record repeated one-
minute average ratings at each location with various virtual objects
added as follows:

� No virtual objects (clean reading)
� Barrier
� Bird
� Car
� Fountain
� Barrier/Bird/Fountain

Objects were placed a reasonably realistic distance in front of the
listener location - generally between 2 and 4 meters. In the
multi-object condition, the barrier and the fountain were placed
on opposite sides of the listener location, with the bird placed
roughly above the listener. Using these readings, the classifier’s
effectiveness in terms of delivering plausible and useful ratings
for each location can be investigated. The effect of adding each vir-
tual object can also be tested, as well as whether adding multiple
objects has any cumulative effect.

3.2. NDSI/pleasantness rating

One of the key advantages of the LAeq is its simplicity in interpre-
tation, in that it distils complex sound scenes into a single number,
albeit one that is not useful for the soundscape approach. The field
of soundecology has proposed several alternative metrics that
might be more useful for the soundscape approach, yet still be sim-
ple to understand. One of these is the Normalised Difference
Soundscape Index (NDSI), which is intended to ‘‘estimate the level
of anthropogenic disturbance on the soundscape by computing the
ratio of human-generated to biological acoustic components” using
a scale of �1 [32,45]. In our formulation, for increased perceptual
relevance we substitute anthrophony for mechanical sounds (�1)
and biophony for natural sounds (+1). Our version therefore could
be thought of as a metric describing the pleasantness dimension of
soundscape perception.

In [32,45], the NDSI value is estimated by finding the ratio
between the power spectral density of the 1 kHz - 2 kHz band (said
to be more prevalent in mechanical sound) and the 2 kHz - 11 kHz
band (said to be more prevalent in natural sound). This rudimen-
tary approach results in unreliable output, though the shortcoming
is noted in [45], which states ‘‘advancements are needed to help
characterise and search acoustic observations”. A machine learning
model such as the one employed in this app could represent just
such an advancement.

To test the response of the system and its viability as a robust
way to calculate an NDSI/pleasantness metric, natural and
mechanical ratings from each location (with and without virtual
objects present) were used to calculate ratings as follows [32]:

NDSI ¼ ðb� aÞ=ðbþ aÞ ð2Þ

where a and b are the reported mechanical and natural ratings,
respectively.

4. Results

Fig. 6 shows the NDSI/pleasantness values for each scene. The
outliers shown are the measurements recorded with the virtual
car present (see results in Section 4.1). Rowntree Park has the high-
est value, followed by Shambles Market, and then Tower Gardens.
This shows the effectiveness of the classifier as both the park and
the market are low in mechanical sounds, though there is some
quieter machinery present at the market (small generators etc.).
Tower Gardens is nearer to a main road, and the lower value

Fig. 4. Diagram showing the complete audio flow in SoundscapAR. Dotted lines
indicate numeric (non-audio) values.

Fig. 5. Map showing the locations at which the app was tested.
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reflects this. Bishopthorpe Road and Exhibition Square both have
heavy traffic, and this is reflected in that their values are the low-
est. Piccadilly has slightly lighter traffic, and values are slightly
higher in general.

These results do reveal a skew towards the upper end of the
scale. Bishopthorpe Road and Exhibition Square, which have heavy
traffic, value further towards the middle of the range than might be
expected. The mean mechanical value overall is 8:93� 1:32%,
whereas the mean natural rating is 12:87� 1:94%. Given the
breadth of locations chosen, these should ideally be more similar.
This suggests the models require some calibration.

The trio of ratings gathered for each scene with no virtual
objects present is shown in Fig. 7. It can be seen here than the
human rating does seem to give some additional information
beyond the two poles of the NDSI/pleasantness metric. Exhibition
Square, for instance (7b) has a similar human rating to Shambles
Market (7d), whereas their other ratings vary greatly. Despite this,
the human ratings clearly do not vary as much from place to place
as the others – the variance in human ratings is 6.99, where vari-
ance in mechanical ratings is 15.35 and natural variance is even
higher, at 24.79. It is unclear whether this is a flaw in the classifier,
or whether variation in human sound is smaller than the other cat-
egories in the locations investigated.

4.1. Effect of virtual objects

Fig. 8 shows the distributions of human, natural, and mechani-
cal ratings from each scene plotted against the activation of various

virtual objects. The data was analysed using D’Agostino’s K2 test
[46], which indicated normal distributions for all three sets of rat-
ings. It can be seen in Fig. 8a that human ratings hover around a
mean of 15 % regardless of objects added. Repeated measures
ANOVA shows no significant effect of adding any object
Fð4;20Þ ¼ 1:49; p ¼ 0:24.

Natural ratings (Fig. 8b) showmore of a spread than human rat-
ings in general and seem impacted somewhat by the addition of
the car object. This reduced the mean rating from 12:83� 4:98 %
to 10:20� 2:06 %, whilst adding the fountain increased the mean
to 14:96� 5:14%. Repeated measures ANOVA here shows the
effect of adding objects on the natural rating is significant,
Fð4;20Þ ¼ 5:06; p < 0:05. Post-hoc paired t-tests using the bonfer-
roni correction show no individually significant contributors.

The biggest effect recorded was on the mechanical ratings by
the addition of the car object, as can clearly be seen in Fig. 8c.
The mean rating increases from 8:93� 3:92% to 13:69� 1:79%.
Repeated measures ANOVA shows significance,
Fð4;20Þ ¼ 10:79; p < 0:05. Bonferroni-corrected post hoc testing
shows a significant effect on the ratings from the car object
(tð5Þ ¼ 4:24; p < 0:0125), but no significant effect from any other
objects.

4.2. Discussion

Generating the NDSI/pleasantness metric using natural and
mechanical ratings produced some plausible results, with values
that matched location characteristics well. This suggests that a
machine learning approach to calculating meaningful soundscape
indices could be effective, and that such a system could be incorpo-
rated into an easy-to-use handheld device. In future work it would
be interesting to compare the NDSI/pleasantness values obtained
here to results from the original frequency-ratio method of calcu-
lation, and to ratings of these sound scenes by subjects in a listen-
ing test. A future version of this app could aim to feature a
pleasantness/eventfulness visualisation instead of, or in addition
to, the three ratings presented here, though improvements to the
human classifier may be required before it can be considered a reli-
able estimator of eventfulness.

The results from the natural and mechanical classifiers show
that these classifiers are to some extent successfully generalising

Fig. 6. NDSI/pleasantness values for each recording location. Positive ratings
indicate prevalence of natural sound, whereas negative ratings indicate prevalence
of mechanical sound.

Fig. 7. Radar plots showing the three ratings gathered for each location with no
virtual objects added.
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to audio that is not contained within the EigenScape dataset used
for training. In [20] the classifiers are tested on recordings from
the same dataset, made using the same equipment. In this study,
however, the classifiers are tested at locations not recorded in
EigenScape and using the ASH microphones rather than the Eigen-
mike array [47] which was used to record the EigenScape dataset.

Despite the limited amount of data obtained, there is some indi-
cation that the addition of the virtual car tends to cause an increase
in the mechanical rating, with a corresponding slight decrease in

the natural rating. Addition of ‘natural’ sources seem to have a very
modest effect in increasing natural ratings, and no consistent effect
on the mechanical ratings. Addition of the barrier object has very
little effect at all on any of the ratings, suggesting the barrier in
principle or in the implementation described here (see Sec-
tion 2.3.2) is not effective. This is possibly due to MFCCs extracted
from lower frequencies providing more discriminative information
to the classifiers than those from higher frequencies that are more
attenuated by the barrier. It is possible that if listening tests were
conducted, the barrier object might be rated as perceptually more
effective in altering the sound scene than is apparent here.

The fact that the introduction of the virtual car has a muchmore
pronounced effect on the ratings than any of the natural objects
aligns with findings presented by Stevens in [7], where the addi-
tion of a single car to a sound scene recorded by a lake caused a
large increase in mechanical ratings provided by subjects in a lis-
tening test. This provides some evidence that the natural and
mechanical classifiers produce ratings that are somewhat aligned
with human perception, though more study would be needed to
corroborate this.

None of the virtual objects seem to have much effect on the
human ratings. This is possibly due to the fact that none of the vir-
tual objects implemented could be considered human sound
sources. A virtual ‘conversation’ object might have been more
effective in this regard. On the other hand, since the human ratings
are less variable generally than the natural and mechanical ratings,
it could be that the classifier is not as effective as those trained to
identify natural and mechanical sources.

5. Further work

The clear next step with this work would be conducting subjec-
tive listening tests with real users interacting with the app’s aug-
mented audio. Their ratings could be compared with the
classifier outputs in order to reinforce or disprove the results
obtained. Indeed, more robust classifiers might be obtained by
including listening test results as part of the training stage. This
method, explored previously in [34], would perhaps be more
robust than re-appropriating a scene classification system, as in
the present work.

The classifiers used here could be further improved by utilising
more advanced audio features. The MFCC features used here are
basic, and it is shown in [20] that spatial audio features can outper-
form them for scene classification applications. Spatial features
could be derived from the ASH’s binaural input, but since feature
extraction must happen on-device in near real-time, processing
power could become a bottleneck in this regard.

The implementation of the app’s virtual objects could also be
improved. At present, all objects are stationary point sources. Some
sources (e.g. the car) would in reality likely be in motion, and some
sources would be diffuse. It should be possible to implement these
features in a future version of the app. It might also be possible to
use more sophisticated processing to make the effects of the virtual
barrier more realistic. Like any improvements in feature extraction,
however, this would have to take into account the limited process-
ing power available on the device.

Perhaps the most exciting future development could be built
upon the ‘‘persistent experience” feature introduced in ARKit 2
[48]. This allows AR apps to be ‘‘experienced by multiple users
simultaneously, and resumed at a later time in the same state”.
This creates the possibility of conducting AR soundwalks, where
virtual objects are placed by a researcher in advance and partic-
ipants can explore the AR audio environment live. This could be
a powerful tool for future research and urban planning.

Fig. 8. Boxplots showing distributions of human, natural and mechanical ratings
across all locations under each virtual object condition.

M. Green, D. Murphy / Applied Acoustics 159 (2020) 107041 7



Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Funding was provided by a UK Engineering and Physical
Sciences Research Council (EPSRC) Doctoral Training Award and
the Department of Electronic Engineering at the University of York.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.apacoust.2019.
107041.

References

[1] Harriet S, Murphy DT. Auralisation of an urban soundscape. Acta Acustica
united with Acustica 2015;101(4):798–810. https://doi.org/10.3813/
aaa.918874 (Jul 2015).

[2] Brown AL. Soundscapes and environmental noise management. Noise Control
Eng J 2010;58(5):493–500. https://doi.org/10.3397/1.3484178 (2010).

[3] Noise – Environment – European Commission, http://ec.europa.eu/
environment/noise/index_en.htm [accessed January 8, 2019].

[4] Schafer RM. The soundscape: our sonic environment and the tuning of the
world. Inner Traditions/Bear & Co 1993;1993.

[5] International Standards Organisation, ISO 12913–1:2014 - Acoustics –
Soundscape – Part 1: Definition and conceptual framework; 2014.

[6] Brooks B, Schulte-Fortkamp B. The soundscape standard. Internoise 2016;2016
(2016):2043–7.

[7] Stevens F, Murphy D, Smith SL. Soundscape categorisation and the self-
assessment manikin. In: Proceedings of the 20th International Conference on
Digital Audio Effects (2017).

[8] Stevens F, Murphy D, Smith SL. Soundscape auralisation and visualisation: A
cross-modal approach to soundscape evaluation. In: Proceedings of the 21st
International Conference on Digital Audio Effects (2018).

[9] Aircasting, https://play.google.com/store/apps/details?id=pl.llp.aircasting&hl=
en_GB [accessed: 2019-07-08].

[10] The noise app, https://apps.apple.com/gb/app/the-noise-app/id926445612,
[accessed: 2019-07-08].

[11] The noise app, https://play.google.com/store/apps/details?id=fr.inria.mimove.
quantifiedself&hl=en_GB [accessed: 2019-07-08].

[12] Radicchi A, Henckel D, Memmel M. Citizens as smart, active sensors for a quiet
and just city. the case of the ‘‘open source soundscapes” approach to identify,
assess and plan ‘‘everyday quiet areas” in cities. Noise Mapping 2017;4
(1):104–23 (2017).

[13] Zappatore M, Longo A, Bochicchio MA, Zappatore D, Morrone AA, Mitri GD.
Mobile crowd sensing-based noise monitoring as a way to improve learning
quality on acoustics. In: International Conference on Interactive Mobile
Communication Technologies and Learning (IMCL), Thessaloniki, Greece.

[14] Sakagami K, Satoh F, Omoto A. Revisiting acoustics education using mobile
devices to learn urban acoustic environments: recent issues on current devices
and applications. Urban Sci 2019;3(3):73 (Jul 2019).

[15] Maisonneuve N, Stevens M, Ochab B. Participatory noise pollution monitoring
using mobile phones. Inf Polity 2010;15(2010):51–71.

[16] Zuo J, Xia H, Liu S, Qiao Y. Mapping urban environmental noise using
smartphones. Sensors 2016;16(10):1692 (Oct 2016).

[17] Directive 2002/49/ec of the european parliament and of the council of 25 june
2002 relating to the assessment and management of environmental noise,
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32002L0049&from=EN [accessed: 2019-07-08].

[18] Zappatore M, Longo A, Bochicchio M, Zappatore D, Morrone A, De Mitri G. A
mobile crowd-sensing platform for noise monitoring in smart cities. EAI
Endorsed Trans Smart Cities 2016;1(1):151627.

[19] Stowell D, Giannoulis D, Benetos E, Lagrange M, Plumbley MD. Detection and
classification of acoustic scenes and events. IEEE Trans Multimedia 2015;17
(10):1733–46. https://doi.org/10.1109/TMM.2015.2428998 (October 2015).

[20] Green MC, Murphy D. Eigenscape: a database of spatial acoustic scene
recordings. Appl Sci 2017;7(11):1204. https://doi.org/10.3390/app7111204
(Nov 2017).

[21] Cordeiro J, Barbosa A. Using smartphones as personal monitoring tools for the
acoustic environment. In: Tecnoacustica, Murcia, Spain, 2013.

[22] Lu H, Pan W, Lane ND, Choudhury T, Campbell AT. Soundsense: scalable sound
sensing for people-centric applications on mobile phones. In: 7th Annual
International Conference on Mobile Systems, Krakow, Poland (June 2009).

[23] Lane ND, Georgiev P, Qendro L. Deepear: robust smartphone audio sensing in
unconstrained acoustic environments using deep learning. In: ACM
International Joint Conference on Pervasing and Ubiquitous Computing,
Osaka, Japan.

[24] Apple ARKit, https://developer.apple.com/arkit/, [Accessed January 7, 2019].
[25] Ikea place, https://itunes.apple.com/app/ikea-place/id1279244498 [accessed:

2019-07-01].
[26] Sirvo llc, housecraft, https://itunes.apple.com/app/housecraft/id1261483849

[accessed: 2019-07-01].
[27] Sennheiser AMBEO Smart Headset, https://en-uk.sennheiser.com/finalstop

[accessed January 7, 2019].
[28] Hong J, He J, Lam B, Gupta R, Gan W-S. Spatial audio for soundscape design:

recording and reproduction. Appl Sci 2017;7(6):2017 (Jun 2017).
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