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Abstract We prove a comparison theorem for the spatial mass of the solutions of
two exterior parabolic problems, one of them having symmetrized geometry, using
approximation of the Schwarz symmetrization by polarizations, as it was introduced
inBrock andSolynin (TransAmMathSoc 352(4):1759–1796, 2000). This comparison
provides an alternative proof, based on PDEs, of the isoperimetric inequality for the
Wiener sausage, which was proved in Peres and Sousi (Geom Funct Anal 22(4):1000–
1014, 2012).
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1 Introduction

In the present article we prove a comparison theorem for the spatial mass, at any
time t , for the solutions of two parabolic exterior problems, the second being the
“symmetrization” of the first one. In order to do so, we show that the spatial mass of
the solution decreases under polarization, and since the Schwarz symmetrization is
the limit of compositions of polarizations, we carry the comparison to the limit. This
technique was introduced in [4].

Our result ismotivated by a problem in probability theory.Namely, the isoperimetric
inequality for the Wiener sausage, which was proved in [15]. The problem is the
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following. If (wt )t≥0 is a Wiener process in R
d , one wants to minimize the expected

volume of the set ∪t≤T (wt + A), for T ≥ 0, over “all” subsets A of Rd of a given
measure. It was proved in [15] that the minimizer is the ball (the result was for a
more general setting, see Sect. 2 below). This was proved by obtaining a similar result
for random walks by using rearrangement inequalities of Brascamp-Lieb-Luttinger
type on the sphere, which were proved in [6], and then by Donsker’s theorem, the
authors obtain the result for the Wiener process. It is known that the expected volume
of theWiener sausage up to time t , can be expressed as the integral over x ∈ R

d of the
probability that aWiener process starting from x ∈ R

d hits the set A by time t . It is also
known that this collection of probabilities, as a function of (t, x), satisfies a parabolic
equation on (0, T ) × R

d\A. For properties of these hitting times and applications to
the Wiener sausage we refer the reader to [3] and references therein, and for the case
of Riemannian manifolds, we refer to [11]. Therefore, we provide an alternative proof
of the isoperimetric inequality for the Wiener sausage, based on PDE techniques.

Comparison results between solutions of partial differential equations and solutions
of their symmetrized counterparts, were first proved in [16]. Since then, much work
has been done in this area, for elliptic and parabolic equations, and we refer the reader
to [2,4,13,14] and references therein. The equations under consideration at these
works, are on a bounded domain, with Dirichlet or Neumann boundary conditions.
Our approach is based on the techniques introduced in [4].

Let us now introduce some notation that will be frequently used throughout the
paper. We denote by R

d the Euclidean space of dimension 1 ≤ d < ∞. For A, B
subsets of Rd , we write

A + B :=
{
z ∈ R

d | z = x + y, x ∈ A, y ∈ B
}

,

and for x ∈ R
d we write x + A := {x} + A. The open centered ball of radius ρ > 0

in R
d will be denoted by Bρ . Let x ∈ R

d and A ⊂ R
d and let H be a closed half-

space. If A is measurable, |A| will stand for the Lebesgue measure of A. We will
write σH (x) and AH for the reflections of x and A respectively, with respect to the
shifted hyperplane ∂H . We will write A and A for the closure and the interior of A
respectively. We will use the notation PH A for the polarization of A with respect to
H , that is

PH A :=
(

(A ∪ AH ) ∩ H
)

∪
(
A ∩ AH

)
.

For a non-negative function u on Rd we will write PHu for the polarization of u with
respect to H , that is

PHu(x) =
{
max{u(x), u(σH (x))}, if x ∈ H

min{u(x), u(σH (x))}, if x ∈ Hc.

Wewill denote byH the set of all half-spaces H such that 0 ∈ H . For positive functions
f and g on R

d and for H ∈ H, we will write f �H g, if f (x) + f (σH (x)) ≤
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g(x) + g(σH (x)) for a.e. x ∈ H . For a bounded set V ⊂ R
d , we will denote by

V ∗ the closed, centered ball of volume |V |. For a positive function u on Rd such that
|{u > r}| < ∞ for all r > 0, we denote by u∗ its symmetric decreasing rearrangement.
For an open set D ⊂ R

d we denote by H1(D) the space of all functions in u ∈ L2(D)

whose distributional derivatives ∂i u := ∂
∂xi

u, i = 1, .., d, lie in L2(D), equipped with
the norm

‖u‖2H1 = ‖u‖2L2
+

d∑
i=1

‖∂i u‖2L2
.

We will write H1
0 (D) for the closure of C∞

c (D) (the space of smooth, compactly
supported real functions on D) in H1(D). We will write H

1(D), and H
1
0(D) for

L2((0, T ); H1(D)), and L2((0, T ); H1
0 (D)) respectively.Alsowe define ,H 1(D) :=

H
1(D)∩C([0, T ]; L2(D)) andH 1

0 (D) := H
1
0(D)∩C([0, T ]; L2(D)). The notation

(·, ·), will be used for the inner product in L2(R
d). Also, the summation convention

with respect to integer valued repeated indices will be in use.
The rest of the article is organized as follows. In Sect. 2 we state our main results. In

Sect. 3 we prove a version of the parabolic maximum principle, and some continuity
properties of the solution map with respect to the set A. These tools are then used in
Sect. 4 in order to prove the main theorems.

2 Main results

Let (Ω,F ,P) be a probability space carrying a standard Wiener process (wt )t≥0
with values in R

d , and let A be compact subset of Rd . For T ≥ 0 we let us consider
the expected volume of the Wiener sausage generated by A, that is, the quantity
E

∣∣∪t≤T (wt + A)
∣∣. In [15], the following theorem is proved.

Theorem 1 For any T ≥ 0 we have

E
∣∣∪t≤T

(
wt + A∗)∣∣ ≤ E

∣∣∪t≤T (wt + A)
∣∣ . (1)

The result in [15] is stated for open sets A, and the set A is allowed to depend on
time. As it was mentioned above, this was proved by obtaining a similar inequality
for random walks, using rearrangement inequalities of Brascamp-Lieb-Luttinger type
on the sphere, which were proved in [6], and then by using Donsker’s theorem, the
authors obtain the inequality for the Wiener process.

Let us now move to our main result, and see the connection with Theorem 1. For a
compact set A ⊂ R

d , and for ψ ∈ L2(R
d\A), let us denote by Π(A, ψ) the problem

⎧⎨
⎩
dvt = 1

2�vt dt in (0, T ) × R
d\A;

vt (x) = 1 on [0, T ] × ∂A;
v0(x) = ψ(x) in Rd\A

(2)

Definition 1 We will say that u is a solution of the problem Π(A, ψ) if
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(i) u ∈ H 1(Rd\A),
(ii) for each φ ∈ C∞

c (Rd\A),

(ut , φ) = (ψ, φ) −
∫ t

0

1

2
(∂i us, ∂iφ) ds,

for all t ∈ [0, T ]
(iii) v − ξ ∈ H

1
0(R

d\A), for any ξ ∈ H1
0 (Rd) with ξ = 1 on a compact set A′,

A ⊂ A′.

The following is very well known.

Theorem 2 There exists a unique solution of the problem Π(A, ψ).

If ψ ∈ L2(R
d), then by Π(A, ψ) we obviously mean Π(A, ψ |Rd\A). Our two

main results read as follows.

Theorem 3 Letψ ∈ L2(R
d)with 0 ≤ ψ ≤ 1,ψ = 1 on A. Let u, v be the solutions of

the problemsΠ(A, ψ) andΠ(PH A, PHψ), extended to 1 on A and PH A respectively.
Then for all t ∈ [0, T ], we have vt �H ut .

Theorem 4 Letψ ∈ L2(R
d)with 0 ≤ ψ ≤ 1, andψ = 1 on A. Suppose that |A| > 0.

Let u, v be the solutions of the problems Π(A, ψ) and Π(A∗, ψ∗) respectively . Then
for any t ∈ [0, T ] we have

∫

Rd
vt dx ≤

∫

Rd
ut dx, (3)

where ut and vt are extended to 1 on A and A∗ respectively.

It is easy to check that

E
∣∣∪t≤T (wt + A)

∣∣ =
∫

Rd
P(τ x

A ≤ t) dx .

where

τ x
A := inf{t ≥ 0 : x + wt ∈ A}.

It is also known that the unique solution of the problem Π(A, 0) is given by

ut (x) = P(τ x
A ≤ t). (4)

Consequently Theorem 1 follows by Theorem 4 by choosing ψ = 0 on R
d\A, if

|A| > 0. If |A| = 0 then (1) trivially holds.
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Remark 1 All of the arguments in the next sections can be repeated in exactly the same
way, if the operator 1

2� is replaced by an operator of the form Ltu := ∂i (a
i j
t ∂ j u),

such that for j, i ∈ {1, ..., d}, ai j ∈ L∞((0, T )) (independent of x ∈ R
d ), and there

exists a constant κ > 0 such that for almost all t ∈ [0, T ],

ai jt zi z j ≥ κ|z|2, (5)

for all z = (z1, ..., zd) ∈ R
d . Consequently one can replace wt in Theorem 1 by

“non-degenerate” stochastic integrals of the form yt = ∫ t
0 σs dBs where Bt is an m-

dimensional Wiener process and σ is a measurable function from [0, T ] to the set of
d × m matrices such that (σtσ�

t )di, j=1 satisfies (5).

3 Auxiliary results

In this section we prove some tools that we will need in order to obtain the proof of our
main theorems. Namely, we present a version of the parabolic maximum principle for
functions that are not necessarily continuous up to the parabolic boundary. This result
(Lemma 1 below) is probably well known but we provide a proof for the convenience
of the reader. The maximum principle is the main tool used in order to show the com-
parison of the solution of the problem Π(A, ψ) and its polarized version. The reason
that we need this version of the maximum principle is that, PH A is not guaranteed
to have any “good” properties, even if ∂A is of class C∞, and therefore one can not
expect the solution of Π(PH A, PHψ) to be continuous up to the boundary. We also
present certain continuity properties of the solution map with respect to the set A, so
that we can then iterate Theorem 3 in order to obtain Theorem 4.

In this section we consider ai j ∈ L∞((0, T ) × R
d) for i, j = 1, ..., d, and we

assume that there exists a constant κ > 0 such that for any z = (zi , ..., zd) ∈ R
d we

have

ai jt (x)zi z j ≥ κ|z|2,

for a.e. (t, x) ∈ [0, T ]×R
d . We will denote by K := maxi, j ‖ai j‖L∞ . For an open set

Q ⊂ R
d , letΨ (Q) be the set of functions u ∈ H 1(Q), such that for any φ ∈ C∞

c (Q)

(ut , φ) = (u0, φ) −
∫ t

0
(ai js ∂i us, ∂iφ) ds, (6)

for all t ∈ [0, T ]. Notice that by the De Giorgi-Moser-Nash theorem, if u ∈ Ψ (Q),
then u ∈ C((0, T ) × Q).

Let us also introduce the functions αr (s), βr (s) and γr (s) on R, for r > 0, that will
be needed in the next lemma, given by

123



Stoch PDE: Anal Comp (2017) 5:38–52 43

γr (s) =
⎧⎨
⎩

2 if s > r
2s
r if 0 ≤ s ≤ r
0 if s < 0,

βr (s) =
∫ s

0
γr (t) dt, αr (s) =

∫ s

0
β(t) dt.

For all s ∈ R we have γr (s) → 2Is>0, βr (s) → 2s+ and αr (s) → (s+)2 as r → 0.
Also, for all s ∈ R and r > 0, the following inequalities hold

|γr (s)| ≤ 2, |βr (s)| ≤ 2|s|, |αr (s)| ≤ s2.

Lemma 1 Let Q be a bounded open set and let u ∈ Ψ (Q). If there exists M ∈ R,
such that u0(x) ≤ M for a.e. x ∈ Q and lim sup(t,x)→(t0,x0) ut (x) ≤ M for any
(t0, x0) ∈ (0, T ] × ∂Q, then

sup
t∈[0,T ]

sup
Q

ut (x) ≤ M.

Proof Let us fix t ′ ∈ (0, T ), and let ζ ∈ C∞
c (B1) be a positive function with unit

integral. For ε > 0 and δ > 0, set ζ ε(x) = ε−1ζ(x/ε) and Mδ := M + δ. For
x ∈ Qε := {x ∈ Q|dist(x, ∂Q) > ε}, we can plug ζ ε(x − ·) in (6) in place of φ to
obtain

uε
t (x) − Mδ = uε

t ′(x) − Mδ +
∫ t

t ′
(ai js ∂ j us, ∂iζ

ε(x − ·)) ds,

for all t ∈ [t ′, T ], where uε = u ∗ ζ ε. Let also gn ∈ C∞
c (Q) with 0 ≤ gn ≤ 1,

gn = 1 on Q1/n , gn = 0 on Q\Q1/2n and choose ε < 1/2n. We can then multiply
the equation with gn , and by the chain rule we have

∫

Q
αr ((u

ε
t − Mδ)gn) dx =

∫

Q
αr ((u

ε
t ′ − Mδ)gn) dx

−
∫ t

t ′

∫

Q
(ai js ∂ j us)

ε∂i (gnβr ((u
ε
s − Mδ)gn) dxds.

By standard arguments (see e.g. [8]), letting ε → 0, leads to

∫

Q
αr ((ut − Mδ)gn) dx =

∫

Q
αr ((ut ′ − Mδ)gn) dx

−
∫ t

t ′

∫

Q
g2na

i j
s ∂ j usγr (us − Mδ)∂i (us − Mδ) dxds
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−
∫ t

t ′

∫

Q
ai js ∂ j us∂i gnβr ((us − Mδ)gn) dxds

−
∫ t

t ′

∫

Q
ai js ∂ j usγr ((us − Mδ)gn)(us − Mδ)gn∂i gndxds

(7)

Let us also introduce the notation

U δ
t = {x ∈ Q| ut (x) > M + δ}.

We claim that there exists ρ > 0 such that dist(U δ
t , ∂Q) > ρ for any t ∈ [t ′, T ].

For each t ∈ [t ′, T ], we have U δ
t ⊂ Q ∪ ∂Q. If inf t∈[t ′,T ] dist(U δ

t , ∂Q) = 0, then
we can find (s, y) ∈ [t ′, T ] × ∂Q, and a sequence (tn, xn) ∈ [t ′, T ] × U δ

tn such that
(tn, xn) → (s, y) as n → ∞. Then we have by the definition of U δ

tn ,

lim sup
(xn ,tn)→(s,y)

utn (xn) ≥ M + δ,

while by assumption we have that

lim sup
(xn ,tn)→(s,y)

utn (xn) ≤ M,

which is a contradiction, and therefore

inf
t∈[t ′,T ]

dist(U δ
t , ∂Q) = θ > 0. (8)

Going back to (7), for any n > 1/θ , we have that for all s ∈ [t ′, T ]
∫

Q
∂i us∂i gnβr ((us − Mδ)gn) dx =

∫

U δ
s

∂i us∂i gnβr ((us − Mδ)gn) dx = 0,

since ∂i gn = 0 on Q1/n andU δ
s ⊂ Q1/n by (8). Similarly for the last term on the right

hand side of (7). Therefore, letting n → ∞ and r → 0 in (7) gives

‖(ut − Mδ)+‖2L2(Q) = ‖(ut ′ − Mδ)+‖2L2(Q) −
∫ t

t ′

∫

Q
ai js ∂i us∂ j us Ius>Mδ dxds

≤ ‖(ut ′ − Mδ)+‖2L2(Q).

The above inequality holds for any t ′ ∈ (0, T ], and therefore by letting t ′ ↓ 0 and
using the continuity of u (in L2(Q)) we have

‖(ut − Mδ)+‖2L2(Q) ≤ ‖(u0 − Mδ)+‖2L2(Q) ≤ 0,
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since u0 ≤ M . Consequently

sup
Q

ut (x) ≤ M + δ,

for any t ∈ [0, T ]. Since δ was arbitrary, the lemma is proved. ��
We now continue with the continuity properties of the solution map. Let us fix ξ ∈
L2(R

d) and f ∈ L2((0, T )×R
d). We will say that u solves the problem Π0(A, ξ, f )

if

(i) u ∈ H 1
0 (Rd\A), and

(ii) for each φ ∈ C∞
c (Rd\A),

(ut , φ) = (ξ, φ) +
∫ t

0

(
( fs, φ) − (ai js ∂i us, ∂ jφ)

)
ds,

for all t ∈ [0, T ].
For n ∈ N, let ξn ∈ L2(R

d), f n ∈ L2((0, T ) × R
d) and let An ⊂ R

d be compact
sets.

Assumption 1

(i) ξn → ξ weakly in L2(R
d)

(ii) f n → f weakly in L2([0, T ]; L2(R
d))

(iii) An+1 ⊂ An For each n ∈ N, and ∩n An = A.

Lemma 2 Suppose Assumption 1 holds, and let un and u be the solutions of the
problems Π0(An, ξ

n, f n) and Π0(A, ξ, f ) respectively . Let us extend un and u to
zero on An and A respectively. Then

(i) un → u weakly in H
1
0(R

d) as n → ∞,
(ii) unt → ut , weakly in L2(R

d) as n → ∞, for any t ∈ [0, T ].
Proof Let us set Cn = R

d\An and C = R
d\A. Clearly, for (i) it suffices to show that

there exists a subsequence with unk such that unk → u weakly inH1
0(C). By standard

estimates we have that there exists a constant N depending only on d, K , κ , and T ,
such that for all n

sup
t≤T

‖unt ‖2L2(Cn)
+

∫ T

0
‖unt ‖2H1

0 (Cn)
dt ≤ N

(
‖ξn‖2L2(Cn)

+
∫ T

0
‖ f nt ‖2L2(Cn)

)
. (9)

Since un are zero on An , we can replace Cn by C in the above inequality, to obtain
that there exists a subsequence (unk )∞k=1 ⊂ H

1
0(C), and a function v ∈ H

1
0(C) such

that unk → v weakly in H1
0(C).

For φ ∈ C∞
c (Rd\A) we have that for all k large enough supp(φ) ⊂ Cnk . Also, u

nk

solves Π0(Ank , ξ
nk , f nk ), and therefore

(unkt , φ) = (ξnk , φ) +
∫ t

0

(
( f nks , φ) − (ai js ∂i u

nk
s , ∂ jφ)

)
ds for all t ∈ [0, T ].

(10)
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which by letting k → ∞ gives

(vt , φ) = (ξ, φ) +
∫ t

0

(
( fs, φ) − (ai js ∂ivs, ∂ jφ)

)
ds for a.e. t ∈ [0, T ], (11)

which also holds for any φ ∈ H1
0 (C), since C∞

c (C) is dense in the latter. Hence v

belongs to the spaceH 1
0 (D) (by Theorem 2.16 in [12] for example), and is a solution

of Π0(A, ξ, f ). By the uniqueness of the solution we get u = v (as elements of
H 1

0 (C)), and this proves (i).
Let us fix t ∈ [0, T ]. It suffices to show that there exists a subsequence unkt such that

unkt → ut weakly in L2(C) as k → ∞. Notice that by (9), there exists a subsequence
unkt which converges weakly to some v′ ∈ L2(C). Again, for φ ∈ C∞

c (C) and k large
enough, we have that (10) holds. As k → ∞, the right hand side of (10) converges to
the right hand side of (11) (for our fixed t ∈ [0, T ]), which is equal to (ut , φ), while
the left hand side of (11) converges to (v′, φ). Hence, v′ = ut on C , and since unkt
converges weakly in L2(C) to v′, the lemma is proved. ��
Corollary 1 Suppose that (i) and (iii) from Assumption 1 hold, and let un and u be
the solutions of the problems Π(An, ψ

n) and Π(A, ψ). Set un = 1 and u = 1 on An

and A respectively. Then for each t, unt → ut weakly in L2(R
d) as n → ∞.

Proof Let g ∈ C∞
c (Rd)with g = 1 on a compact set B such that A0 ⊂ B. Then un−g

and u− g solve the problemsΠ0(An, ψ
n − g,− 1

2�g) andΠ0(A, ψ − g,− 1
2�g) and

the result follows by Lemma 2. ��
For two subsets ofRd , A1 and A2, we denote by d(A1, A2) the Hausdorff distance,

that is

d(A1, A2) = inf
{
ρ ≥ 0 | A1 ⊂ (A2 + Bρ), A2 ⊂ (A1 + Bρ)

}
.

In Lemma 3 below we will need the following:

Remark 2 Let A ⊂ R
d be compact such thatRd\A is aCarathéory set (i.e. ∂(Rd\A) =

∂(Rd\A)). If u ∈ H1(Rd) and u = 0 a.e. on A, then u ∈ H1
0 (Rd\A). To see this,

suppose first that supp(u) ⊂ BR , where R is large enough, so that A ⊂ BR . It follows
that BR\A is a Carathéodory set, and by Theorem 7.3(ii), p. 436 in [9], if u ∈ H1

0 (BR),
and u = 0 a.e. on A, then u ∈ H1

0 (BR\A), and therefore u ∈ H1
0 (Rd\A). For general

u we can take ζ ∈ C∞
c (Rd), such that 0 ≤ ζ ≤ 1 and ζ(x) = 1 for |x | ≤ 1, and

set ζ n(x) = ζ(x/n). Then by the previous discussion ζ nu ∈ H1
0 (Rd\A) and since

ζ nu → u in H1(Rd\A) we get that u ∈ H1
0 (Rd\A).

Assumption 2

(i) ξn → ξ weakly in L2(R
d)

(ii) f n → f weakly in L2([0, T ]; L2(R
d))

(iii) d(A, An) → 0, |A\An| → 0, as n → ∞, and R
d\A is a Carathéodory set.

Lemma 3 Suppose Assumption 2 holds, and let un and u be the solutions of the
problems Π0(An, ξ

n, f n) and Π0(A, ξ, f ). Let us extend un and u to 0 on An and A
respectively. Then
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(i) un → u weakly in H
1
0(R

d),
(ii) unt → ut weakly in L2(R

d), as n → ∞, for any t ∈ [0, T ].
Proof As in the proof of Lemma 2 it suffices to find a subsequences such that the
corresponding convergences take place. By standard estimates, there exists a constant
N depending only on d, κ, T and K , such that for all n ∈ N

sup
t≤T

‖unt ‖2L2(Rd )
+

∫ T

0
‖unt ‖2H1

0 (Rd )
dt ≤ N

(
‖ξn‖2L2(Rd )

+
∫ T

0
‖ f nt ‖2L2(Rd )

)
.

(12)

Therefore, there exists a subsequence (unk )∞k=1 ⊂ H
1
0(R

d), and a function v ∈ H
1
0(R

d)

such that unk → v weakly in H1
0(R

d).
For φ ∈ C∞

c (Rd\A), since d(A, An) → 0 as n → ∞, we have that for all k large
enough supp(φ) ⊂ R

d\Ank . Also, u
nk solves Π0(Ank , ξ

nk , f nk ), and therefore

(unkt , φ) = (ξnk , φ) +
∫ t

0

(
( f nks , φ) − (ai js ∂i u

nk
s , ∂ jφ)

)
ds, for all t ∈ [0, T ].

(13)

which by letting k → ∞ gives

(vt , φ) = (ξ, φ) +
∫ t

0

(
( fs, φ) − (ai js ∂ivs, ∂ jφ)

)
ds for a.e. t ∈ [0, T ], (14)

Notice that for φ ∈ L∞(A), ψ ∈ L∞((0, T ))

∣∣∣∣
∫ T

0

∫

A
vtφψt dxdt

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
∫ T

0

∫

A\Ank

unkt φψt dxdt

∣∣∣∣∣
≤ T ‖φ‖L∞(A)‖ψ‖L∞((0,T )) lim

k→∞ sup
t≤T

‖unkt ‖L2(Rd )|A\Ank |1/2 = 0,

by assumption and (12). Consequently for almost all t ∈ (0, T ), vt = 0 for a.e. x ∈ A.
By virtue of Remark 2, we have that v ∈ H

1
0(R

d\A), which combined with (14)
implies that v ∈ H 1

0 (Rd\A) and is the unique solution of the problem Π0(A, ξ, f ).
This proves (i).

Let us fix t ∈ [0, T ]. By (12) there exists a subsequence unkt that converges weakly
to some v′ ∈ L2(R

d). Again, for φ ∈ C∞
c (C) and k large enough, we have that (13)

holds. As k → ∞, the right hand side of (13) converges to the right hand side of (14),
which is equal to (ut , φ), while for our fixed t , the left hand side of (11) converges to
(v′, φ). Hence, v′ = ut on Rd\A. Also if φ ∈ L∞(A)

∫

A
v′φ dx = lim

k→∞

∫

A
unkt φ dx ≤ ‖φ‖L∞(A) lim

k→∞ ‖unkt ‖L2(Rd )|A\Ank |1/2 = 0.
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Therefore v′ = 0 = ut on A. This shows that v′ = ut on Rd and the lemma is proved.
��

As with Lemma 2, we have the following corollary, whose proof is similar to the
one of Corollary 1.

Corollary 2 Suppose that (i) and (iii) from Assumption 2 hold and let un and u be
the solutions of the problems Π(An, ψ

n) and Π(A, ψ). Set un = 1 and u = 1 on An

and A respectively. Then for each t, unt → ut weakly in L2(R
d) as n → ∞.

4 Proofs of Theorems 3 and 4

Proof of Theorem 3 Let us assume for now that Rd\A has smooth boundary, ψ is
compactly supported and smooth. It follows under these extra conditions that u ∈
C∞([0, T ] ×Rd\A). Also, by the De Giorgi-Moser-Nash theorem v is continuous in
(0, T ) × (Rd\PH A).

First notice that 0 ≤ u, v ≤ 1 (see the remark below). Let us extend u = 1 and
v = 1 on A and PH A respectively so that they are defined on the whole Rd , and for a
function f let us use the notation f (x) := f (σH (x)). Clearly it suffices to show that
for each t ∈ (0, T ]

wt := vt + vt − ut − ut ≤ 0, for a.e. x ∈ Hc.

Suppose that the opposite holds, that is,

sup
(0,T ]

sup
Hc

wt (x) = sup
(0,T ]

sup
Rd

wt (x) =: α > 0.

Then we have that

sup
(0,T ]

sup
Γi

wt (x) = α, (15)

for some i ∈ {1, 2, 3, 4}, where

Γ1 :=A ∩ AH ∩ Hc, Γ2 := (A\AH ) ∩ Hc

Γ3 :=(AH\A) ∩ Hc, Γ4 := Hc\(A ∪ AH ).

(Notice that the boundaries of A and AH are of measure zero, since they are smooth).
On Γ1, by definition wt = 0 for any t ∈ [0, T ], and therefore (15) holds for some
i ∈ {2, 3, 4}. Suppose it holds for i = 2. Since the initial conditions are compactly
supported, we can find an open rectangle R with A ∪ AH ⊂ R, such that

sup
(0,T )×Rc

max{ut (x), vt (x)} ≤ α/10. (16)
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Since wt = vt − ut =: ŵt on Γ2 we have

sup
(0,T ]

sup
Θ

ŵt ≥ α, (17)

where Θ = (Hc\AH ) ∩ R. Since

(i) lim sup(0,T )×Θ�(t,x)→(t0,x0) ŵt ≤ 0, for any (t0, x0) ∈ (0, T ) × ∂AH ,
(ii) PHψ − ψ ≤ 0 on Hc,
(iii) inequality (16) holds,

we obtain by virtue of Lemma 1 that for any ε > 0, there exists (t0, x0) ∈ (0, T )×∂H
(in fact x0 ∈ ∂H\AH due to (i) above) such that

lim sup
(0,T )×Θ�(t,x)→(t0,x0)

ŵt ≥ α − ε.

Notice that ŵ is continuous at (t0, x0) and therefore ŵt0(x0) ≥ α − ε. This implies
that

wt0(x0) = 2ŵt0(x0) ≥ 2(α − ε) = 2 sup
(0,T ]

sup
Rd

wt − 2ε,

which is a contradiction for ε small enough . If (15) holds for i = 3 then in the same
way we have that

sup
(0,T ]

sup
Θ ′

w̃t ≥ α, (18)

where w̃t = vt − ut and Θ ′ = (Hc\A) ∩ R. This inequality leads to a similar
contradiction.

Finally let us assume that (15) holds for i = 4. In particular then we have

sup
(0,T ]

sup
G

wt ≥ α, where G := R\(A ∪ AH ).

By virtue of (16), and since PHψ �H ψ , Lemma 1 implies that for any ε > 0, there
exists (t0, x0) ∈ (0, T ] × ∂(A ∪ AH ) such that

lim sup
(0,T )×G�(t,x)→(t0,x0)

wt (x) ≥ α − ε.

Notice that x0 ∈ ∂A∩ Ac
H or x0 ∈ ∂AH ∩ Ac, because if it belongs to ∂A∩ ∂AH then

the lim sup above is less than or equal to zero. Let us consider the first case. We can
assume further that (t0, x0) ∈ ∂A∩Ac

H ∩Hc because of symmetry. Let (tn, xn) ∈ G be
a sequence converging to (t0, x0) such thatwtn (xn) → α−ε. For all n ∈ N sufficiently
large, we have wtn (xn) ≥ α − 2ε and utn (xn) ≥ 1 − ε, the last by the continuity of u
up to the parabolic boundary. Then we have for all n large

α − 2ε ≤ wtn (xn) ≤ vtn (xn) + 1 − (1 − ε) − utn (xn).
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This now implies (17) which we showed leads to a contradiction. For the second case,
we can assume again that (t0, x0) ∈ ∂AH ∩ Ac ∩ Hc. This in the same manner leads
to (18), which also leads to contradiction.

For general A and ψ , let An be a sequence of compact sets such that for n ∈ N,
R
d\An has smooth boundary, A ⊂ An+1 ⊂ An , and A = ∩n An (see e.g. page 60 in

[7]) . Let 0 ≤ ψn ≤ 1 be smooth with compact support such that ψn = 1 on An , and
‖ψn −ψ‖L2(Rd ) → 0 as n → 0. Then we also have that ‖PHψn − PHψ‖L2(Rd ) → 0
as n → 0, PH A ⊂ PH An+1 ⊂ PH An for any n ∈ N, and PH A = ∩n PH An (see
[4]). Let un and vn be the solutions of the problemsΠ(An, ψ

n) andΠ(PH An, PHψn)

respectively. By Lemma 2 we have that unt and vnt converge to ut and vt weakly in
L2(R

d). In particular zn := (unt , v
n
t ) converges weakly to z := (vt , ut ) in L2(R

d;R2).
ByMazur’s lemma there exists a sequence (gk = (g1k , g

2
k ))k∈N of convex combinations

of zn such that the convergence takes place strongly. Then we can find a subsequence
gk(l), l ∈ N, where the convergence takes place for a.e. x ∈ R

d . For each l we have

g1k(l) + g1k(l) =
∑
i∈C

ci (v
i
t + vi t ) ≤

∑
i∈C

ci (u
i
t + ui t ) = g2k(l) + g2k(l)

where C ⊂ N is a finite set and ci ≥ 0,
∑

i∈C ci = 1. Letting l → ∞ finishes the
proof. ��
Remark 3 With ψ and A as in Theorem 3, it is easily seen that if u solves Π(A, ψ)

then 0 ≤ u ≤ 1, if for example Rd\A has Lipschitz boundary. For general A, we can
take An compact such that for all n, Rd\An has smooth boundary, and An ↓ A. Then
the corresponding solutions un satisfy 0 ≤ un ≤ 1, which by virtue of Corollary 1
implies that 0 ≤ u ≤ 1.

Proof of of Theorem 4 First, let us assume that

∫

Rd
ut (x) dx < ∞,

or else the conclusion of the theorem is obviously true. Since |A| > 0, it follows from
[5] that there exist Hi ∈ H, i ∈ N, such that

lim
n→∞

(‖ψ∗ − ψn‖L2(Rd ) + |A∗�An| + d(A∗, An)
) = 0,

where

ψn := PHn ...PH1ψ, An := PHn ...PH1 A.

Let un be the solution of the problemΠ(An, ψ
n). For t ∈ [0, T ], by virtue of Theorem

3, we have by induction

∫

Rd
unt dx ≤

∫

Rd
ut dx, (19)
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for all n ≥ 0. By Lemma 3 (|A| > 0 and thereforeRd\A∗ is obviously a Carathéodory
set) we have that unt → vt weakly in L2(R

d) as n → ∞. Hencewe can find a sequence
of convex combination that converges strongly, and a subsequence of it, let us call it
(vn)∞n=1, such that v

n → vt for a.e. x ∈ R
d . Since for each n, vn is convex combination

of elements from (unt )
∞
n=1, we have by (19)

∫

Rd
vn dx ≤

∫

Rd
ut dx,

which combined with Fatou’s lemma brings the proof to an end. ��
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