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ON TAMED EULER APPROXIMATIONS OF SDES DRIVEN BY

LÉVY NOISE WITH APPLICATIONS TO DELAY EQUATIONS∗

KONSTANTINOS DAREIOTIS† , CHAMAN KUMAR‡, AND SOTIRIOS SABANIS‡

Abstract. We extend the taming techniques for explicit Euler approximations of stochastic
differential equations driven by Lévy noise with superlinearly growing drift coefficients. Strong
convergence results are presented for the case of locally Lipschitz coefficients. Moreover, rate of
convergence results are obtained in agreement with classical literature when the local Lipschitz
continuity assumptions are replaced by global assumptions and, in addition, the drift coefficients
satisfy polynomial Lipschitz continuity. Finally, we further extend these techniques to the case of
delay equations.
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superlinear growth, SDEs driven by Lévy noise, delay equations
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1. Introduction. In economics, finance, medical sciences, ecology, engineering,
and many other branches of science, one often encounters problems which are influ-
enced by event-driven uncertainties. For example, in finance, the unpredictable na-
ture of important events such market crashes, announcements made by central banks,
changes in credit ratings, defaults, etc., might have sudden and significant impacts
on the stock price movements. Stochastic differential equations (SDEs) with jumps,
or more precisely SDEs driven by Lévy noise, have been widely used to model such
event-driven phenomena. The interested reader may refer, for example, to [3, 18, 23]
and references therein.

Many such SDEs do not have explicit solutions, and therefore one requires nu-
merical schemes so as to approximate their solutions. Over the past few years, several
explicit and implicit schemes of SDEs driven by Lévy noise have been studied and
results on their strong and weak convergence have been proved. For a comprehensive
discussion on these schemes, one could refer to [2, 8, 9, 14, 20] and references therein.

It is also known, however, that the computationally efficient explicit Euler schemes
of SDEs (even without jumps) may not convergence in strong (Lq) sense when the drift
coefficients are allowed to grow superlinearly; see, for example, [11]. The development
of tamed Euler schemes was a recent breakthrough in order to address this problem;
one may consult [12, 21] as well as [10, 22, 24] and references therein for a thorough
investigation of the subject.

In this article, we propose explicit tamed Euler schemes to numerically solve SDEs
with random coefficients driven by Lévy noise. The taming techniques developed here
allow one to approximate these SDEs with drift coefficients that grow superlinearly.
By adopting the approach of [21], we prove strong convergence in (uniform) Lq sense
of these tamed schemes by assuming one-sided local Lipschitz condition on drift and
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TAMED EULER APPROXIMATIONS OF LÉVY DRIVEN SDEs 1841

local Lipschitz conditions on both diffusion and jump coefficients. Moreover, our
technical calculations are more refined than those of [12, 21] in that we develop new
techniques to overcome the challenges arising due to jumps. In addition, explicit
formulations of the tamed Euler schemes are presented at the end of section 3 for the
case of SDEs driven by Lévy noise which have nonrandom coefficients.

To the best of the authors’ knowledge, the results obtained in this article are
the first for the case of superlinear coefficients in this area. Moreover, the techniques
developed here allow for further investigation of convergence properties of higher order
explicit numerical schemes for SDEs driven by Lévy noise with superlinear coefficients.

As an application of our approach which considers random coefficients, we also
present in this article uniform Lq convergence results of explicit tamed Euler schemes
for the case of stochastic delay differential equations (SDDEs) driven by Lévy noise.
The link between delay equations and random coefficients utilizes ideas from [7]. The
aforementioned results are derived under the assumptions of one-sided local Lipschitz
condition on drift and local Lipschitz conditions on both diffusion and jump coeffi-
cients with respect to nondelay variables, whereas these coefficients are only asked
to be continuous with respect to arguments corresponding to delay variables. It is
worth mentioning here that our approach allows one to use our schemes to approxi-
mate SDDEs with jumps when drift coefficients can have superlinear growth in both
delay and nondelay arguments. Thus, the proposed tamed Euler schemes provide sig-
nificant improvements over the existing results available on numerical techniques of
SDDEs, for example, [1, 15]. It should also be noted that, by adopting the approach
of [7], we prove the existence of a unique solution to the SDDEs driven by Lévy noise
under more relaxed conditions than those existing in the literature, for example, [13],
whereby we ask for the local Lipschitz continuity only with respect to the nondelay
variables.

Finally, rate of convergence results are obtained (which are in agreement with
classical literature) when the local Lipschitz continuity assumptions are replaced by
global assumptions and, in addition, the drift coefficients satisfy polynomial Lipschitz
continuity. Similar results are also obtained for delay equations when the following
assumptions hold—(a) drift coefficients satisfy one-sided Lipschitz and polynomial
Lipschitz conditions in nondelay variables whereas polynomial Lipschitz conditions in
delay variables and (b) diffusion and jump coefficients satisfy Lipschitz conditions in
nondelay variables whereas polynomial Lipschitz conditions in delay variables. This
finding is itself a significant improvement over recent results in the area; see, for
example, [1] and references therein.

We conclude this section by introducing some basic notation. For a vector x ∈ R
d,

we write |x| for its Euclidean norm, and for a d × m matrix σ, we write |σ| for its
Hilbert–Schmidt norm and σ∗ for its transpose. Also for x, y ∈ R

d, xy denotes the
inner product of these two vectors. Further, the indicator function of a set A is
denoted by IA, whereas [x] stands for the integer part of a real number x. Let P be
the predictable sigma-algebra on Ω×R+ and B(V ), the sigma-algebra of Borel sets of
a topological space V . Also, let T > 0 be fixed and L

p denote the set of nonnegative

measurable functions g on [0, T ], such that
∫ T

0 |gt|
pdt < ∞. Finally, for a random

variable X , the notation X ∈ Lp means E|X |p < ∞.

2. SDE with random coefficients driven by Lévy noise. Let us assume
that (Ω, {Ft}t≥0,F , P ) denotes a probability space equipped with a filtration {Ft}t≥0

which is assumed to satisfy the usual conditions, i.e., F0 contains all P -null sets and
the filtration is right continuous. Let w be an R

m-valued standard Wiener process.
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1842 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

Further assume that (Z,Z , ν) is a σ-finite measure space and N(dt, dz) is a Poisson
random measure defined on (Z,Z , ν) with intensity ν �≡ 0. (In the case ν ≡ 0, one
could consult [21].) Also let the compensated poisson random measure be denoted by
Ñ(dt, dz) := N(dt, dz)− ν(dz)dt.

Let bt(x) and σt(x) be P⊗B(Rd)-measurable functions which, respectively, take
values in R

d and R
d×m. Further assume that γt(x, z) is P ⊗B(Rd)⊗Z -measurable

function which takes values in R
d. Also assume that t0 and t1 are fixed constants

satisfying 0 ≤ t0 < t1 ≤ T .
We consider the SDE

dxt = bt(xt)dt+ σt(xt)dwt +

∫

Z

γt(xt, z)Ñ(dt, dz)(2.1)

almost surely for any t ∈ [t0, t1] with initial value xt0 which is an Ft0 -measurable
random variable in R

d.

Remark 2.1. For notational convenience, we write xt instead of xt− on the right-
hand side of the above equation. This does not cause any problem since the com-
pensators of the martingales driving the equation are continuous. This notational
convention shall be adopted throughout this article.

Remark 2.2. In this article, we use K > 0 to denote a generic constant which
varies at different occurrences.

The proof for the following lemma can be found in [16].

Lemma 2.1. Let r ≥ 2. There exists a constant K, depending only on r, such
that for every real-valued, P ⊗ Z -measurable function g satisfying

∫ T

0

∫

Z

|gt(z)|
2ν(dz)dt < ∞

almost surely, the following estimate holds:

E sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

∫

Z

gs(z)Ñ(ds, dz)

∣

∣

∣

∣

r

≤ KE

(

∫ T

0

∫

Z

|gt(z)|
2ν(dz)dt

)r/2

+KE

∫ T

0

∫

Z

|gt(z)|
rν(dz)dt.(2.2)

It is known that if 1 ≤ r ≤ 2, then the second term in (2.2) can be dropped.

2.1. Existence and uniqueness. Let A denote the class of nonnegative pre-
dictable processes L := (Lt)t∈[0,T ] such that

∫ T

0

Ltdt < ∞

for almost every ω ∈ Ω.
For the purpose of this section, the set of assumptions are listed below.

A-1. There exists an M ∈ A such that

xbt(x) + |σt(x)|
2 +

∫

Z

|γt(x, z)|
2ν(dz) ≤ Mt(1 + |x|2)

almost surely for any t ∈ [t0, t1] and x ∈ R
d.
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A-2. For every R > 0, there exists an M(R) ∈ A such that

(x− x̄) (bt(x)− bt(x̄)) + |σt(x)− σt(x̄)|
2 +

∫

Z

|γt(x, z)− γt(x̄, z)|
2ν(dz)

≤ Mt(R)|x− x̄|2

almost surely for any t ∈ [t0, t1] whenever |x|, |x̄| ≤ R.

A-3. For any t ∈ [t0, t1] and ω ∈ Ω, the function bt(x) is continuous in x ∈ R
d.

The proof for the following theorem can be found in [6].

Theorem 2.2. Let assumptions A-1 to A-3 be satisfied. Then, there exists a
unique solution to SDE (2.1).

2.2. Moment bounds. We make the following assumptions on the coefficients
of SDE (2.1).

A-4. For a fixed p ≥ 2, E|xt0 |
p < ∞.

A-5. There exist a constant L > 0 and a nonnegative random variable M satis-
fying EM

p
2 < ∞ such that

xbt(x) ∨ |σt(x)|
2 ∨

∫

Z

|γt(x, z)|
2ν(dz) ≤ L(M + |x|2)

almost surely for any t ∈ [t0, t1] and x ∈ R
d.

A-6. There exist a constant L > 0 and a nonnegative random variable M ′ satis-
fying EM ′ < ∞ such that

∫

Z

|γt(x, z)|
pν(dz) ≤ L(M ′ + |x|p)

almost surely for any t ∈ [t0, t1] and x ∈ R
d.

The following is probably well known. However, the proof is provided for the
sake of completeness and for the justification of finiteness of the right-hand side when
applying Gronwall’s lemma, something that is missing from the existing literature.

Lemma 2.3. Let assumptions A-2 to A-6 be satisfied. Then there exists a unique
solution (xt)t∈[t0,t1] of SDE (2.1) and the following estimate holds:

E sup
t0≤t≤t1

|xt|
p ≤ K

with K := K(t0, t1, L, p, E|xt0 |
p, EM

p
2 , EM ′).

Proof. The existence and uniqueness of solution to SDE (2.1) follows immediately
from Theorem 2.2 by noting that due to assumption A-5, assumption A-1 is satisfied.
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1844 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

Let us first define the stopping time πR := inf{t ≥ t0 : |xt| > R} ∧ t1, and notice
that |xt−| ≤ R for t0 ≤ t ≤ πR. By Itô’s formula,

|xt|
p = |xt0 |

p + p

∫ t

t0

|xs|
p−2xsbs(xs)ds+ p

∫ t

t0

|xs|
p−2xsσs(xs)dws

+
p(p− 2)

2

∫ t

t0

|xs|
p−4|σ∗

s (xs)xs|
2ds+

p

2

∫ t

t0

|xs|
p−2|σs(xs)|

2ds

+ p

∫ t

t0

∫

Z

|xs|
p−2xsγs(xs, z)Ñ(ds, dz)

+

∫ t

t0

∫

Z

{|xs + γs(xs, z)|
p − |xs|

p − p|xs|
p−2xsγs(xs, z)}N(ds, dz)(2.3)

almost surely for any t ∈ [t0, t1]. By virtue of assumption A-5 and Young’s inequality,
one can estimate the second, fourth, and fifth terms of (2.3) by

KM
p
2 +K

∫ t

t0

|xs|
pds.(2.4)

Further, since the map y → |y|p is of class C2, by the formula for the remainder, for
any y1, y2 ∈ R

d, one gets

|y1 + y2|
p − |y1|

p − p|y1|
p−2y1y2 ≤ K

∫ 1

0

|y1 + qy2|
p−2|y2|

2dq

≤ K(|y1|
p−2|y2|

2 + |y2|
p).(2.5)

Hence the last term of (2.3) can be estimated by

K

∫ t

t0

∫

Z

{|xs|
p−2|γs(xs, z)|

2 + |γs(xs, z)|
p} N(ds, dz).(2.6)

One substitutes the estimates from (2.4) and (2.6) in (2.3), which by taking suprema
over [t0, u ∧ πR] for u ∈ [t0, t1] and expectations gives

E sup
t0≤t≤u∧πR

|xt|
p ≤ E|xt0 |

p +KEM
p
2 +KE

∫ u∧πR

t0

|xs|
pds

+ pE sup
t0≤t≤u∧πR

∣

∣

∣

∣

∫ t

t0

|xs|
p−2xsσs(xs)dws

∣

∣

∣

∣

+ pE sup
t0≤t≤u∧πR

∣

∣

∣

∣

∫ t

t0

∫

Z

|xs|
p−2xsγs(xs, z)Ñ(ds, dz)

∣

∣

∣

∣

+KE

∫ u∧πR

t0

∫

Z

{|xs|
p−2|γs(xs, z)|

2 + |γs(xs, z)|
p} N(ds, dz)

=: C1 + C2 + C3 + C4 + C5.(2.7)

Here C1 := E|xt0 |
p + KEM

p
2 . By the Burkholder–Davis–Gundy inequality, C3 can

be estimated as

C3 = pE sup
t0≤t<u∧πR

∣

∣

∣

∣

∫ t

t0

|xs−|
p−2xs−σs(xs−)dws

∣

∣

∣

∣

≤ KE sup
t0≤t≤u∧πR

|xt−|
p−1

(
∫ u∧πR

t0

|σs(xs−)|
2ds

)1/2

,
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which on the application of Young’s inequality gives

C3 ≤
1

4
E sup

t0≤t≤u∧πR

|xt−|
p +KE

(
∫ u∧πR

t0

|σs(xs)|
2ds

)p/2

,

and then due to Hölder’s inequality and assumption A-5, one has

C3 ≤
1

4
E sup

t0≤t≤u∧πR

|xt−|
p +KEM

p
2 +KE

∫ u∧πR

t0

|xr|
pds < ∞.(2.8)

To estimate C4, one uses Lemma 2.1 to write

C4 := pE sup
t0≤t≤u∧πR

∣

∣

∣

∣

∫ t

t0

∫

Z

|xs−|
p−2xs−γs(xs−, z)Ñ(ds, dz)

∣

∣

∣

∣

≤ KE

(
∫ u∧πR

t0

∫

Z

|xs−|
2p−2|γs(xs−, z)|

2ν(dz)ds

)

1
2

≤ KE sup
t0≤t≤u∧πR

|xt−|
p−1

(
∫ u∧πR

t0

∫

Z

|γs(xs, z)|
2ν(dz)ds

)

1
2

,

which due to Young’s inequality, assumption A-5, and Hölder’s inequality implies

C4 ≤
1

4
E sup

t0≤t≤u∧πR

|xt−|
p +KEM

p
2 +KE

∫ u∧πR

t0

|xr|
pds < ∞.(2.9)

For C5, by assumptions A-5 and A-6 and Young’s inequality,

C5 := KE

∫ u∧πR

t0

∫

Z

(

|xs|
p−2|γs(xs, z)|

2 + |γs(xs, z)|
p
)

ν(dz)ds

≤ KE

∫ u∧πR

t0

{

|xs|
p−2(M + |xs|

2) +M ′ + |xs|
p
}

ds

≤ KEM
p
2 +KEM ′ + EK

∫ u∧πR

t0

|xr|
pds < ∞.(2.10)

By substituting the estimates from (2.8)–(2.10) in (2.7), one has

E sup
t0≤t≤u∧πR

|xt|
p ≤ K +

1

2
E sup

t0≤t≤u∧πR

|xt−|
p +KE

∫ u∧πR

t0

|xr|
pds < ∞(2.11)

for any u ∈ [t0, t1]. In particular we obtain

E sup
t0≤t≤t1∧πR

|xt|
p < ∞.

Since it holds that

E sup
t0≤t≤u∧πR

|xt−|
p ≤ E sup

t0≤t≤u∧πR

|xt|
p,

by rearranging in (2.11), we obtain

E sup
t0≤t≤u∧πR

|xt|
p ≤ K +KE

∫ u∧πR

t0

|xr |
pds

≤ K + E

∫ u

t0

sup
t0≤t≤s∧πR

|xt|
pds < ∞.(2.12)

From here we can finish the proof by Gronwall’s and Fatou’s lemmas.
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3. Tamed Euler scheme. For every n ∈ N, let bnt (x) and σn
t (x) are P⊗B(Rd)-

measurable functions which, respectively, take values in R
d and R

d×m. Also, for every
n ∈ N, let γn

t (x, z) be a P ⊗ B(Rd) ⊗ Z -measurable function which takes values in
R

d. For every n ∈ N, we consider a scheme of SDE (2.1) as defined below,

dxn
t = bnt (x

n
κ(n,t))dt+ σn

t (x
n
κ(n,t))dwt +

∫

Z

γn
t (x

n
κ(n,t), z)Ñ(dt, dz),(3.1)

almost surely for any t ∈ [t0, t1], where the initial value xn
t0 is an Ft0 -measurable

random variable which takes values in R
d and function κ is defined by

κ(n, t) :=
[n(t− t0)]

n
+ t0(3.2)

for any t ∈ [t0, t1].

3.1. Moment bounds. We make the following assumptions on the coefficients
of the scheme (3.1).

B-1. We have supn∈N E|xn
t0 |

p < ∞.

B-2. There exist a constant L > 0 and a sequence (Mn)n∈N of nonnegative ran-

dom variables satisfying supn∈N
EM

p
2
n < ∞ such that

xbnt (x) ∨ |σn
t (x)|

2 ∨

∫

Z

|γn
t (x, z)|

2ν(dz) ≤ L(Mn + |x|2)

almost surely for any t ∈ [t0, t1], n ∈ N, and x ∈ R
d.

B-3. There exist a constant L > 0 and a sequence (M ′
n)n∈N of nonnegative ran-

dom variables satisfying supn∈N
EM ′

n < ∞ such that

∫

Z

|γn
t (x, z)|

pν(dz) ≤ L(M ′
n + |x|p)

almost surely for any t ∈ [t0, t1], n ∈ N, and x ∈ R
d.

Below is our taming assumption on drift coefficient of scheme (3.1) following the
approach of [21].

B-4. For any t ∈ [t0, t1] and x ∈ R
d,

|bnt (x)| ≤ nθ

almost surely with θ ∈ (0, 1
2 ] for every n ∈ N.

Remark 3.1. Note that due to B-4, for each n ≥ 1, the norm of bn is a bounded
function of t and x which along with B-1 and B-2 guarantee the existence of a unique
solution to (3.1). Moreover, they also guarantee that for each n ≥ 1,

E sup
0≤t≤T

|xn
t |

p < ∞.

Clearly, one cannot claim at this point that this bound is independent of n. Never-
theless, as a result of this observation, one need not apply stopping time arguments,
similar to the one used in the proof of Lemma 2.3, in the proofs of Lemmas 3.1 and
3.2 mentioned below.
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Lemma 3.1. Let assumptions B-2 to B-4 hold. Then

∫ u

t0

E|xn
t − xn

κ(n,t)|
pdt ≤ Kn−1 +Kn−1

∫ u

t0

E|xn
κ(n,t)|

pdt

for any u ∈ [t0, t1] with K := K(t0, t1, L, p, supn∈N EM
p
2
n , supn∈N EM ′

n), which does
not depend on n.

Proof. From the definition of scheme (3.1), one writes

E|xn
t − xn

κ(n,t)|
p ≤ KE

∣

∣

∣

∣

∣

∫ t

κ(n,t)

bns (x
n
κ(n,s))ds

∣

∣

∣

∣

∣

p

+KE

∣

∣

∣

∣

∣

∫ t

κ(n,t)

σn
s (x

n
κ(n,s))dws

∣

∣

∣

∣

∣

p

+KE

∣

∣

∣

∣

∣

∫ t

κ(n,t)

∫

Z

γn
s (x

n
κ(n,s), z)Ñ(ds, dz)

∣

∣

∣

∣

∣

p

,

which on the application of Hölder’s inequality and an elementary stochastic inequal-
ities gives

E|xn
t − xn

κ(n,t)|
p ≤ Kn−(p−1)E

∫ t

κ(n,t)

|bns (x
n
κ(n,s))|

pds

+KE

(

∫ t

κ(n,t)

|σn
s (x

n
κ(n,s))|

2ds

)

p
2

+KE

(

∫ t

κ(n,t)

∫

Z

|γn
s (x

n
κ(n,s), z)|

2ν(dz)ds

)

p
2

+KE

∫ t

κ(n,t)

∫

Z

|γn
s (x

n
κ(n,s), z)|

pν(dz)ds.

On using assumptions B-2, B-3, and B-4, one obtains

E|xn
t − xn

κ(n,t)|
p ≤ K

(

n−p(1−θ) + n− p
2 E(Mn + |xn

κ(n,t)|
2)

p
2 + n−1E(M ′

n + |xn
κ(n,t)|

p)
)

,

which completes the proof by noticing that θ ∈ (0, 1
2 ] and p ≥ 2.

Lemma 3.2. Let assumptions B-1 to B-4 be satisfied. Then,

sup
n∈N

E sup
t0≤t≤t1

|xn
t |

p ≤ K

with K := K(t0, t1, L, p, supn∈N E|xn
t0 |

p, supn∈N EM
p
2
n , supn∈N EM ′

n), which is inde-
pendent of n.
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Proof. By the application of Itô formula, one gets

|xn
t |

p = |xn
t0 |

p + p

∫ t

t0

|xn
s |

p−2xn
s b

n
s (x

n
κ(n,s))ds+ p

∫ t

t0

|xn
s |

p−2xn
s σ

n
s (x

n
κ(n,s))dws

+
p(p− 2)

2

∫ t

t0

|xn
s |

p−4|σn∗
s (xn

κ(n,s))x
n
s |

2ds+
p

2

∫ t

t0

|xn
s |

p−2|σn
s (x

n
κ(n,s))|

2ds

+ p

∫ t

t0

∫

Z

|xn
s |

p−2xn
s γ

n
s (x

n
κ(n,s), z)Ñ(ds, dz)

+

∫ t

t0

∫

Z

{|xn
s + γn

s (x
n
κ(n,s), z)|

p − |xn
s |

p − p|xn
s |

p−2xn
s γ

n
s (x

n
κ(n,s), z)}N(ds, dz)

(3.3)

almost surely for any t ∈ [t0, t1]. In order to estimate second term of (3.3), one writes

xn
s b

n
s (x

n
κ(n,s)) = (xn

s − xn
κ(n,s))b

n
s (x

n
κ(n,s)) + xn

κ(n,s)b
n
s (x

n
κ(n,s)),

which due to assumption B-2 and (3.1) gives

xn
s b

n
s (x

n
κ(n,s)) ≤ |bns (x

n
κ(n,s))|

{∣

∣

∣

∣

∣

∫ s

κ(n,s)

bnr (x
n
κ(n,r))dr

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

}

,

+K(Mn + |xn
κ(n,s)|

2)

and then assumption B-4 implies

xn
s b

n
s (x

n
κ(n,s)) ≤ n2θ−1 + nθ

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

+ nθ

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

+K(Mn + |xn
κ(n,s)|

2)

almost surely for any s ∈ [t0, t1]. By using the fact that θ ∈ (0, 1/2] implies 2θ−1 ≤ 0,
one obtains

|xn
s |

p−2xn
s b

n
s (x

n
κ(n,s)) ≤ |xn

s |
p−2 + nθ|xn

s |
p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

+ nθ|xn
s |

p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

+K|xn
s |

p−2(Mn + |xn
κ(n,s)|

2),

which on using Young’s inequality along with the inequality |xn
s |

p−2 ≤ 2p−3|xn
s −
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xn
κ(n,s)|

p−2 + 2p−3|xn
κ(n,s)|

p−2 gives

|xn
s |

p−2xn
s b

n
s (x

n
κ(n,s)) ≤ 1 +K|xn

s |
p +Knθ p

2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

p
2

+Knθ|xn
κ(n,s)|

p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

+Knθ|xn
s − xn

κ(n,s)|
p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

+K(M
p
2
n + |xn

κ(n,s)|
p)(3.4)

almost surely for any s ∈ [t0, t1]. Therefore, by substituting estimates from (2.5) and
(3.4) into (3.3), one obtains for u ∈ [t0, t1],

E sup
t0≤t≤u

|xn
t |

p

≤ E|xn
t0 |

p +K +KE

∫ u

t0

|xn
s |

pds

+Knθ p
2 E

∫ u

t0

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

p
2

ds

+KnθE

∫ u

t0

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

|xn
κ(n,s)|

p−2γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

ds

+KnθE

∫ u

t0

|xn
s − xn

κ(n,s)|
p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

ds

+KE

∫ u

t0

(M
p
2
n + |xn

κ(n,s)|
p)ds

+ pE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

|xn
s |

p−2xn
s σ

n
s (x

n
κ(n,s))dws

∣

∣

∣

∣

+KE

∫ u

t0

|xn
s |

p−2|σn
s (x

n
κ(n,s))|

2ds

+ pE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|xn
s |

p−2xn
s γ

n
s (x

n
κ(n,s), z)Ñ(ds, dz)

∣

∣

∣

∣

+ E

∫ u

t0

∫

Z

{|xn
s |

p−2|γn
s (x

n
κ(n,s), z)|

2 + |γn
s (x

n
κ(n,s), z)|

p}N(ds, dz)

=: E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10.(3.5)

Here E1 := E|xn
t0 |

p +K. One estimates E2 by

E2 := KE

∫ u

t0

|xn
s |

pds ≤ K

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.6)

D
o

w
n
lo

ad
ed

 0
6
/2

2
/1

6
 t

o
 1

3
0
.2

3
8
.5

1
.2

3
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1850 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

In order to estimate E3, one applies an elementary stochastic inequality to obtain

E3 := Knθ p
2 E

∫ u

t0

∣

∣

∣

∣

∣

∫ s

κ(n,s)

σn
r (x

n
κ(n,r))dwr

∣

∣

∣

∣

∣

p
2

ds

≤ Knθ p
2

∫ u

t0

E

(

∫ s

κ(n,s)

|σn
r (x

n
κ(n,r))|

2dr

)

p
4

ds,

and then on the application of assumption B-2, one obtains

E3 ≤ Kn
p
2 (θ−

1
2 )

∫ u

t0

E(Mn + |xn
κ(n,s)|

2)
p
4 ds,

which, by noting that p
2 (θ −

1
2 ) ∈ (− p

4 , 0], implies

E3 ≤ K

∫ u

t0

E{1 + (Mn + |xn
κ(n,s)|

2)
p
2 }ds ≤ K +

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.7)

By Lemma 2.1, one estimates E4 as

E4 := KnθE

∫ u

t0

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

|xn
κ(n,s)|

p−2γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

ds

≤ Knθ

∫ u

t0

E

(

∫ s

κ(n,s)

∫

Z

|xn
κ(n,s)|

2p−4|γn
r (x

n
κ(n,r), z)|

2ν(dz)dr

)
1
2

ds,

which due to assumption B-2 gives

E4 ≤ KE sup
t0≤s≤u

|xn
s |

p−2nθ− 1
2

∫ u

t0

(Mn + |xn
κ(n,s)|

2)
1
2 ds,

and then on using Young’s inequality and Hölder’s inequality, one obtains

E4 ≤
1

8
E sup

t0≤s≤u
|xn

s |
p +Kn

p
2 (θ−

1
2 )E

∫ u

t0

(Mn + |xn
κ(n,s)|

2)
p
4 ds.

By noticing that θ ∈ (0, 1
2 ], one has

E4 ≤
1

8
E sup

t0≤s≤u
|xn

s |
p +KE

∫ u

t0

{1 + (Mn + |xn
κ(n,s)|

2)
p
2 }ds.

≤
1

8
E sup

t0≤s≤u
|xn

s |
p +K +K

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.8)

Further, to estimate E5, one uses Young’s inequality and Hölder’s inequality to write

E5 := KnθE

∫ u

t0

|xn
s − xn

κ(n,s)|
p−2

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

ds

≤ Knθ

∫ u

t0

E|xn
s − xn

κ(n,s)|
pds+Knθ

∫ u

t0

E

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

p
2

ds

≤ Knθ

∫ u

t0

E|xn
s − xn

κ(n,s)|
pds+ 1

+Kn2θ

∫ u

t0

E

∣

∣

∣

∣

∣

∫ s

κ(n,s)

∫

Z

γn
r (x

n
κ(n,r), z)Ñ(dr, dz)

∣

∣

∣

∣

∣

p

ds,
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which on the application of Lemmas 2.1 and 3.1 implies

E5 ≤ 1 +Knθ−1 +Knθ−1

∫ u

t0

E|xn
κ(n,s)|

pds

+Kn2θ

∫ u

t0

E

(

∫ s

κ(n,s)

∫

Z

|γn
r (x

n
κ(n,r), z)|

2ν(dz)dr

)

p
2

ds

+Kn2θ

∫ u

t0

E

∫ s

κ(n,s)

∫

Z

|γn
r (x

n
κ(n,r), z)|

pν(dz)drds.

By using assumptions B-2 and B-3, one obtains

E5 ≤ 1 +Knθ−1 +Knθ−1

∫ u

t0

E|xn
κ(n,s)|

pds+Kn2θ−p
2

∫ u

t0

E
(

Mn + |xn
κ(n,s)|

2
)

p
2 ds

+Kn2θ−1

∫ u

t0

E(M ′
n + |xn

κ(n,s)|
p)ds.

Notice that 2θ − 1 ∈ (−1, 0] and p ≥ 2. Hence one has

E5 ≤ K +KEM
p
2
n + EM ′

n +K

∫ u

t0

E|xn
κ(n,s)|

pds ≤ K +K

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.

(3.9)

It is easy to observe that E6 can be estimated by

E6 := KE

∫ u

t0

(M
p
2
n + |xn

κ(n,s)|
p)ds ≤ K +K

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.10)

By using the Burkholder–Davis–Gundy inequality and assumption B-2, one obtains
the following estimates of E7:

E7 := pE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

|xn
s |

p−2xn
s σ

n
s (x

n
κ(n,s))dws

∣

∣

∣

∣

≤ KE

(
∫ u

t0

|xn
s |

2p−2|σn
s (x

n
κ(n,s))|

2ds

)
1
2

≤ KE

(
∫ u

t0

|xn
s |

2p−2(Mn + |xn
κ(n,s)|

2)ds

)
1
2

≤ KE sup
t0≤s≤u

|xn
s |

p−1

(
∫ u

t0

(Mn + |xn
κ(n,s)|

2)ds

)
1
2

,

which due to Young’s inequality and Hölder’s inequality gives

E7 ≤
1

8
E sup

t0≤s≤u
|xn

s |
p +K +KE

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.11)

Similarly, by using assumption B-2 and Young’s inequality, E8 can be estimated by

E8 := KE

∫ u

t0

|xn
s |

p−2|σn
s (x

n
κ(n,s))|

2ds ≤ K +K

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.12)
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Further one uses Lemma 2.1 and assumption B-2 to estimate E9 by

E9 := pE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|xn
s |

p−2xn
s γ

n
s (x

n
κ(n,s), z)Ñ(ds, dz)

∣

∣

∣

∣

≤ KE

(
∫ u

t0

∫

Z

|xn
s |

2p−2|γn
s (x

n
κ(n,s), z)|

2ν(dz)ds

)
1
2

≤ KE

(
∫ u

t0

|xn
s |

2p−2(Mn + |xn
κ(n,s)|

2)ds

)
1
2

,

which due to Young’s inequality and Hölder’s inequality gives

E9 ≤
1

8
E sup

t0≤s≤u
|xn

s |
p +K +KE

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.13)

Finally, due to assumptions B-2 and B-3, E10 can be estimated as follows,

E10 := E

∫ u

t0

∫

Z

{|xn
s |

p−2|γn
s (x

n
κ(n,s), z)|

2 + |γn
s (x

n
κ(n,s), z)|

p}N(ds, dz)

= E

∫ u

t0

∫

Z

{|xn
s |

p−2|γn
s (x

n
κ(n,s), z)|

2 + |γn
s (x

n
κ(n,s), z)|

p}ν(dz)ds

= E

∫ u

t0

|xn
s |

p−2(Mn + |xn
κ(n,s)|

2)ds+ E

∫ u

t0

(M ′
n + |xn

κ(n,s)|
p)ds,

and then Young’s inequality implies

E10 ≤ K +

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.(3.14)

By substituting estimates from (3.6)–(3.14) in (3.5), one obtains

E sup
t0≤t≤u

|xn
t |

p ≤
1

2
E sup

t0≤t≤u
|xn

t |
p +K +KE

∫ u

t0

E sup
t0≤r≤s

|xn
r |

pds.

The application of Gronwall’s lemma completes the proof.

Remark 3.2. Due to assumptions B-2 and B-3, there exist a constant L > 0 and
a sequence (M ′

n)n∈N of nonnegative random variables satisfying supn∈N
EM ′

n < ∞
such that

∫

Z

|γn
t (x, z)|

rν(dz) ≤ L(M ′
n + |x|r)

almost surely for any 2 ≤ r ≤ p, t ∈ [t0, t1], n ∈ N, and x ∈ R
d.

Lemma 3.3. Let assumptions B-1 to B-4 be satisfied. Then

sup
t0≤t≤t1

E|xn
t − xn

κ(n,t)|
r ≤ Kn−1

for any 2 ≤ r ≤ p with K := K(t0, t1, L, p, supn∈NE|xn
t0 |

p, supn∈N EM
p
2
n , supn∈N EM ′

n)
which does not depend on n.

Proof. The lemma follows immediately from Lemmas 3.1 and 3.2.
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3.2. Convergence in L
q. For everyR > 0, we considerFt0 -measurable random

variables CR which satisfy

lim
R→∞

P (CR > f(R)) = 0(3.15)

for a nondecreasing function f : R+ → R+. This notation for the family of random
variables with the above property will be used throughout this article.

A-7. For every R > 0 and t ∈ [t0, t1],

(x− x̄)(bt(x) − bt(x̄)) ∨ |σt(x)− σt(x̄)|
2 ∨

∫

Z

|γt(x, z)− γt(x̄, z)|
2ν(dz) ≤ CR|x− x̄|2

almost surely whenever |x|, |x̄| ≤ R.

A-8. For every R > 0 and t ∈ [t0, t1],

sup
|x|≤R

|bt(x)| ≤ CR

almost surely.

B-5. For every R > 0 and B(R) := {ω ∈ Ω : CR ≤ f(R)},

lim
n→∞

E

∫ t1

t0

IB(R) sup
|x|≤R

{|bnt (x)− bt(x)|
2 + |σn

t (x)− σt(x)|
2}dt = 0

lim
n→∞

E

∫ t1

t0

IB(R) sup
|x|≤R

∫

Z

|γn
t (x, z)− γt(x, z)|

2ν(dz)dt = 0.

B-6. For every n ∈ N, the initial values of SDE (2.1) and scheme (3.1) satisfy

|xt0 − xn
t0 |

P
→ 0 as n → ∞.

We introduce families of stopping times that shall be used frequently in this
report. For every R > 0 and n ∈ N, let

πR := inf{t ≥ t0 : |xt| ≥ R}, πnR := inf{t ≥ t0 : |xn
t | ≥ R}, τnR := πR ∧ πnR(3.16)

almost surely.

Theorem 3.4. Let assumptions A-3 to A-8 be satisfied. Also assume that B-1 to
B-6 hold. Then,

lim
n→∞

E sup
t0≤t≤t1

|xt − xn
t |

q = 0

for all q < p.

Proof. Let ent := xt − xn
t and define

(3.17)
b̄nt := bt(xt)− bnt (x

n
κ(n,t)), σ̄

n
t := σt(xt)− σn

t (x
n
κ(n,t)), γ̄

n
t (z) := γt(xt, z)− γn

t (x
n
κ(n,t), z)

almost surely for any t ∈ [t0, t1]. In this simplified notation, ent can be written as

ent = ent0 +

∫ t

t0

b̄ns ds+

∫ t

t0

σ̄n
s dws +

∫ t

t0

∫

Z

γ̄n
s (z)Ñ(ds, dz)(3.18)
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almost surely for any t ∈ [t0, t1]. Further, by using the stopping times defined in
(3.16) and random variables defined in (3.15), let us partition the sample space Ω
into two parts Ω1 and Ω2 where

Ω1 = {ω ∈ Ω : πR ≤ t1 orπnR ≤ t1 orCR > f(R) }

= {ω ∈ Ω : πR ≤ t1} ∪ {ω ∈ Ω : πnR ≤ t1} ∪ {ω ∈ Ω : CR > f(R)}

Ω2 = Ω\Ω1 = {ω ∈ Ω : πR > t1} ∩ {ω ∈ Ω : πnR > t1} ∩B(R),

where B(R) := {ω ∈ Ω : CR ≤ f(R)} as defined in assumption B-5. Also note that
IΩ = IΩ1∪Ω2 ≤ IΩ1 + IΩ2 . By using this fact, for any q < p, one could write the
following:

E sup
t0≤t≤t1

|ent |
q = E sup

t0≤t≤t1

|ent |
qIΩ1 + E sup

t0≤t≤t1

|ent |
qIΩ2 =: D1 +D2.(3.19)

By the application of Hölder’s inequality and Lemmas 2.3 and 3.2 one could write

D1 := E sup
t0≤t≤t1

|ent |
qIΩ1 ≤

(

E sup
t0≤t≤t1

|ent |
q p

q

)

q
p (

EIΩ1

)

p−q
p

≤ K

(

E|xπR
|p

Rp
+

E|xn
πnR

|p

Rp
+ P ({ω ∈ Ω : CR > f(R)})

)

p−q
p

≤ K

(

1

Rp
+ P ({ω ∈ Ω : CR > f(R)})

)

p−q
p

,(3.20)

where the constant K > 0 does not depend on n. Having obtained estimates for D1,
we now proceed to obtain the estimates for D2. For this, we recall (3.18) and use Itô
formula to obtain the following:

|ent |
2 = |ent0 |

2 + 2

∫ t

t0

ens b̄
n
s ds+ 2

∫ t

t0

ens σ̄
n
s dws +

∫ t

t0

|σ̄n
s |

2ds

+ 2

∫ t

t0

∫

Z

ens γ̄
n
s (z)Ñ(ds, dz) +

∫ t

t0

∫

Z

|γ̄n
s (z)|

2N(ds, dz),(3.21)

almost surely for any t ∈ [t0, t1]. Also, to estimate the second term of (3.21), one uses
the following splitting:

ens b̄
n
s = (xs − xn

κ(n,s))(bs(xs)− bs(x
n
κ(n,s)))

+ (xs − xn
κ(n,s))(bs(x

n
κ(n,s))− bns (x

n
κ(n,s)))

+ (xn
κ(n,s) − xn

s )(bs(xs)− bs(x
n
κ(n,s)))

+ (xn
κ(n,s) − xn

s )(bs(x
n
κ(n,s))− bns (x

n
κ(n,s)))(3.22)

almost surely for any s ∈ [t0, t1]. Notice that D2 is nonzero only on Ω2, and thus
one can henceforth restrict all the calculations in the estimation of D2 on the interval
[t0, t1∧τnR), which also means that |xt|∨ |xn

t | < R for any t ∈ [t0, t1∧τnR). As a con-
sequence, on the application of assumption A-7 and the Cauchy–Schwarz inequality,
one obtains

ens b̄
n
s ≤ CR|xs − xn

κ(n,s)|
2 + |xs − xn

κ(n,s)||bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

+ |xn
κ(n,s) − xn

s ||bs(xs)− bs(x
n
κ(n,s))|+ |xn

κ(n,s) − xn
s ||bs(x

n
κ(n,s))− bns (x

n
κ(n,s))|
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almost surely for any s ∈ [t0, t1 ∧ τnR). By using assumption A-8, this can further be
estimated as

ens b̄
n
s ≤ (2CR + 1)|xs − xn

s |
2 +

(

2CR +
3

2

)

|xn
s − xn

κ(n,s)|
2

+ |bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

2

+ 2CR|x
n
s − xn

κ(n,s)|(3.23)

almost surely for any s ∈ [t0, t1 ∧ τnR). Now, by using the definition of Ω2 and of τnR
in (3.16), one has

D2 := E sup
t0≤t≤t1

|ent |
qIΩ2 ≤ E sup

t0≤t≤t1

|ent∧τnR
|qIB(R).(3.24)

Thus using the estimate obtained in (3.23), one obtains

E sup
t0≤t≤u

|ent∧τnR
|2IB(R)

≤ E|ent0 |
2 + E(2CR + 1)

∫ u∧τnR

t0

|ens |
2IB(R)ds

+ E

(

2CR +
3

2

)
∫ u∧τnR

t0

|xn
s − xn

κ(n,s)|
2IB(R)ds

+ 2ECR

∫ u∧τnR

t0

|xn
s − xn

κ(n,s)|IB(R)ds

+ E

∫ u∧τnR

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

2IB(R)ds

+ 2E sup
t0≤t≤u

∣

∣

∣

∣

∫ t∧τnR

t0

IB(R)e
n
s σ̄

n
s dws

∣

∣

∣

∣

+ E

∫ u∧τnR

t0

|σ̄n
s |

2IB(R)ds

+ 2E sup
t0≤t≤u

∣

∣

∣

∣

∫ t∧τnR

t0

∫

Z

IB(R)e
n
s γ̄

n
s (z)Ñ(ds, dz)

∣

∣

∣

∣

+ E sup
t0≤t≤u

∫ t∧τnR

t0

∫

Z

IB(R)|γ̄
n
s (z)|

2N(ds, dz)

=: F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9(3.25)

for every R > 0 and u ∈ [t0, t1 ∧ τnR). Here F1 := E|ent0 |
2. F2 is estimated easily by

F2 := E(2CR + 1)

∫ u∧τnR

t0

|ens |
2IB(R)ds

≤ (2f(R) + 1)

∫ u

t0

E sup
t0≤r≤s

|enr∧τnR
|2IB(R)ds(3.26)

for every R > 0 and u ∈ [t0, t1 ∧ τnR). Further,

F3 := E

(

2CR +
3

2

)
∫ u∧τnR

t0

|xn
s − xn

κ(n,s)|
2IB(R)ds

≤ (f(R) + 1)K sup
t0≤t≤t1

E|xn
t − xn

κ(n,t)|
2(3.27)
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and similarly, term F4 can be estimated by

F4 := 2ECR

∫ u∧τnR

t0

|xn
s − xn

κ(n,s)|IB(R)ds ≤ f(R)K sup
t0≤t≤t1

E|xn
t − xn

κ(n,t)|(3.28)

for every R > 0. Again, term F5 has the following estimate:

F5 := E

∫ u∧τnR

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

2IB(R)ds

≤ E

∫ t1

t0

I{t0≤s<τnR}IB(R)|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

2ds.(3.29)

To estimate the term F6, one uses the Burkholder–Davis–Gundy inequality to write

F6 := 2E sup
t0≤t≤u

∣

∣

∣

∣

∫ t∧τnR

t0

IB(R)e
n
s σ̄

n
s dws

∣

∣

∣

∣

≤ KE

(
∫ u∧τnR

t0

IB(R)|e
n
s |

2|σ̄n
s |

2ds

)

1
2

≤ KE sup
t0≤s≤u

|ens∧τnR
|IB(R)

(
∫ u∧τnR

t0

IB(R)|σ̄
n
s |

2ds

)

1
2

,

which on the application of Young’s inequality gives

F6 + F7 ≤
1

8
E sup

t0≤s≤u
|ens∧τnR

|2IB(R) +KE

∫ u∧τnR

t0

IB(R)|σ̄
n
s |

2ds(3.30)

for any R > 0 and u ∈ [t0, t1], where constant K > 0 does not depend on R and n.
In order to estimate the second term of the above inequality, one uses the following
splitting of σ̄n

s :

σ̄n
s = (σs(xs)− σs(x

n
s )) + (σs(x

n
s )− σs(x

n
κ(n,s))) + (σs(x

n
κ(n,s))− σn

s (x
n
κ(n,s)))(3.31)

almost surely for any s ∈ [t0, t2]. As before, one again notices that |xs| ≤ R and
|xn

s | ≤ R whenever s ∈ [t0, t1 ∧ τnR). Thus on the application of assumption A-7, one
obtains

|σ̄n
s |

2 ≤ 3CR|e
n
s |

2 + 3CR|x
n
s − xn

κ(n,s)|
2 + 3|σs(x

n
κ(n,s))− σn

s (x
n
κ(n,s))|

2

almost surely s ∈ [t0, t1 ∧ τnR). Hence substituting this estimate in inequality (3.30)
gives

F6 + F7 ≤
1

8
E sup

t0≤s≤u
|ens∧τnR

|2IB(R) +Kf(R)

∫ u

t0

E sup
t0≤r≤s

|enr∧τnR
|2IB(R)ds

+Kf(R) sup
t0≤s≤t1

E|xn
s − xn

κ(n,s)|
2

+KE

∫ t1

t0

I{t0≤s<τnR}IB(R)|σs(x
n
κ(n,s))− σn

s (x
n
κ(n,s))|

2ds(3.32)

for any u ∈ [t0, t1]. Further, one proceeds as above in the similar way to the derivation
of (3.30) and uses Lemma 2.1 to obtain

F8 + F9 ≤
1

8
E sup

t0≤s≤u
|ens∧τnR

|2IB(R)

+KE

∫ u∧τnR

t0

∫

Z

IB(R)|γ̄
n
s (z)|

2ν(dz)ds(3.33)
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for any u ∈ [t0, t1]. In order to estimate the second term of the above inequality, one
uses the following splitting:

γ̄n
s (z) = (γ(xs, z)− γs(x

n
s , z)) + (γs(x

n
s , z)− γs(x

n
κ(n,s), z)

+ (γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z))(3.34)

almost surely for any s ∈ [t0, t1]. Thus, by using the assumption A-7, one has

F8 + F9 ≤
1

8
E sup

t0≤s≤u
|ens∧τnR

|2IB(R) +Kf(R)E

∫ u

t0

E sup
t0≤r≤s

|enr∧τnR
|2IB(R)ds

+Kf(R) sup
t0≤s≤t1

E|xn
s − xn

κ(n,s)|
2

+KE

∫ t1

t0

∫

Z

I{t0≤s<τnR}IB(R)|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)ds(3.35)

for any u ∈ [t0, t1]. On combining estimates obtained in (3.26), (3.27), (3.28), (3.32),
and (3.35) in (3.25) and then applying Gronwall’s inequality, one obtains

E sup
t0≤t≤t1

|ent∧τnR
|2IB(R)

≤ exp(Kf(R))

{

E|ent0 |
2 +Kf(R) sup

t0≤s≤t1

E|xn
s − xn

κ(n,s)|
2

+Kf(R)

(

sup
t0≤s≤t1

E|xn
s − xn

κ(n,s)|
2

)
1
2

+KE

∫ t1

t0

I{t0≤s<τnR}IB(R)|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

2ds

+KE

∫ t1

t0

I{t0≤s<τnR}IB(R)|σs(x
n
κ(n,s))− σn

s (x
n
κ(n,s))|

2ds

+KE

∫ t1

t0

∫

Z

I{t0≤s<τnR}IB(R)|γs(x
n
κ(n,s), z)

− γn
s (x

n
κ(n,s), z)|

2ν(dz)ds

}

.

Hence, by the application of Lemma 3.3 and assumptions B-5 and B-6, one obtains

E sup
t0≤t≤t1

|ent∧τnR
|2IB(R) → 0 as n → ∞

for every R > 0. Consequently supt0≤t≤t1 |e
n
t∧τnR

|IB(R) → 0 in probability, as
n → ∞. By Lemmas 2.3 and 3.2, we have that the sequence of random variables
(supt0≤t≤t1 |e

n
t∧τnR

|qIB(R))n∈N is uniformly integrable for any q < p. Hence, for each
R > 0 we have

E sup
t0≤t≤t1

|ent∧τnR
|qIB(R) → 0, as n → ∞,

which implies from inequality (3.24) that D2 → 0 as n → ∞ for every R > 0. Also by
choosing sufficiently large R > 0 in inequality (3.20) along with (3.15), one obtains
D1 → 0. This complete the proof.
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1858 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

3.3. Rate of convergence. In order to obtain the rate of convergence of the
scheme (3.1), one replaces assumption A-7 by the following assumptions.

A-9. There exist constants C > 0, q ≥ 2, and χ > 0 such that

(x− x̄)(bt(x) − bt(x̄)) ∨ |σt(x)− σt(x̄)|
2 ∨

∫

Z

|γt(x, z)− γt(x̄, z)|
2ν(dz) ≤ C|x− x̄|2

∫

Z

|γt(x, z)− γt(x̄, z)|
qν(dz) ≤ C|x− x̄|q

|bt(x)− bt(x̄)|
2 ≤ C(1 + |x|χ + |x̄|χ)|x− x̄|2(3.36)

almost surely for any t ∈ [t0, t1], x, x̄ ∈ R
d, and a δ ∈ (0, 1) such that max{(χ +

2)q, qχ
2

q+δ
δ } ≤ p.

Remark 3.3. Due to (3.36) and assumption A-8, one immediately obtains

|bt(x)|
2 ≤ K(1 + |x|χ+2)

almost surely for any t ∈ [t0, t1] and x ∈ R
d.

Furthermore, one replaces assumption B-5 by the following assumption.

B-7. There exists a constant C > 0 such that

E

∫ t1

t0

{|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

q + |σn
t (x

n
κ(n,t))− σt(x

n
κ(n,t))|

q}dt ≤ Cn− q
q+δ

E

∫ t1

t0

(
∫

Z

|γn
t (x

n
κ(n,t), z)− γt(x

n
κ(n,t), z)|

ζν(dz)

)

q
ζ

dt ≤ Cn− q
q+δ

for ζ = 2, q.

Finally, assumption B-6 is replaced by the following assumption.

B-8. There exists a constant C > 0 such that

E|xt0 − xn
t0 |

q ≤ Cn− q
q+δ .

Theorem 3.5. Let assumptions A-3 to A-6, A-8, and A-9 be satisfied. Also
suppose that assumptions B-1 to B-4, B-7, and B-8 hold. Then

E sup
t0≤t≤t1

|xt − xn
t |

q ≤ Kn− q
q+δ ,

where constant K > 0 does not depend on n.

Proof. First, let us recall the notation used in the proof of Theorem 3.4. By the
application of Itô formula, one obtains

|ent |
q = |ent0 |

q + q

∫ t

t0

|ens |
q−2ens b̄

n
s ds+ q

∫ t

t0

|ens |
q−2ens σ̄

n
s dws

+
q(q − 2)

2

∫ t

t0

|ens |
q−4|σ̄n∗

s ens |
2ds+

q

2

∫ t

t0

|ens |
q−2|σ̄n

s |
2ds

+ q

∫ t

t0

∫

Z

|ens |
q−2ens γ̄

n
s (z)Ñ(ds, dz)

+

∫ t

t0

∫

Z

{|ens + γ̄n
s (z)|

q − |ens |
q − q|ens |

q−2ens γ̄
n
s (z)}N(ds, dz)(3.37)
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TAMED EULER APPROXIMATIONS OF LÉVY DRIVEN SDEs 1859

almost surely for any t ∈ [t0, t1]. In Theorem 3.4, the splitting given in (3.22) is
used to prove the Lq convergence of the scheme (3.1). In order to obtain a rate of
convergence of scheme (3.1), one uses the splitting

ens b̄
n
s = (xs − xn

s )(bs(xs)− bs(x
n
s )) + (xs − xn

s )(bs(x
n
s )− bs(x

n
κ(n,s)))

+ (xs − xn
s )(bs(x

n
κ(n,s))− bns (x

n
κ(n,s))),(3.38)

which on the application of assumption A-9, the Cauchy–Schwarz inequality, and
Young’s inequality gives

|ens |
q−2ens b̄

n
s ≤ K|ens |

q +K|bs(x
n
s )− bs(x

n
κ(n,s))|

q

+K|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

q(3.39)

almost surely for any s ∈ [t0, t1]. Therefore by taking suprema over [t0, u] for any
u ∈ [t0, t1] and expectations, one has

E sup
t0≤t≤u

|ent |
q ≤ E|ent0 |

q +KE

∫ u

t0

|ens |
qds+KE

∫ u

t0

|bs(x
n
s )− bs(x

n
κ(n,s))|

qds

+KE

∫ u

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

qds

+ qE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

|ens |
q−2ens σ̄

n
s dws

∣

∣

∣

∣

+
q(q − 2)

2
E

∫ u

t0

|ens |
q−4|σ̄n∗

s ens |
2ds+

q

2
E

∫ u

t0

|ens |
q−2|σ̄n

s |
2ds

+ qE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|ens |
q−2ens γ̄

n
s (z)Ñ(ds, dz)

∣

∣

∣

∣

+ E sup
t0≤t≤u

∫ t

t0

∫

Z

{|ens |
q−2|γ̄n

s (z)|
2 + |γ̄n

s (z)|
q}N(ds, dz)

= G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G9(3.40)

for any u ∈ [t0, t1]. Here G1 := E|ent0 |
q and G2 can be estimated by

(3.41) G2 := KE

∫ u

t0

|ens |
qds ≤ K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds

for any u ∈ [t0, t1]. By the application of assumption A-9, Hölder’s inequality, and
Lemma 3.2, G3 can be estimated by

G3 := KE

∫ u

t0

|bs(x
n
s )− bs(x

n
κ(n,s))|

qds

≤ K

∫ u

t0

(

1 + E|xn
s |

χ q
2

q+δ
δ + E|xn

κ(n,s)|
χ q

2
q+δ
δ

)
δ

q+δ
(

E|xn
s − xn

κ(n,s)|
q+δ

)

q
q+δ

ds

≤ K

∫ t1

t0

(

E|xn
s − xn

κ(n,s)|
q+δ

)

q
q+δ

ds.

(3.42)
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1860 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

Further, G4 can be estimated by

G4 := KE

∫ u

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

qds

≤ KE

∫ t1

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

qds.(3.43)

By the application of the Burkholder–Davis–Gundy inequality, one obtains

G5 := qE sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

|ens |
q−2ens σ̄

n
s dws

∣

∣

∣

∣

≤ KE

(
∫ u

t0

|ens |
2q−2|σ̄n

s |
2ds

)
1
2

≤ KE sup
t0≤s≤u

|ens |
q−1

(
∫ u

t0

|σ̄n
s |

2ds

)
1
2

,

which due to Young’s inequality and Hölder’s inequality gives

G5 ≤
1

8
E sup

t0≤s≤u
|ens |

q +KE

∫ u

t0

|σ̄n
s |

qds(3.44)

for any u ∈ [t0, t1]. Further, due to the Cauchy–Schwarz inequality and Young’s
inequality, G6 and G7 can be estimated together by

G6 +G7 :=
q(q − 2)

2
E

∫ u

t0

|ens |
q−4|σ̄n∗

s ens |
2ds+

q

2
E

∫ u

t0

|ens |
q−2|σ̄n

s |
2ds

≤ KE

∫ u

t0

|ens |
q−2|σ̄n

s |
2ds ≤ K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+KE

∫ u

t0

|σ̄n
s |

qds(3.45)

for any u ∈ [t0, t1]. On combining the estimates from (3.44) and (3.45), one has

G5 +G6 +G7 ≤
1

8
E sup

t0≤s≤u
|ens |

q +K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+KE

∫ u

t0

|σ̄n
s |

qds(3.46)

for any u ∈ [t0, t1]. Now, one uses the splitting of σ̄n
s given in (3.31) along with

assumption A-9 to write

G5 +G6 +G7 ≤
1

8
E sup

t0≤s≤u
|ens |

q +K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+K

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds

+KE

∫ t1

t0

|σs(x
n
κ(n,s))− σn

s (x
n
κ(n,s))|

qds(3.47)

for any u ∈ [t0, t1]. Further, for estimating G8, one uses the splitting of γ̄n
s (z) given

in (3.34) to write

G8 ≤ E sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|ens |
q−2ens {γs(xs, z)− γs(x

n
s , z)}Ñ(ds, dz)

∣

∣

∣

∣

+ E sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|ens |
q−2ens {γs(x

n
s , z)− γs(x

n
κ(n,s), z)}Ñ(ds, dz)

∣

∣

∣

∣

+ E sup
t0≤t≤u

∣

∣

∣

∣

∫ t

t0

∫

Z

|ens |
q−2ens {γs(x

n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)}Ñ(ds, dz)

∣

∣

∣

∣

,
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which due to Lemma 2.1 gives

G8 ≤ E

(
∫ u

t0

∫

Z

|ens |
2q−2|γs(xs, z)− γs(x

n
s , z)|

2ν(dz)ds

)
1
2

+ E

(
∫ u

t0

∫

Z

|ens |
2q−2|γs(x

n
s , z)− γs(x

n
κ(n,s), z)|

2ν(dz)ds

)
1
2

+ E

(
∫ u

t0

∫

Z

|ens |
2q−2|γs(x

n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)ds

)
1
2

for any u ∈ [t0, t1]. Then on the application of Young’s inequality and Hölder’s
inequality, one obtains

G8 ≤
1

8
E sup

t0≤s≤u
|ens |

q + E

∫ u

t0

(
∫

Z

|γs(xs, z)− γs(x
n
s , z)|

2ν(dz)

)

q
2

ds

+ E

∫ u

t0

(
∫

Z

|γs(x
n
s , z)− γs(x

n
κ(n,s), z)|

2ν(dz)

)

q
2

ds

+ E

∫ u

t0

(
∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)

)

q
2

ds.

Thus by using assumption A-9, one has

G8 ≤
1

8
E sup

t0≤s≤u
|ens |

q +

∫ u

t0

E sup
t0≤r≤s

|ens |
qds+

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds

+ E

∫ t1

t0

(
∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)

)

q
2

ds(3.48)

for any u ∈ [t0, t1]. Finally, one could write G9 as

G9 := E sup
t0≤t≤u

∫ t

t0

∫

Z

{|ens |
q−2|γ̄n

s (z)|
2 + |γ̄n

s (z)|
q}N(ds, dz)

= E

∫ u

t0

∫

Z

|ens |
q−2|γ̄n

s (z)|
2ν(dz)ds+ E

∫ u

t0

∫

Z

|γ̄n
s (z)|

qν(dz)ds =: H1 +H2(3.49)

for any u ∈ [t0, t1]. In order to estimate the first term H1 on the right-hand side of the
inequality (3.49) along with assumption A-9, one recalls the splitting of γn

s (z) given
in (3.34) to get the following estimate:

H1 ≤ KE

∫ u

t0

|ens |
qds+KE

∫ u

t0

|ens |
q−2|xn

s − xn
κ(n,s)|

2ds

+ E

∫ u

t0

∫

Z

|ens |
q−2|γs(x

n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)ds

for any u ∈ [t0, t1]. By the application of Young’s inequality, one obtains

H1 ≤ K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+K

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds

+KE

∫ t1

t0

(
∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)

)

q
2

ds(3.50)
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for any u ∈ [t0, t1]. For the second term H2 on the right-hand side of the inequality
(3.49) along with assumption A-9, one again uses the splitting of γ̄n

s (z) given in (3.34)
to get the following estimate:

H2 ≤ K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+K

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds

+KE

∫ t1

t0

∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

qν(dz)ds(3.51)

for any u ∈ [t0, t1]. Hence on combining the estimates obtained in (3.50) and (3.51)
in (3.49), one obtains

G9 ≤ K

∫ u

t0

E sup
t0≤r≤s

|enr |
qds+K

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds

+KE

∫ t1

t0

(
∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)

)

q
2

ds

+KE

∫ t1

t0

∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

qν(dz)ds(3.52)

for any u ∈ [t0, t1].
Thus one can substitute estimates from (3.41), (3.42), (3.43), (3.47), (3.48), and

(3.52) in (3.40) and then apply Gronwall’s inequality to obtain

E sup
t0≤t≤t1

|ent |
q ≤ E|ent0 |

q +K

∫ t1

t0

(

E|xn
s − xn

κ(n,s)|
q+δ

)

q
q+δ

ds

+K

∫ t1

t0

E|xn
s − xn

κ(n,s)|
qds+KE

∫ t1

t0

|bs(x
n
κ(n,s))− bns (x

n
κ(n,s))|

qds

+KE

∫ t1

t0

|σs(x
n
κ(n,s))− σn

s (x
n
κ(n,s))|

qds

+KE

∫ t1

t0

(
∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

2ν(dz)

)

q
2

ds

+KE

∫ t1

t0

∫

Z

|γs(x
n
κ(n,s), z)− γn

s (x
n
κ(n,s), z)|

qν(dz)ds.

By the application of assumptions B-7 and B-8 and Lemma 3.3, one obtains

E sup
t0≤t≤t1

|ent |
q ≤ Kn− q

q+δ ,

which completes the proof.

3.4. A simple example. We now introduce a tamed Euler scheme of SDEs
driven by Lévy noise which have coefficients that are not random. For this purpose,
we only highlight the modifications needed in the settings of our previous discussion.
In SDE (2.1), bt(x) and σt(x) are B([0, T ])⊗B(Rd)-measurable functions with values
in R

d and R
d×m, respectively. Also γt(x, z) is a B([0, T ])⊗ B(Rd) ⊗ Z -measurable

function with values in R
d. Moreover, one modifies assumptions A-5 and A-6 by

assigning M = M ′ = 1. Further, for every n ∈ N, the scheme (3.1) is given by
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defining

bnt (x) =
bt(x)

1 + n−θ|bt(x)|
, σn

t (x) = σt(x) and γn
t (x, z) = γt(x, z)(3.53)

with θ ∈ (0, 1
2 ] for any t ∈ [t0, t1], x ∈ R

d, and z ∈ Z. Then, it is easy to observe that
assumptions B-2 to B-4 hold since Mn = M ′

n = 1 and θ ∈ (0, 1
2 ]. Hence Lemmas 2.3,

3.1, 3.2, 3.3 follow immediately. Finally, the Ft0 -measurable random variable CR in
assumptions A-7 and A-8 is a constant for every R. In this new settings, one obtains
the following corollaries for SDE (2.1) and scheme (3.1) with coefficients given by
(3.53).

Corollary 3.6. Let assumptions A-3 to A-8 be satisfied by the coefficients of
SDE given immediately above. Also assume that B-1 and B-6 hold. Then, the numer-
ical scheme (3.1) with coefficients given by (3.53) converges to the solution of SDE
(2.1) in Lq sense, i.e.,

lim
n→∞

E sup
t0≤t≤t1

|xt − xn
t |

q = 0

for all q < p.

Proof. Assumptions A-7 and A-8 are satisfied on taking f(R) = CR in (3.15). For
assumption B-5, one observes due to (3.53) and assumption A-8,

E

∫ t1

t0

IB(R) sup
|x|≤R

|bnt (x) − bt(x)|
2dt ≤ n−2θE

∫ t1

t0

IB(R) sup
|x|≤R

|bt(x)|
4dt

≤ Kf(R)4n−2θ → 0

as n → ∞ for every R. Also for diffusion and jump coefficients, assumption B-5 holds
trivially. Thus, Theorem 3.4 completes the proof.

For the rate of convergence of scheme (3.1), one takes θ = 1
2 in (3.53).

Corollary 3.7. Let assumptions A-3 to A-6, A-8, and A-9 be satisfied by the
coefficients of SDE given immediately above. Also suppose that assumptions B-1 and
B-8 hold. Then, the numerical scheme (3.1) with coefficients given by (3.53) achieves
the classical rate (of Euler scheme) in Lq sense, i.e.,

E sup
t0≤t≤t1

|xt − xn
t |

q ≤ Kn− q
q+δ ,(3.54)

where constant K > 0 does not depend on n.

Proof. By using (3.53) and Remark 3.3, one obtains

E

∫ t1

t0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ n−2θE

∫ t1

t0

|bt(x
n
κ(n,t))|

2qdt

≤ Kn−1

(

1 + E sup
t0≤t≤t1

|xn
t |

q(χ+2)

)

since θ = 1
2 . Hence assumption B-7 for drift coefficients follows due to Lemma 3.2. For

diffusion and jump coefficients, assumption B-7 holds trivially. The proof is completed
by Theorem 3.5.
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4. Application to delay equations. Let us assume that βt(y1, . . . , yk, x) and
αt(y1, . . . , yk, x) are B([0, T ]) ⊗ B(Rd×k) ⊗ B(Rd)-measurable functions and take
values in R

d and R
d×m, respectively. Also let λt(y1, . . . , yk, x, z) be a B([0, T ]) ⊗

B(Rd×k)⊗B(Rd)⊗Z -measurable function and take values in R
d. For fixed H > 0,

we consider a d-dimensional SDDE on (Ω, {Ft}t≥0,F , P ) defined by

dxt = βt(yt, xt)dt+ αt(yt, xt)dwt +

∫

Z

λt(yt, xt, z)Ñ(dt, dz), t ∈ [0, T ],

xt = ξt, t ∈ [−H, 0],(4.1)

where ξ : [−H, 0] × Ω → R
d and yt := (xδ1(t), . . . , xδk(t)). The delay parameters

δ1(t), . . . , δk(t) are increasing functions of t and satisfy −H ≤ δj(t) ≤ [t/h]h for some
h > 0 and j = 1, . . . , k.

Remark 4.1. In the following, we assume, without loss of generality, that T is a
multiple of h. If not, then SDDE (4.1) can be defined for T ′ > T so that T ′ = N ′h,
where N ′ is a positive integer. The results proved in this article are then recovered
for the original SDDE (4.1) by choosing parameters as βIt≤T , αIt≤T and λIt≤T .

Remark 4.2. We remark that two popular cases of delay, viz., δi(t) = t − h and
δi(t) = [t/h]h, can be addressed by our findings which have been widely used in the
literature, for example, [4, 5, 17, 19] and references therein.

4.1. Existence and uniqueness. To prove the existence and uniqueness of the
solution of SDDE (4.1), we make the following assumptions.

C-1. For every R > 0, there exists an M(R) ∈ L
1 such that

xβt(y, x) + |αt(y, x)|
2 +

∫

Z

|λt(y, x, z)|
2ν(dz) ≤ Mt(R)(1 + |x|2)

for any t ∈ [0, T ] whenever |y| ≤ R and x ∈ R
d.

C-2. For every R > 0, there exists an M(R) ∈ L
1 such that

(x− x̄)(βt(y, x)− βt(y, x̄)) + |αt(y, x)− αt(y, x̄)|
2 +

∫

Z

|λt(y, x, z)− λt(y, x̄, z)|
2ν(dz)

≤ Mt(R)|x− x̄|2

for any t ∈ [0, T ] whenever |x|, |x̄|, |y| ≤ R.

C-3. The function βt(y, x) is continuous in x for any t and y.

Theorem 4.1. Let assumptions C-1 to C-3 be satisfied. Then there exists a unique
solution to SDDE (4.1).

Proof. We adopt the approach of [7] and consider SDDE (4.1) as a special case
of SDE (2.1) by assigning the following values to the coefficients:

bt(x) = βt(yt, x), σt(x) = αt(yt, x), γt(x, z) = λt(yt, x, z)(4.2)

almost surely for any t ∈ [0, T ]. Then the proof is a straightforward generalization of
Theorem 2.1 of [7] and follows due to Theorem 2.2.
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4.2. Tamed Euler scheme. For every n ∈ N, define the following tamed Euler
scheme:

dxn
t = βn

t (y
n
t , x

n
κ(n,t))dt+ αt(y

n
t , x

n
κ(n,t))dwt

+

∫

Z

λt(y
n
t , x

n
κ(n,t), z)Ñ(dt, dz), t ∈ [0, T ],

xn
t = ξt, t ∈ [−H, 0],(4.3)

where ynt := (xn
δ1(t)

, . . . , xn
δk(t)

) and κ is defined by (3.2) with t0 = 0. Furthermore,
for every n ∈ N, the drift coefficient is given by

βn
t (y, x) :=

βt(y, x)

1 + n−θ|βt(y, x)|
,

which satisfies

(4.4) |βn
t (y, x)| ≤ min(nθ, |βt(y, x)|)

for any t ∈ [0, T ], x ∈ R
d, and y ∈ R

d×k.

C-4. For a fixed p ≥ 2, E sup−H≤t≤0 |ξt|
p < ∞.

C-5. There exist constants G > 0 and χ ≥ 2 such that

xβt(y, x) ∨ |αt(y, x)|
2 ∨

∫

Z

|λt(y, x, z)|
2ν(dz) ≤ G(1 + |y|χ + |x|2)

for any t ∈ [0, T ], x ∈ R
d and y ∈ R

d×k.

C-6. There exist constants G > 0 and χ ≥ 2 such that
∫

Z

|λt(y, x, z)|
pν(dz) ≤ G(1 + |y|χ

p
2 + |x|p)

for any t ∈ [0, T ], x ∈ R
d and y ∈ R

d×k.

C-7. For every R > 0, there exists a constant KR > 0 such that

(x− x̄)(βt(y, x)− βt(y, x̄)) ∨ |αt(y, x)− αt(y, x̄)|
2 ∨

∫

Z

|λt(y, x, z)− λt(y, x̄, z)|
2ν(dz)

≤ KR|x− x̄|2

for any t ∈ [0, T ] whenever |x|, |y|, |x̄| < R.

C-8. For every R > 0, there exists a constant KR > 0 such that

sup
|x|≤R

sup
|y|≤R

|βt(y, x)|
2 ≤ KR

for any t ∈ [0, T ].

C-9. For every R > 0 and t ∈ [0, T ],

sup
|x|≤R

{

|βt(y, x)−βt(y
′, x)|2 + |αt(y, x)− αt(y

′, x)|2

+

∫

Z

|λt(y, x, z)− λt(y
′, x, z)|2ν(dz)

}

→ 0

when y′ → y.

D
o

w
n
lo

ad
ed

 0
6
/2

2
/1

6
 t

o
 1

3
0
.2

3
8
.5

1
.2

3
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1866 K. DAREIOTIS, C. KUMAR, AND S. SABANIS

Let us also define

(4.5) pi =

(

2

χ

)i

p

for i = 1, . . . , N ′, where χ and p satisfy p/2 ≥ (χ/2)N
′

. Also

p∗ = min
i

pi =

(

2

χ

)N ′

p.(4.6)

The following corollary is a consequence of Theorem 3.4.

Corollary 4.2. Let assumptions C-3 to C-9 hold, and then

lim
n→∞

E sup
0≤t≤T

|xt − xn
t |

q = 0

for any q < p∗.

Proof. First, as before, one observes that SDDE (4.1) can be regarded as a special
case of SDE (2.1) with coefficients given by (4.2). Moreover, tamed Euler scheme (4.3)
is a special of (3.1) with coefficients given by

bnt (x) =
βt(y

n
t , x)

1 + n−θ|βt(ynt , x)|
, σn

t (x) = αt(y
n
t , x), γ

n
t (x, z) = λt(y

n
t , x, z)(4.7)

almost surely for any t ∈ [0, T ] and x ∈ R
d. We shall use inductive arguments to show

lim
n→∞

E sup
(i−1)h≤t≤ih

|xt − xn
t |

q = 0(4.8)

for any q < pi and for every i ∈ {1, . . . , N ′}.
Case: t ∈ [0,h]. For t ∈ [0, h], one could consider SDDE (4.1) and their tamed

Euler scheme (4.3) as SDE (2.1) and scheme (3.1), respectively, with t0 = 0, t1 = h,
x0 = xn

0 = ξ0 and with coefficients given in (4.2) and (4.7). Further, one observes
that assumptions A-3 to A-8 and B-1 to B-6 hold due to assumptions C-3 to C-9.
In particular, assumption A-3 holds due to assumption C-3 while assumptions A-4
and B-1 due to assumption C-4. Further assumptions A-5, A-6, B-2, and B-3 hold
due to assumptions C-5 and C-6 with L = G, M = Mn = 1 + Ψχ ∈ L

p1
2 , and

M ′ = M ′
n = 1 + Ψχ

p1
2 ∈ L1, where Ψ := supt∈[0,h] |(ξδ1(t), . . . , ξδk(t))| ∈ Lp. Also

assumption A-7 holds due to assumption C-7 with

CR := KRIΩR
+

∞
∑

j=R

Kj+1IΩj+1\Ωj
,

where Ωj := {ω ∈ Ω : Ψ ≤ j}. Further one takes f(R) := KR and then

P (CR > f(R)) ≤ P (Ψ > R) ≤
EΨ

R
→ 0

as R → ∞. This also implies that assumption A-8 holds due to assumption C-8. To
verify assumption B-5, one observes that

bnt (x) =
βt(ξδ1(t), . . . , ξδk(t), x)

1 + n−θ|βt(ξδ1(t), . . . , ξδk(t), x)|
→ βt(ξδ1(t), . . . , ξδk(t), x) = bt(x)
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as n → ∞ and sequence

{

IB(R) sup
|x|≤R

|bnt (x)− bt(x)|
2

}

{n∈N}

is uniformly integrable, which implies

lim
n→∞

E

∫ t1

t0

IB(R) sup
|x|≤R

|bnt (x)− bt(x)|
2dt = 0

and similarly for diffusion and jump coefficients. Finally, assumption B-6 holds triv-
ially.

Therefore (4.8) holds due to Theorem 3.4 and Lemmas 2.3 and 3.2 when i = 1.
We note that the convergence here is achieved for all q < p1 and as we proceed to the
next interval [h, 2h], the convergence is achieved in the lower space, i.e., q < p2 due
to assumptions C-5 and C-6. Therefore for the inductive arguments, we assume that
the convergence in the interval [(r− 1)h, rh] is achieved for all q < pr, i.e., we assume
that Theorem 3.4 and Lemmas 2.3 and 3.2 hold for any q < pr when i = r.

Case: t ∈ [rh, (r + 1)h]. When t ∈ [rh, (r + 1)h], SDDE (4.1) and scheme (4.3)
become SDE (2.1) and scheme (3.1), respectively, with t0 = rh, t1 = (r + 1)h, xt0 =
xrh, x

n
t0 = xn

rh, and coefficients given by (4.2) and (4.7).
Verify A-3. Assumption A-3 holds due to assumption C-3 trivially.
Verify A-4 and B-1. Assumptions A-4 and B-1 hold due to Lemmas 2.3 and 3.2

and inductive assumptions.
Verify A-5, A-6, B-2, and B-3. Assumptions A-5 and B-2 hold due to assump-

tion C-5 with M := 1 + suprh≤t≤(r+1)h |yt|
χ and Mn := 1 + suprh≤t≤(r+1)h |y

n
t |

χ,

which are bounded in L
pr+1

2 due to Lemmas 2.3 and 3.2 and inductive assumptions.

Furthermore assumptions A-6 and B-3 hold with M ′ := 1 + suprh≤t≤(r+1)h |yt|
χ

pr+1
2

and M ′
n := 1+suprh≤t≤(r+1)h |y

n
t |

χ
pr+1

2 , which are bounded in L1 due to Lemmas 2.3
and 3.2 and inductive assumptions.

Verify A-7. For every R > 0, |x|, |x̄| ≤ R, and t ∈ [rh, (r + 1)h], assumption A-7
holds due to assumption C-7 with Frh-measurable random variable CR given by

CR := KRIΩR
+

∞
∑

j=R

Kj+1IΩj+1\Ωj
,(4.9)

where Ωj := {ω ∈ Ω : supt∈[rh,(r+1)h] |yt| ≤ j}. Further one takes f(R) := KR and
then

P (CR > f(R)) ≤ P

(

sup
rh≤t<(r+1)h

|yt| > R

)

→ 0 asR → ∞.(4.10)

Verify A-8. For every R > 0 and any t ∈ [rh, (r + 1)h], we take CR as defined in
(4.9), f(R) = KR. Then one uses (4.10) to establish A-8.

Verify B-5. The inductive assumption implies |ynt −yt| → 0 in probability and thus
due to assumption C-9, sup|x|≤R |βn

t (y
n
t , x)−βt(yt, x)| → 0 in probability. Furthermore

the sequence

IB(R)

{

sup
|x|≤R

|βn
t (y

n
t , x)− βt(yt, x)|

2

}

{n∈N}
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is uniformly integrable due to assumption C-8 and an inductive assumption, which
implies

lim
n→∞

E

∫ (r+1)h

rh

sup
|x|≤R

|bnt (x)− bt(x)|
2 = 0.

For the diffusion coefficient, due to the inductive assumption,
{

sup
rh≤t≤(r+1)h

|ynt − yt|
χ

}

{n∈N}

and hence

{

sup
rh≤t≤(r+1)h

|ynt |
χ

}

{n∈N}

are uniformly integrable, which on using assumptions C-5 to C-6 imply that
{

sup
|x|≤R

|αt(y
n
t , x)− αt(yt, x)|

2

}

{n∈N}

is uniformly integrable. Moreover due to assumption C-9,

sup
|x|≤R

|αt(y
n
t , x)− αt(yt, x)|

2 → 0

in probability as n → ∞ and therefore assumption B-5 holds for the diffusion coeffi-
cients. One adopts similar arguments for jump coefficients.

Verify B-6. This follows due to the inductive assumptions.
This completes the proof.

We now proceed to obtain the rate of convergence of the scheme (4.3). For this
purpose, we replace assumptions C-7 and C-9 by the following assumptions.

C-10. There exist constants C > 0, q ≥ 2, and χ > 0 such that

(x − x̄)(βt(y, x)− βt(y, x̄)) ∨ |αt(y, x)− αt(y, x̄)|
2∨

∫

Z

|λt(y, x, z)− λt(y, x̄, z)|
2ν(dz) ≤ C|x− x̄|2

∫

Z

|λt(y, x, z)− λt(y, x̄, z)|
qν(dz) ≤ C|x− x̄|q

|βt(y, x)− βt(y, x̄)|
2 ≤ C(1 + |x|χ + |x̄|χ)|x − x̄|2

for any t ∈ [0, T ], x, x̄ ∈ R
d, y ∈ R

d×k, and a δ ∈ (0, 1) such that max{(χ +
2)q, qχ

2
q+δ
δ } ≤ p∗.

C-11. Assume that

|βt(y, x)− βt(ȳ, x)|
2 ∨ |αt(y, x)− αt(ȳ, x)|

2 ∨

(
∫

Z

|λt(y, x) − λt(ȳ, x)|
ζν(dz)

)

q
ζ

≤ C(1 + |y|χ + |ȳ|χ)|y − ȳ|2,

where ζ = 2, q for any t ∈ [0, T ], x ∈ R
d, and y, ȳ ∈ R

d×k.

Remark 4.3. Due to assumptions C-8, C-10, and C-11, there exists a constant
C > 0 such that

|βt(y, x)|
2 ≤ C(1 + |y|χ+2 + |x|χ+2)

for any t ∈ [0, T ], x ∈ R
d, and y ∈ R

d×k.
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In the following corollary, we obtain a convergence rate for the tamed Euler
scheme (4.3), which is equal to the classical convergence rate of Euler scheme. For
this purpose, one can take θ = 1

2 .

Corollary 4.3. Let assumptions C-3 through C-6, C- 8, C- 10, and C-11 be
satisfied. Then

E sup
0≤t≤T

|xt − xn
t |

q ≤ Kn
− q

q+N′δ(4.11)

for any q < p∗ where constant K > 0 does not depend on n.

Proof. The corollary can be proved by adopting similar arguments as used in the
proof of Corollary 4.2. For this purpose, one can use Theorem 3.5 inductively to show
that for every i = 1, . . . , N ′,

E sup
(i−1)h≤t≤ih

|xt − xn
t |

q ≤ Kn− q
q+iδ

for any q < pi where constant K > 0 does not depend on n. Now, notice that
assumptions A-3 through A-6, A-8, and B-1 through B-3 have already been verified
in the proof of Corollary 4.2. Hence, one only needs to verify assumptions A-9, B-7,
and B-8.

Case t ∈ [0,h]. As before, one considers SDDE (4.1) as a special case of SDE
(2.1) with t0 = 0, t1 = h, xt0 = ξ0, and coefficients given by (4.2). Also, scheme (4.3)
can be considered as a special case of scheme (3.1) with t0 = 0, t1 = h, xt0 = ξ0, and
coefficients given by (4.7).

Verify A-9. Assumption A-9 follows from assumption C-10 trivially.
Verify B-7. Notice that yt = ynt =: Φt for t ∈ [0, h], which implies

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ n−qθE

∫ h

0

∣

∣βt(Φt, x
n
κ(n,t))

∣

∣

2q
dt,

which on using Remark 4.3, assumption C-4, and Lemma 3.2 gives

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ n−qθK

(

1 + EΨ(χ+2)q + E sup
0≤t≤h

|xn
κ(n,t)|

(χ+2)q

)

≤ Kn− q
2

for any q < p1 because θ = 1
2 .

Verify B-8. This holds trivially.
Thus, by Theorem 3.5, one obtains that (4.11) holds for i = 1. For inductive

arguments, one assumes that (4.11) holds for i = r and then verifies it for i = 1 + r.
Case t ∈ [rh, (r+ 1)h]. Again, consider SDDE (4.1) as a special case of SDE

(2.1) with t0 = rh, t1 = (r + 1)h, xt0 = xrh and coefficients given by (4.2). Similarly,
consider scheme (4.3) as a special case of scheme (3.1) with t0 = rh, t1 = (r + 1)h,
xt0 = xrh, and coefficients given by (4.7).

Verify A-9. Assumption A-9 follows from assumption C-10 trivially.
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Verify B-7. One observes that

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt

≤ KE

∫ h

0

∣

∣

∣

∣

∣

βt(y
n
t , x

n
κ(n,t))

1 + n−θ|βt(ynt , x
n
κ(n,t))|

− βt(y
n
t , x

n
κ(n,t))

∣

∣

∣

∣

∣

q

dt

+KE

∫ h

0

∣

∣βt(y
n
t , x

n
κ(n,t))− βt(yt, x

n
κ(n,t))

∣

∣

q
dt

≤ Kn−qθE

∫ h

0

|βt(y
n
t , x

n
κ(n,t))|

2qdt+KE

∫ h

0

∣

∣βt(y
n
t , x

n
κ(n,t))− βt(yt, x

n
κ(n,t))

∣

∣

q
dt,

which on the application of Remark 4.3 and assumption C-11 gives

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ Kn−qθE

∫ h

0

(1 + |ynt |
(χ+2)q + |xn

κ(n,t)|
(χ+2)q)dt

+KE

∫ h

0

(1 + |yt|
qχ
2 + |ynt |

qχ
2 )|yt − ynt |

qdt

and then on the application of Hölder’s inequality and Lemmas 2.3 and 3.2 along with
inductive assumptions gives

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ Kn−qθ +KE

∫ h

0

(E|yt − ynt |
q+δ)

q
q+δ .

Finally, on using the inductive assumption and θ = 1
2 , one obtains

E

∫ h

0

|bnt (x
n
κ(n,t))− bt(x

n
κ(n,t))|

qdt ≤ Kn− q
2 +Kn− q

q+(r+1)δ

and hence (4.11) holds for i = r + 1.
Verify B-8. This holds due to inductive assumptions.
Thus, by Theorem 3.5, one obtains that (4.11) holds for i = r+1. This completes

the proof.

5. Numerical illustrations. We demonstrate our results numerically with the
help of following examples.

Example 1. Consider the following SDE:

dxt =− x5
tdt+ xtdwt +

∫

R

xtzÑ(dt, dz)(5.1)

for any t ∈ [0, 1] with initial value x0 = 1. The jump size follows standard normal
distribution, and the jump intensity is 3. The tamed Euler scheme with step-size 2−21

is taken as true solution. Table 1 and Figure 1(a) are based on 1000 simulations.

Example 2. Consider the following SDDE:

dxt = (xt − x3
t + y2t )dt+ (xt + y3t )dwt +

∫

R

(xt + yt)zÑ(dt, dz),(5.2)

where yt = xt−1 for t ∈ [0, 2] with initial data ξt = t+1 for t ∈ [−1, 0]. The jump size
follows standard normal distribution, and the jump intensity is 3. The tamed scheme
with step-size 2−23 is taken as the true solution. Figure 1(b) is based on 300 sample
paths.
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Table 1

SDE: Errors in the tamed Euler scheme.

Step-size
√

E|xt − x
n
t |

2 E|xt − x
n
t |

2−20 0.000983465083412957 0.000359729516674718
2−19 0.00216716723504906 0.000696592563650715
2−18 0.00392575778408420 0.00117629823362591
2−17 0.00577090918102760 0.00176826651345228
2−16 0.00788070333470230 0.00265746428431957
2−15 0.0114588451477506 0.00398287796962204
2−14 0.0152592153162732 0.00568182096844841
2−13 0.0214987425830999 0.00775473960140893
2−12 0.0300412202466655 0.0117456051149168
2−11 0.0434809466351964 0.0168998838844189

(a) SDE: L1 and L2 convergence with rate (b) SDDE: L2 convergence with rate

Fig. 1. Tamed Euler schemes of SDE (5.1) and SDDE (5.2).
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