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Abstract We prove a comparison theorem for the spatial mass of the solutions of
two exterior parabolic problems, one of them having symmetrized geometry, using
approximation of the Schwarz symmetrization by polarizations, as it was introduced
in Brock and Solynin (Trans Am Math Soc 352(4):1759-1796, 2000). This comparison
provides an alternative proof, based on PDEs, of the isoperimetric inequality for the
Wiener sausage, which was proved in Peres and Sousi (Geom Funct Anal 22(4):1000-
1014, 2012).
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1 Introduction

In the present article we prove a comparison theorem for the spatial mass, at any
time ¢, for the solutions of two parabolic exterior problems, the second being the
“symmetrization” of the first one. In order to do so, we show that the spatial mass of
the solution decreases under polarization, and since the Schwarz symmetrization is
the limit of compositions of polarizations, we carry the comparison to the limit. This
technique was introduced in [4].

Our resultis motivated by a problem in probability theory. Namely, the isoperimetric
inequality for the Wiener sausage, which was proved in [15]. The problem is the
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following. If (w;);>0 is a Wiener process in R?, one wants to minimize the expected
volume of the set U;<7(w; 4+ A), for T > 0, over “all” subsets A of R? of a given
measure. It was proved in [15] that the minimizer is the ball (the result was for a
more general setting, see Sect. 2 below). This was proved by obtaining a similar result
for random walks by using rearrangement inequalities of Brascamp-Lieb-Luttinger
type on the sphere, which were proved in [6], and then by Donsker’s theorem, the
authors obtain the result for the Wiener process. It is known that the expected volume
of the Wiener sausage up to time , can be expressed as the integral over x € R? of the
probability that a Wiener process starting from x € R hits the set A by time ¢. It is also
known that this collection of probabilities, as a function of (¢, x), satisfies a parabolic
equation on (0, T') x R?\ A. For properties of these hitting times and applications to
the Wiener sausage we refer the reader to [3] and references therein, and for the case
of Riemannian manifolds, we refer to [11]. Therefore, we provide an alternative proof
of the isoperimetric inequality for the Wiener sausage, based on PDE techniques.

Comparison results between solutions of partial differential equations and solutions
of their symmetrized counterparts, were first proved in [16]. Since then, much work
has been done in this area, for elliptic and parabolic equations, and we refer the reader
to [2,4,13,14] and references therein. The equations under consideration at these
works, are on a bounded domain, with Dirichlet or Neumann boundary conditions.
Our approach is based on the techniques introduced in [4].

Let us now introduce some notation that will be frequently used throughout the
paper. We denote by R the Euclidean space of dimension 1 < d < oo. For A, B
subsets of R?, we write

A+B:={zeRd|z=x+y,xeA,yeB},

and for x € R? we write x + A := {x} + A. The open centered ball of radius p > 0
in RY will be denoted by B,. Letx € RY and A ¢ R and let H be a closed half-
space. If A is measurable, |A| will stand for the Lebesgue measure of A. We will
write o (x) and Ay for the reflections of x and A respectively, with respect to the
shifted hyperplane 3 H. We will write A and A for the closure and the interior of A
respectively. We will use the notation Py A for the polarization of A with respect to
H, that is

PyA = ((AUAH)mH) U (AmAH).

For a non-negative function u on R? we will write Py u for the polarization of u with
respect to H, that is

max{u(x), u(oy(x))}, ifxe H
min{u(x), u(oy(x))}, ifx € HC.

Pyu(x) = [

We will denote by H the set of all half-spaces H such thatO € H. For positive functions
f and g on RY and for H € H, we will write f <y g, if f(x) + f(og(x)) <
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g(x) + g(og(x)) for a.e. x € H. For a bounded set V C R4, we will denote by
V* the closed, centered ball of volume |V |. For a positive function u on R? such that
{u > r}| < ooforallr > 0, we denote by u* its symmetric decreasing rearrangement.
For an open set D C R? we denote by H 1(D) the space of all functions inu € Ly(D)
whose distributional derivatives d;u := aix,v”’ i=1,.,d,liein L,(D), equipped with
the norm

d
2 2 2
luell3 = luellZ, + D IdiulZ,-
i=1

We will write H(} (D) for the closure of C2°(D) (the space of smooth, compactly
supported real functions on D) in H L(D). We will write H!(D), and H(])(D) for
L>((0, T); HY(D)),and Ly ((0, T); HJ (D)) respectively. Also we define, 57! (D) :=
HY(D)NC([0, T1; L2(D)) and 54! (D) := H{(D)NC([0, T1; L»(D)). The notation
(-, -), will be used for the inner product in Lz(Rd ). Also, the summation convention
with respect to integer valued repeated indices will be in use.

The rest of the article is organized as follows. In Sect. 2 we state our main results. In
Sect. 3 we prove a version of the parabolic maximum principle, and some continuity
properties of the solution map with respect to the set A. These tools are then used in
Sect. 4 in order to prove the main theorems.

2 Main results

Let (2, .%#,P) be a probability space carrying a standard Wiener process (w;);>0
with values in R?, and let A be compact subset of RY. For T > 0 we let us consider
the expected volume of the Wiener sausage generated by A, that is, the quantity
E |U,§T (wy + A) | In [15], the following theorem is proved.

Theorem 1 Forany T > 0 we have
E‘Uth (wt+A*)| SE’UIST (wt+A)|- ()

The result in [15] is stated for open sets A, and the set A is allowed to depend on
time. As it was mentioned above, this was proved by obtaining a similar inequality
for random walks, using rearrangement inequalities of Brascamp-Lieb-Luttinger type
on the sphere, which were proved in [6], and then by using Donsker’s theorem, the
authors obtain the inequality for the Wiener process.

Let us now move to our main result, and see the connection with Theorem 1. For a
compact set A C R?, and for ¢ € L,(R?\A), let us denote by I1(A, ) the problem

dv; = 2 Av; dt in (0, T) x RY\A;
vr(x) =1 on[0,T] x 04; 2)
v(x) =¥ (x) inRNA

Definition 1 We will say that u is a solution of the problem I1(A, ¥) if
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(i) u e A RNA),
(i) for each ¢ € C*(RY\A),

"1
(ur, @) = (V. @) —/0 5 itts, %) ds,

forallt € [0, T']
(i) v—§& € H(l)(]Rd\A), for any & € HO1 (R?) with & = 1 ona compact set A’,
AcCA.
The following is very well known.

Theorem 2 There exists a unique solution of the problem I1(A, V).

If ¥ € Ly(RY), then by IT(A, ) we obviously mean IT(A, Vlra\4)- Our two
main results read as follows.

Theorem 3 Let € Ly(RY) withO < ¢ < 1, ¢ = 1 on A. Letu, v be the solutions of
the problems IT(A, W) and I1(Py A, Py ), extendedto 1 on A and Py A respectively.
Then for all t € [0, T], we have v; <y u;.

Theorem 4 Lety € Ly(RY) withO < ¢ < 1, and = 1 on A. Suppose that |A| > 0.
Let u, v be the solutions of the problems IT(A, V) and IT(A*, y*) respectively . Then

foranyt € [0, T] we have
/ v dx 5/ u; dx, 3)
R4 R4

where u; and v, are extended to 1 on A and A* respectively.

It is easy to check that
E |Ui<r (wr + A)| :/Rd P(t} <1)dx.
where
Ty :=inf{r > 0:x 4+ w, € A}.
It is also known that the unique solution of the problem I7(A, 0) is given by
ur(x) =P(ry <1). (4)

Consequently Theorem 1 follows by Theorem 4 by choosing ¥ = 0 on R\ A, if
|A] > 0.If |A| = 0 then (1) trivially holds.
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Remark 1 All of the arguments in the next sections can be repeated in exactly the same
way, if the operator %A is replaced by an operator of the form L;u := 0; (afj dju),
such that for j,i € {1, ...,d}, aV € Loo((0, T)) (independent of x € R¥), and there
exists a constant k > 0 such that for almost all ¢ € [0, T],

azizj > Kelzl?, (3)

for all z = (z1,...,z4) € R?. Consequently one can replace w, in Theorem 1 by
“non-degenerate” stochastic integrals of the form y; = f(; o, d By where B; is an m-
dimensional Wiener process and o is a measurable function from [0, T'] to the set of
d x m matrices such that (a,atT)f’ =1 satisfies (5).

3 Auxiliary results

In this section we prove some tools that we will need in order to obtain the proof of our
main theorems. Namely, we present a version of the parabolic maximum principle for
functions that are not necessarily continuous up to the parabolic boundary. This result
(Lemma 1 below) is probably well known but we provide a proof for the convenience
of the reader. The maximum principle is the main tool used in order to show the com-
parison of the solution of the problem I7(A, ) and its polarized version. The reason
that we need this version of the maximum principle is that, Py A is not guaranteed
to have any “good” properties, even if d A is of class C*°, and therefore one can not
expect the solution of IT(Py A, Py) to be continuous up to the boundary. We also
present certain continuity properties of the solution map with respect to the set A, so
that we can then iterate Theorem 3 in order to obtain Theorem 4.

In this section we consider @/ € Loo((0, T) x R?) for i,j=1,..,d, and we
assume that there exists a constant k > 0 such that for any z = (z;, ..., 2q) € R? we
have

a (0)zizj > Kzl

fora.e. (¢, x) € [0, T]x R?. We will denote by K := max;_ ; llal/ Iz, - For an open set
Q C R, let ¥ (Q) be the set of functions u € 71 (Q), such that for any ¢ € C(Q)

t ..
(s, $) = (o, &) — /0 (@ dius. 0,9) ds. ©)

for all # € [0, T]. Notice that by the De Giorgi-Moser-Nash theorem, if u € ¥ (Q),
thenu € C((0,T) x Q).

Let us also introduce the functions o, (s), B, (s) and y;,-(s) on R, for » > 0, that will
be needed in the next lemma, given by
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2ifs >r
V() =12if0<s<r
0ifs <0,

ﬁr<s>=/0 yr(t) dt, ar<s)=/0 B d.

For all s € R we have y,(s) — 2Is~q, B,(s) = 2s4 and a,(s) — (s+)2 asr — 0.
Also, for all s € R and r > 0, the following inequalities hold

lyr ()] <2, 1B ()] < 2Is], lar(s)] < 7.

Lemma 1 Let Q be a bounded open set and let u € W (Q). If there exists M € R,
such that ug(x) < M for a.e. x € Q and lim SUP (¢ x)—> (19.x0) u;(x) < M for any
(to, x0) € (0, T] x 0Q, then

sup supu;(x) < M.
t€[0,T] Q

Proof Let us fix t' € (0,T), and let £ € CZ°(Bj) be a positive function with unit
integral. For ¢ > 0 and § > 0, set °(x) = s_lg(x/s) and M® .= M + 8. For
x € Qf := {x € Q|dist(x, Q) > ¢}, we can plug £°(x — -) in (6) in place of ¢ to
obtain

t ..
W) — M = b (x) — M° +/ (@ 3us, 0i5° (x — ) ds,
t/

for all t € [¢/, T], where u® = u x £°. Let also g" € C°(Q) with 0 < g" < 1,
g" =1on Q" g" =0on Q\Q'?" and choose ¢ < 1/2n. We can then multiply
the equation with g", and by the chain rule we have

/ o ((uf — M°)gn) dx = / o ((ufy — MP)gn) dx
0 0

t iy
- / /Q (a2 3;,)° B (g r ((uF — M®)gy) dxds,
t/
By standard arguments (see e.g. [8]), letting ¢ — 0, leads to

/ ar((u; — M%)gy) dx = / ar((uy — M%) gy,) dx
0 0

t ..
— / / gray djusy, (us — M°); (us — M°) dxds
' JQ
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t ..
— / / ay 3jus0ignBr (us — M°)gy) dxds
" JQ
1 g
— / / ag djusyr (g — M°)gy) (g — M°)gy0; gndxds
" JQ
(7
Let us also introduce the notation

UP={x € Qlu/(x)> M +38).

We claim that there exists p > 0 such that dist(U_f, 90Q) > p foranyr € [t/, T].
For each t € [t/, T, we have U_;S C QUIQ. If infsepr 17 dist(m, 00Q) = 0, then
we can find (s, y) € [t/, T] x 80, and a sequence (t,,, x,) € [t/, T] x U,‘i such that
(tn, x,) — (s, y) asn — oo. Then we have by the definition of U‘i,

limsup uy, (x,) > M + 6,
(X tn)—>(5,y)

while by assumption we have that

limsup u;, (x,) < M,
(Xn,tn)—(s,y)

which is a contradiction, and therefore

inf dist(U%,00) =6 > 0. 8)
te[t’,T]

Going back to (7), for any n > 1/6, we have that for all s € [/, T]
/ Byt 0r 8y (ts — MP)gy) dx = / dhusiignfy (s — Mg dx =0,
0 Uy

since 3;g, = 0on Q" and U} c Q'/" by (8). Similarly for the last term on the right
hand side of (7). Therefore, letting n — oo and r — 0 in (7) gives

t ..
e = M°) 117,00 = N1t — M) 1117, 0) — / / a;’ iusdjusl, . s dxds
" JQ
< uy — M8)+||22(Q)-

The above inequality holds for any ¢ € (0, T'], and therefore by letting ¢ | 0 and
using the continuity of u (in L>(Q)) we have

I = M) 1117, 0y < o — M) 117, 0 <O
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since ug < M. Consequently

supu;(x) < M + 6,
0

for any ¢ € [0, T']. Since é was arbitrary, the lemma is proved. O

We now continue with the continuity properties of the solution map. Let us fix £ €
L>(R9) and f € La0,T)x R9). We will say that u solves the problem I1y(A, &, f)
if

(i) u € AR\ A), and

(ii) for each ¢ € C°(R?\A),

t ..
(i, §) = (¢, ) +/0 (s 9) = @ dyus, 9,9)) ds,

forallt € [0, T].

Forn € N, let &” € Ly(RY), f" € Lo((0, T) x R?) and let A, C R? be compact
sets.

Assumption 1

(i) €" — & weakly in Lo (RY)

(i) f" — f weakly in L([0, T1; L2(R?))

(iii)) Ay4+1 C A, Foreachn € N, and N, A, = A.
Lemma 2 Suppose Assumption 1 holds, and let u" and u be the solutions of the
problems I1o(Ay, £", f") and I1o(A, &, f) respectively . Let us extend u™ and u to
zero on A, and A respectively. Then

(1) u™ — u weakly in H(l)(Rd) asn — oo,

(i) uy — u;, weakly in Ly(RY) asn — oo, foranyt € [0,T].
Proof Let us set C, = R?\ A, and C = R9\ A. Clearly, for (i) it suffices to show that
there exists a subsequence with u"* such that u"* — u weakly in H(])(C ). By standard

estimates we have that there exists a constant N depending only on d, K, k, and T,
such that for all n

T T
sup 1?12, ., + / W1y o, i < N(||s"||222(cn)+ / ||f,”||iz(c,,)). ©
t<T 0 0=n 0

Since u" are zero on A,, we can replace C, by C in the above inequality, to obtain
that there exists a subsequence (u"*)72, C H(l)(C ), and a function v € H(l)(C) such
that u"* — v weakly in H(])(C).

For¢ € C° (R%\ A) we have that for all k large enough supp(¢) C Cp, . Also, u"
solves ITo(Ay, , £, f™), and therefore

t ..
ur*, ¢) = (g”k,¢)+/ (( TE ) — (a;fa,-u;?k,aqu)) ds forall 1 € [0, T).
0
(10)
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which by letting k — oo gives
! ..
0 $) = €6+ [ (0 = @0, 0,)) ds forae. € 10.7), (1)

which also holds for any ¢ € H& (C), since C°(C) is dense in the latter. Hence v
belongs to the space %l (D) (by Theorem 2.16 in [12] for example), and is a solution
of ITy(A, &, f). By the uniqueness of the solution we get u = v (as elements of
%l (C)), and this proves (i).

Letus fixr € [0, T]. It suffices to show that there exists a subsequence u:”‘ such that
ufk — u; weakly in L, (C) as k — oo. Notice that by (9), there exists a subsequence
u* which converges weakly to some v’ € Ly(C). Again, for ¢ € C*(C) and k large
enough, we have that (10) holds. As k — o0, the right hand side of (10) converges to
the right hand side of (11) (for our fixed ¢ € [0, T']), which is equal to (u;, ¢), while
the left hand side of (11) converges to (v', ¢). Hence, v' = u; on C, and since u?"
converges weakly in L, (C) to v/, the lemma is proved. O

Corollary 1 Suppose that (i) and (iii) from Assumption 1 hold, and let u™ and u be
the solutions of the problems IT(A,, ¥"™) and I1(A, V). Setu™ = 1 andu = 1 on A,
and A respectively. Then for each t, u} — u; weakly in Ly(RY) as n — oc.

Proof Letg € C*° (RY) with g = 1 onacompact set B such that Ay C B. Thenu" —g
and u — g solve the problems ITy(A,, v" — g, —%Ag) and ITo(A, ¥ — g, —%Ag) and
the result follows by Lemma 2. O

For two subsets of R?, A; and A», we denote by d(A1, A») the Hausdorff distance,
that is

d(A1, A2) =inf {p > 0| A| C (A2 + B,), A» C (A1 + B))}.

In Lemma 3 below we will need the following:

Remark 2 Let A C R? be compact such that R\ Aisa Carathéory set (i.e. d (RY\A) =
IRINA). Ifu € H'(RY) and u = 0 ae. on A, then u € H}(R?\A). To see this,
suppose first that supp(#) C Bg, where R is large enough, so that A C Bpg. It follows
that Bg\ A is a Carathéodory set, and by Theorem 7.3(ii), p. 436 in [9], if u € HOl (BRr),
andu = Oa.e.on A, thenu € HJ (Bg\A), and therefore u € H] (R?\ A). For general
u we can take ¢ € Cfo(Rd), such that 0 < ¢ < 1l and ¢(x) = 1 for |x| < 1, and
set " (x) = ¢(x/n). Then by the previous discussion {"u € H(} (R4\ A) and since
¢"u — uin H'(R?\A) we get thatu € H} (RY\ A).

Assumption 2

(i) " — & weakly in Lo (RY)

(i) f" — f weaklyin L, ([0, T']; Ly (R%))

(iii) d(A, A,) — 0, |A\A,| — 0, as n — oo, and R\ A is a Carathéodory set.
Lemma 3 Suppose Assumption 2 holds, and let u" and u be the solutions of the

problems I1y(A,, E", ") and I[1y(A, &, f). Let us extend u" and u to 0 on A,, and A
respectively. Then
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(1) u™ — u weakly in Hl(]Rd)
(i) u} — u; weakly in Lz(Rd) asn — oo, foranyt € [0, T].

Proof As in the proof of Lemma 2 it suffices to find a subsequences such that the
corresponding convergences take place. By standard estimates, there exists a constant
N depending only on d, k, T and K, such that for all n € N

T T
ny2 ny2 ny2 ny2
[sgg ”ut ”Lz(Rd) +/0 ”ut ”H(}(Rd) dt S N (”é ”Lz(Rd) +/0 ”ft ”Lz(Rd)) .
(12)
Therefore, there exists a subsequence (u"¥)2 | C H(l) (R%), and a function v € H(l) (RY)
such that u"* — v weakly in HJ (R?).

For ¢ € COO(R"\A) since d(A A;) — 0asn — oo, we have that for all &k large
enough supp(¢) C R4 \A,,. Also, u" solves I1y(A,, , £, f"*F), and therefore

t
u'*, ¢) =(§"k,¢)+/ ((f;’k,qs) (@ iu™, a,-¢)) ds, forallte[0,T].
0
(13)

which by letting k — oo gives
4 .
(v, @) = (. 9) + /0 (o 9) = @010, 9,0)) ds forae.r€(0,T], (14

Notice that for ¢ € Loo(A), ¥ € Loo((0, T))

v,qblp, dxdt| = hm u* ¢, dxdt

A\

= TSl Lo 1Vl Loc (0.7 klggo sup [luy“ || ., ey | A\ Ay, |'/* = 0,
t<T

by assumption and (12). Consequently for almostallt € (0, T), v, = Ofora.e.x € A.
By virtue of Remark 2, we have that v € H}(R?\A), which combined with (14)
implies that v € J7) ! (Rd\A) and is the unique solut1on of the problem I1y(A, &, f).
This proves (i).

Letus fix ¢ € [0, T]. By (12) there exists a subsequence u;* that converges weakly
to some v/ € Ly(R?). Again, for ¢ € C2°(C) and k large enough, we have that (13)
holds. As k — oo, the right hand side of (13) converges to the right hand side of (14),
which is equal to (u,, ¢), while for our fixed 7, the left hand side of (11) converges to
(v', ¢). Hence, v' = u; on R\ A. Also if ¢ € Loo(A)

Vg dx = lim [ uf*¢dx < ||¢llra) im uf* ||, ga)A\An|"* = 0.
A k—o00 J A k— 00
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Therefore v/ = 0 = u; on A. This shows that v’ = u; on R and the lemma is proved.
O

As with Lemma 2, we have the following corollary, whose proof is similar to the
one of Corollary 1.

Corollary 2 Suppose that (i) and (iii) from Assumption 2 hold and let u" and u be
the solutions of the problems I1(A,, ™) and I[1(A, ¥). Setu” = landu = 10on A,
and A respectively. Then for each t, u} — u; weakly in Lr(RY) as n — oc.

4 Proofs of Theorems 3 and 4

Proof of Theorem 3 Let us assume for now that R?\ A has smooth boundary, ¥ is
compactly supported and smooth. It follows under these extra conditions that u €
C>®([0, T] x R4 \A). Also, by the De Giorgi-Moser-Nash theorem v is continuous in
0, T) x (R4\ Py A).

First notice that 0 < u, v < 1 (see the remark below). Let us extend # = 1 and
v =1 on A and Py A respectively so that they are defined on the whole R¢, and for a
function f let us use the notation ?(x) := f(og(x)). Clearly it suffices to show that
foreacht € (0, T]

w; i=v, +0; —u; —uy; <0, forae. x € HC.
Suppose that the opposite holds, that is,

sup sup w;(x) = sup supw;(x) =:a > 0.
(0,71 H¢ (0,71 Rd

Then we have that

sup sup wy(x) = «, (15)
O, 71 I3

for some i € {I1, 2, 3, 4}, where

M :=ANAyNH, I:=(A\Ay)NH"
I3 :=(Ag\A) N HS, Ty = H\(AU Ap).

(Notice that the boundaries of A and Ay are of measure zero, since they are smooth).
On I7, by definition w;, = 0 for any ¢ € [0, 7], and therefore (15) holds for some
i € {2,3,4}. Suppose it holds for i = 2. Since the initial conditions are compactly
supported, we can find an open rectangle R with A U Ay C R, such that

sup  max{u,(x), v (x)} < /10. (16)
0,T)xR°
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Since w; = v; — u; =: w; on I» we have

sup sup W; > o, (17)
0.T] 6

where ©® = (H“\Ag) N R. Since

(1) lim sup(O,T)XQB(t,X)—)(t(],X()) u’)[ < O, for any (t(), x()) (S (0, T) X aAH,
(i) Py — ¢ <0on HC,
(iii) inequality (16) holds,
we obtain by virtue of Lemma 1 that for any ¢ > 0, there exists (¢y, xo) € (0, T) x 0 H
(in fact xo € d H\ Ay due to (i) above) such that

lim sup Wy > a — €.
0,T7)xO3(t,x)—(10,x0)

Notice that W is continuous at (f, xo) and therefore Wy, (xo) > o — ¢. This implies
that

Wy, (x0) = 2y, (x0) > 2(ex — €) = 2 sup sup w; — 2¢,
0,7] R4

which is a contradiction for ¢ small enough . If (15) holds for i = 3 then in the same
way we have that

sup sup w; > «, (18)
0,71 ©

where W, = v, — u; and ® = (H\A) N R. This inequality leads to a similar
contradiction.
Finally let us assume that (15) holds for i = 4. In particular then we have

sup sup w; > o, where G := R\(AU Ap).
0,71 G

By virtue of (16), and since Py <\g ¥, Lemma 1 implies that for any ¢ > 0, there
exists (fp, xg) € (0, T] x 9(A U Ag) such that

lim sup w(x) > a—e.
(0,T)xG>(t,x)—(t9,x0)

Notice that xg € AN AY,; or xg € dAy N A€, because if it belongs to A N9 Ay then
the lim sup above is less than or equal to zero. Let us consider the first case. We can
assume further that (t, xo) € 9 AN A%, N H€ because of symmetry. Let (#,, x,) € G be
a sequence converging to (fo, xo) such that w;, (x,) — o —¢.Foralln € N sufficiently
large, we have wy, (x,) > o — 2¢ and u;, (x,) > 1 — &, the last by the continuity of u
up to the parabolic boundary. Then we have for all n large

a — 28 < wy, (xp) < vy, () + 1 = (1 — &) —uy, (xp).
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This now implies (17) which we showed leads to a contradiction. For the second case,
we can assume again that (7, xo) € 0Ay N A° N HC. This in the same manner leads
to (18), which also leads to contradiction.

For general A and , let A, be a sequence of compact sets such that for n € N,
Rd\An has smooth boundary, A C A,+1 C A,, and A = N, A, (see e.g. page 60 in
[7D . Let 0 < ¥ < 1 be smooth with compact support such that " = 1 on A,, and
V" =¥l ey — 0asn — 0. Then we also have that || Py " — Py /| 1, ray — O
asn — 0, PyA C PyA,4y1 C PgA, foranyn € N, and PgA = N, Py A, (see
[4]). Let u™ and v" be the solutions of the problems I7(A,,, ¥") and IT1(Py A,, Puy,)
respectively. By Lemma 2 we have that u} and v}’ converge to u; and v; weakly in
L>(R4). In particular z" := (uf, v') converges weakly to z := (v, u;) in Ly (R%: R?).
By Mazur’s lemma there exists a sequence (g = (g,l, g,%)) reN of convex combinations
of z”* such that the convergence takes place strongly. Then we can find a subsequence
gk()» | € N, where the convergence takes place for a.e. x € RY. For each [ we have

g/l([) + g;l([) = Zci(vf +v') < Zci(ui +uiy) = g/%([) + g]%(])
ieC ieC

where C C N is a finite set and ¢; > 0, ZieC ¢i = 1. Letting [ — oo finishes the
proof. O

Remark 3 With ¢ and A as in Theorem 3, it is easily seen that if u solves IT(A, ¥)
then 0 < u < 1, if for example R?\ A has Lipschitz boundary. For general A, we can
take A, compact such that for all n, Rd\An has smooth boundary, and A,, | A. Then
the corresponding solutions u” satisfy 0 < u” < 1, which by virtue of Corollary 1
implies that 0 < u < 1.

Proof of of Theorem 4 First, let us assume that

/ u;(x) dx < o0,
Rd

or else the conclusion of the theorem is obviously true. Since |A| > 0, it follows from
[5] that there exist H; € H, i € N, such that

im (" = 9",y + AT AAL] + (A", A) =0,
where
1//” = Py,..Pu Y, A, = Py,...Py A.

Let u” be the solution of the problem I7(A,,, ¥").Fort € [0, T], by virtue of Theorem

3, we have by induction
/ u} dx 5/ u; dx, (19)
R4 R4
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foralln > 0. By Lemma 3 (|A| > 0 and therefore R¢\ A* is obviously a Carathéodory
set) we have that u} — v; weaklyin Lo (R9) asn — oo. Hence we can find a sequence
of convex combination that converges strongly, and a subsequence of it, let us call it
(v”)fl":l ,such thatv” — v, fora.e.x € R4, Since for each i, v" is convex combination
of elements from (u})°° ,, we have by (19)

n=1>
/ v dx 5/ u; dx,
R4 R4

which combined with Fatou’s lemma brings the proof to an end. O
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