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2. Te Pūnaha Matatini, New Zealand.5

3. Department of Biology, University of York, York YO10 5DD, United6

Kingdom.7

4. School of Mathematics and Statistics, University of Canterbury, Christchurch8

8140, New Zealand.9

* Corresponding author email: michael.plank@canterbury.ac.nz10

Abstract11

Herd formation in animal populations, for example to escape a12

predator or coordinate feeding, is a widespread phenomenon. Under-13

standing which interactions between individual animals are impor-14

tant for generating such emergent self-organisation has been a key15

focus of ecological and mathematical research. Here we show the re-16

lationship between the algorithmic rules of herd-forming agents, and17

the mathematical structure of the corresponding spatial-moment dy-18

namics. This entails scaling up from the rules of individual, herd-19

generating behaviour to the macroscopic dynamics of herd struc-20

ture. The model employs a mechanism for neighbour-dependent,21

directionally-biased movement to explore how individual interac-22

tions generate aggregation and repulsion in groups of animals. Our23

results show that a combination of mutually attractive and repulsive24

interactions with different spatial scales is sufficient to lead to the25

stable formation of groups with a characteristic size.26

Keywords: collective behaviour; herd formation; moment closure ap-27

proximation; neighbourhood interactions; spatial point process.28
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1 Introduction29

The self-organisation of animals into herds, and the use of individual-based30

models to learn about the rules underlying this process, is a core subject in31

behavioural ecology (Krause et al., 2002). Herd formation is most often con-32

sidered in terms of movements of individuals, biased by their interactions at33

small spatial scales. However, these movements can affect the dynamics of34

populations and communities at larger spatial scales. In his seminal work,35

“Geometry for the selfish herd”, Hamilton (1971) proposed that aggrega-36

tion of animals into groups or herds, could be driven by the ‘selfish’ desire37

of an animal to reduce its predation risk by manoeuvring to positions that38

would place other population members closer to the predator. Underlying39

this idea was the concept of an animal’s domain of danger, a region of space40

containing all points nearer to that individual than to any other individual.41

The larger an animal’s domain of danger, the greater its risk of predation,42

and Hamilton therefore theorised that aggregation arose simply due to each43

animal undergoing movements towards its nearest neighbour, to reduce the44

size of its domain of danger. Stemming from this original idea, James et al.45

(2004) considered a model with greater biological realism, by incorporating46

a limited domain of danger, representing either a limited detection range47

or attack range of predators, that could be applied to animal groups of48

finite size. Further work by Reluga and Viscido (2005) pointed out that49

rules for generating realistic selfish herds need interactions beyond an in-50

dividual’s nearest neighbours, and showed how predation-based selection51

could increase the influence of distant neighbours. Other models explored52

animal aggregation behaviour by introducing sensory zones of individuals,53

for example zones of repulsion or attraction that drive animals towards or54

away from neighbouring individuals, giving rise to higher order structure in55

the population (Couzin et al., 2002; Wood and Ackland, 2007; Bode, 2011;56

Herbert-Read et al., 2011). One such model, proposed by Lukeman et al.57

(2010), used imagery data to infer individual zones of repulsion-alignment-58

attraction to describe self-aggregation in surf scoter flocks.59

In addition to individual-based models, other common modelling ap-60

proaches for herd formation involve the use of mathematical equations of61

motion for individuals or populations. For example, “Lagrangian” equa-62

tions of motion describe individuals’ trajectories in terms of forces and63

velocities. “Eulerian” continuum equations (i.e. partial differential equa-64

tions), based on a diffusion approximation of random motion, are also65

widely employed to describe the evolution (in time and space) of mean-field66

density for swarms (Parrish and Edelstein-Keshet, 1999). The key problem67

with mean-field models is that they consider only the first spatial moment68

(the average density of individuals) and invoke an assumption that all in-69
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dividuals interact in proportion to this average density (i.e. equivalent to70

assuming a well-mixed population or that all interactions are long-ranged),71

thereby ignoring any spatial structure in a population. This can give mis-72

leading results for systems where spatial structure is an important driver73

of the population dynamics (Law et al., 2003).74

Models for the dynamics of spatial moments deal explicitly with local75

spatial structure, and avoid the limitations of mean-field models by us-76

ing higher-order spatial moments. The second spatial moment, i.e. the77

density of pairs of individuals as a function of their spatial separation,78

carries information on local spatial structure, and there is now a substan-79

tial body of theory for spatial-moment dynamics up to second order for80

birth-death-movement processes (Bolker and Pacala, 1997; Dieckmann and81

Law, 2000; Murrell and Law, 2003). This theory has been extended to82

consider multiple interacting species (Plank and Law, 2015), for example83

in predator-prey systems (Murrell, 2005; Barraquand and Murrell, 2013).84

A formal mathematical derivation that allows construction of a dynami-85

cal system for the second spatial moment in the presence of directionally-86

biased movement has been given by (Middleton et al., 2014; Binny et al.,87

2015, 2016a) and extended to include birth and death processes (Binny88

et al., 2016b). This mechanism for neighbour-dependent directional bias89

has been shown to be a strong driver of spatial structure, such as aggre-90

gation, in motile cell populations (Binny, 2016). The directionally-biased91

movement modelling framework has been extended to multiple species by92

Surendran et al. (2018b) in the context of cell–obstacle interactions and by93

Surendran et al. (2018a) to chase–escape dynamics. However, directional94

movement of animals, as they respond to cues from their neighbourhoods,95

have not previously been part of this framework (but see Murrell and Law96

(2000) for nondirectional, environment-dependent movement).97

Spatial moment dynamics are capable of providing mechanistic under-98

standing of the effects of individual interactions that repeated simulations99

of individual-based models alone cannot. Although it is not typically pos-100

sible to obtain closed-form solutions for the spatial moments, which must101

be approximated numerically, the structure of the equations can provide102

analytical insights into the relationships between model parameters and103

solutions. For example, spatial moment approximations have revealed:104

how and why spatial structure affects population carrying capacity (Law105

et al., 2003); new mechanisms for coexistence (Murrell and Law, 2003); the106

relative importance of different drivers of spatial structure (Binny et al.,107

2016b); and an analytical equivalence between mean population density108

and interaction range (Binny, 2016). Although straightforward to simu-109

late in principle, individual-based models are stochastic processes with a110

very high dimensional state space and are not amenable to analytical ap-111

3



proaches except in special cases (Blath et al., 2007). In addition, although112

individual-based models are relatively efficient to simulate for small pop-113

ulations, the computational cost for models with interactions among in-114

dividuals increases faster than linearly with population size (Binny et al.,115

2016b). In contrast, the computational cost of solving a spatial moment116

dynamics approximation is insensitive to population size (Surendran et al.,117

2018b) so this represents an efficient alternative to individual-based models118

for large or growing populations.119

The purpose of this paper is two-fold. First, we employ new mathemati-120

cal theory recently developed in the context of collective cell behaviour, that121

allows scaling up from directionally-biased agent movements to macroscopic122

dynamics (Binny et al., 2016a; Surendran et al., 2018b), and demonstrate123

how it can be applied in the ecological setting of herd formation in animals.124

The key mathematical expressions encoded in the rules of the individual-125

based model become clear in doing this. Secondly, we show that the spatial126

properties of herd formation are captured by the macroscopic dynamics,127

through appropriate choice of interaction kernels for directionally-biased128

movement. This provides a foundation to bring biased movement129

into the earlier models of spatial-moment dynamics that focus on130

births, deaths and unbiased movement (Plank and Law, 2015).131

The framework will enable herd development to be studied in132

the broader context of population and community dynamics. To133

facilitate this future work, the mathematical derivations are given134

in a multi-species setting.135

2 Stochastic, individual-based model136

Spatial-moment dynamics of birth, death and growth processes have been137

dealt with previously (Bolker and Pacala, 1997; Dieckmann and Law, 2000;138

Murrell and Law, 2003; Adams et al., 2013). Therefore here we con-139

sider only movement of individuals of fixed types. We first consider an140

individual-based model for motile agents. For generality, we allow individ-141

uals to be of an arbitrary number of types, indexed i ∈ {1, ..., imax}. These142

could be species allowing, for instance, spatial interactions of predators and143

herd-living prey (the indexing can be ignored if all individuals are of the144

same type). Processes take place in a continuous two-dimensional space,145

which is large compared with the scale over which individuals interact and146

move; a point in the space is given by the vector x = (x1, x2) of Cartesian147

coordinates.148
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2.1 Model for biased movement149

The population comprises a fixed number n of individuals numbered p =150

1, . . . , n, and the state at time t is characterised by their types and locations151

(ip, xp). Individual p moves in a series of discrete steps, which occur at a152

rate Mp that may depend on its neighbourhood. This is a Poisson process153

over time, so the probability of movement in a short period δt is Mpδt +154

O(δt2). Movement events are assumed to occur as instantaneous jumps155

(i.e. a position jump process). As soon as a movement takes place, the156

state of the system is changed, potentially leading to a change in Mp as157

well.158

We allow both an intrinsic and a neighbourhood contribution to the159

movement rate, given by160

Mp = mip +
∑

q 6=p

wipiq(xp, xq). (1)161

Here mi is the intrinsic component of the movement rate for type i, and162

wipiq(xp, xq) is an extra contribution to the movement rate caused by a163

neighbouring individual q of type iq at location xq. The contribution may164

depend on the location and type of both p and q. The weight typically165

attenuates with distance from p to q and could depend on whether individ-166

ual q is the same species or, say, a predator species. The overall effect of167

neighbours is obtained by summing over all q, excluding individual p itself.168

When individual p moves from xp, it jumps to another location up =169

xp + ξ where ξ is a random variable in R
2 with a bivariate probability170

density function (PDF) of the form171

µ̂p(ξ) = fip(|ξ|)ĝp (arg(ξ)) , (2)172

where arg(ξ) ∈ [0, 2π) denotes the direction of the vector ξ. The PDF in173

Eq. (2) is separated into two independent parts for the distance moved |ξ|174

and the direction of movement arg(ξ). For simplicity, we assume that fi(|ξ|)175

is neighbourhood-independent (though it may depend on the individual’s176

type i) and given by the Gaussian function with mode ri and variance s2i :177

fi(|ξ|) = Cie
−

(|ξ|−ri)
2

2s2
i , 0 ≤ |ξ| ≤ ri,max, (3)178

where Ci is a normalisation constant. In contrast to the distance moved,179

the direction of movement does depend on the neighbourhood of individual180

p, and is the core mechanism underpinning herd development here. The181

neighbourhood dependence takes the form of a bias vector η̂p for individual182

p, defined below, that provides the parameters for a circular probability183

distribution for the direction of movement.184
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Figure 1: Schematic diagram showing how the bias vector and the movement
distribution of a focal individual are constructed. (a) A bias kernel v, from
which the gradient vector ∇v, whose x1, x2 components are plotted in (b) and
(c), is obtained. (d) Contribution of neighbouring individuals (light arrows) to
the bias vector of the focal individual at the origin (bold arrow). Note that
the light arrows are not the bias experienced by the neighbouring individuals,
but their contribution to the bias of the focal individual. The direction of the
bias vector determines the preferred direction and its magnitude determines how
tightly peaked the distribution is around the preferred distribution. Note the
bias vector does not determine the new location of the focal individual. (e,
f) Bivariate probability density function Eq. (2) for the movement vector ξ
of the focal individual in the case of strong bias (β = 0.15) and weak bias
(β = 0.01) respectively. Movement distance is distributed according to Eq. (3)
with r = 0.05, s = 0.02, rmax = r + 3s.
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The bias vector is obtained from the gradient vector of a bias kernel185

function that carries the key biological information. As an example, we de-186

scribe the construction of a bias vector for a single focal individual located187

at the origin in Fig. 1. This starts with a bias kernel function vipiq(xq−xp),188

here a standard Gaussian function of the distance xq−xp between two indi-189

viduals (Fig. 1a), potentially dependent on both the focal individual’s type190

ip and the neighbouring individual’s type iq. The kernel gives a gradient191

vector ∇vipiq(xq − xp), i.e. the partial derivatives of vipiq in the two spatial192

dimensions (Fig. 1b, c). The contribution of neighbouring individual q of193

type iq and location xq to the bias vector of the focal individual p is the gra-194

dient vector evaluated at xq −xp (light arrows on neighbouring individuals195

in Fig. 1d). A neighbour vector that points towards the origin corresponds196

to a repulsive effect of the neighbour on the focal individual (an outward197

arrow would be an attractive effect). Summing all neighbour vectors gives198

the bias vector for the focal individual (bold arrow on the focal individual199

in Fig. 1d):200

η̂p = βip

∑

q 6=p

∇vipiq(xq − xp), (4)201

where βip is a parameter scaling the overall strength of bias. In the example202

(Fig. 1d), the neighbourhood gives the focal individual a preferred direction203

of movement away from the cluster of individuals on its upper right-hand204

side. Note that changing the sign of the bias kernel in Fig. 1a would reverse205

the direction of all arrows in Fig. 1d and hence produce an attractive rather206

than a repulsive bias.207

Once the bias vector η̂p for individual p is computed, its direction of208

movement θ is drawn from the von Mises distribution (independent of the209

distance moved) with preferred direction arg(η̂p) and concentration |η̂p|.210

This distribution has probability density function211

ĝp(θ) = g(θ, η̂p) =
exp (|η̂p| cos (θ − arg(η̂p)))

2πI0 (|η̂p|)
, (5)212

where I0 is the modified Bessel function of the first kind and zero order.213

If the magnitude of the bias vector is large, the von Mises distribution is214

tightly peaked around arg(η̂p), meaning the individual is highly likely to215

move in a direction close to the preferred direction (Fig. 1e). This situation216

would arise if the focal individual has multiple near neighbours exerting217

bias in similar directions (as in the example in Fig. 1d). Conversely, if the218

magnitude of the bias vector is small, the von Mises distribution is more219

broadly distributed (Fig. 1f). In the limit where the bias vector has zero220

magnitude, the von Mises distribution is a uniform distribution on [0, 2π),221

meaning the focal individual is equally likely to move in any direction. This222

situation would arise if the focal individual has no near neighbours, or has223
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neighbours that are symmetrically positioned on opposite sides such that224

their contributions to the bias vector cancel one another out.225

2.2 Implementation226

We initialised realizations of the stochastic individual-based process with227

a fixed population of n = 200 individuals of a single type. The individuals228

were distributed in a unit arena as a spatial Poisson process at the start229

of each realization; in other words, each individual’s location was chosen230

uniformly at random and independently of all other individuals. Distances231

are given relative to the unit of the arena. We used periodic boundary232

conditions, and updated the state of the system in continuous time using233

the Gillespie algorithm (Gillespie, 1977). For simplicity, we assumed the234

movement rate to be independent of neighbourhood by setting wipiq = 0235

for all p and q in Eq. (1), leaving in place only an effect of neighbours on236

the direction of intrinsic movements.237

Eqs. (2)–(5) define the bivariate movement distribution of a focal in-238

dividual p. Vectors ξ from this bivariate distribution were obtained by239

independently generating the distance and direction of movement. The240

probability that the distance moved |ξ| by an individual of type i lies in241

the infinitesimal interval [r, r+ dr] is rfi(r) dr. Hence, movement distance242

of an individual of type i has PDF243

hi(r) = rfi(r).244

Random numbers from this distribution were generated via the following245

rejection sampling algorithm:246

1. Generate a normally distributed random number R ∼ N(ri, s
2
i )247

2. If R lies outside the interval [0, ri,max], go to step 1. This results in a248

sample from the distribution with PDF fi(r) specified by Eq. (3).249

3. Accept R with probability P (R) = R/ri,max, otherwise go to step250

1. This results in a sample from the distribution with PDF hi(r) as251

required.252

The direction of movement θ was generated from the von Mises distribution253

with PDF given by Eq. (5). This requires the bias vector η̂p for individual254

p to be calculated, according to Eq. (4).255
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Figure 2: Territories and clusters developing from contrasting bias kernels. (a)
A single positive Gaussian function Eq. (6) (σ1 = 0.04, N = 0.0099) leads to
formation of territories. (b) Adding a second Gaussian function, Eq. (7), that
peaks at a distance r̄ = 0.12 from the origin (σ1 = σ2 = 0.04, N = 0.0477, k2 =
0.5) leads to small clusters. (c) Subtracting a second Gaussian function, Eq. (7),
that reaches its minimum at a distance r̄ = 0.12 from the origin (σ1 = σ2 = 0.04,
N = 0.0401, k2 = −0.5) leads to a single large cluster. Gaussian functions in
the bias kernels were truncated at ±3 standard deviations. Bias strength of the
gradient vector β = 0.01. (d),(e),(f) Snapshots of locations of individuals at
time t = 10; the spatial patterns change continuously over time, starting from a
spatial Poisson process. (g),(h),(i) Contrasting pair correlation functions ρ(r) of
the spatial patterns develop by t = 10 (continuous lines, δr = 0.02); the dash-
dot lines show ρ(r) at time t = 0. Neighbourhoods act only on the direction of
movement here, not on the rate of movement. Movement distance is distributed
according to Eq. (3) with r = 0.05, s = 0.02, rmax = r + 3s. Movement rate
m = 1.
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2.3 Biased-movement kernels and spatial structure256

The choice of a kernel for biased movement is a biological matter with far-
reaching consequences. Fig. 2 gives three examples. The first is a single
Gaussian function centred on the origin

(a): vipiq(r) =
1

N
e−r2/2σ2

1 (6)

where r = |xq − xp| is the distance of neighbour q from focal individual
p, σ1 is a measure of the width of the function, and N is a normalisation
constant. The second and third examples combine a Gaussian function
centred on the origin with one offset from the origin by an amount r̄ and
with width σ2:

vipiq(r) =
1

N

(

e−r2/2σ2
1 + k2e

−(r−r̄)2/2σ2
2
)

(7)

the weight k2 of the outer function having different signs: (b) k2 > 0, and257

(c) k2 < 0 .258

A kernel based on the single Gaussian function generates a gradient259

vector that points towards the origin, creating a region of repulsion around260

each individual. This means that individuals tend to move away from near261

neighbours (Fig. 2a), leading to territory formation (Fig. 2d). A kernel262

based on a double Gaussian function in which the outer Gaussian is positive263

(k2 > 0, Fig. 2b), generates three concentric rings: an inner ring where264

the gradient vector points towards the origin, an intermediate ring where it265

points away from the origin, and an outer ring where it points towards the266

origin. This creates short-range repulsion, medium-range attraction and267

long-range repulsion, leading individuals to form small clusters (Fig. 2e).268

A kernel based on a double Gaussian function, in which the outer Gaussian269

is negative (k2 < 0, Fig. 2c), generates two concentric rings: an inner ring270

where the gradient vector points towards the origin, and an outer ring271

where it points away from the origin. This creates short-range repulsion272

and long-range attraction, leading towards coalescence of the population273

into a single mega-herd (Fig. 2f). The reverse order (attraction-repulsion)274

would lead to collapse of individuals within groups to a single point, which275

would not be not biologically reasonable.276

Short-range repulsion (Fig. 2a, d) creates space around indviduals, and277

is a natural basis for territories, defended by individuals or groups, that278

come about from scarcity of resources (Maher and Lott, 1995). Adding279

longer-range attraction (Fig. 2c, f) allows for benefits of living in groups,280

such as a reduced risk of predation, increased chance of detecting predators,281

and less need for individual vigilance (Hamilton, 1971; Pulliam, 1973; El-282

gar, 1989). With the short-range repulsion still in place, some space around283
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individuals remains and this can lead to remarkable spatial structure, such284

as that observed in king penguin colonies (Gerum et al., 2018). However,285

the combination of local repulsion and longer-range attraction can lead to286

very large groups forming (Olson et al., 2009). In practice, populations287

often break up into much smaller groups because of the costs of living to-288

gether, such as the need for synchronized behaviour (Gajamannage et al.,289

2017), levels of stress (Markham et al., 2015), possibly the spread of disease290

(Griffin and Nunn, 2012; Sah et al., 2017), and competition/cooperation291

between males (DuVal, 2007). Adding a further outer region of repulsion292

(Fig. 2b, e) allows break-ups to happen, the smaller groups being dis-293

tributed non-randomly over space, with spatial structure inside the groups294

themselves.295

The spatial structures in Fig. 2 are clearly quite different, and this296

difference is summarised in their pair correlation functions (Fig. 2g,h,i). A297

pair correlation function ρij(r) is a standard, second-order spatial statistic,298

based on the density of pairs of points of type i, j as a function of the299

distance r between them (Illian et al., 2008). In the absence of spatial300

structure at a distance r, ρij(r) takes a value 1; if there is an excess of301

pairs (clustering), ρij(r) > 1; if there is a lack of pairs (regular pattern),302

ρij(r) < 1. Thus the space that individuals create around themselves in303

Fig. 2d shows up as a lack of pairs at short distance in the pair correlation304

in Fig. 2g. The clusters that form in Fig. 2e appear as an excess of pairs at305

short distances in Fig. 2h, and a lack of pairs at slightly longer distances.306

The clusters themselves are not distributed at random across space, and307

leave an attenuating oscillatory signal in the pair correlation as distance308

increases. The location of the secondary peak in Fig. 2h at around r = 0.2309

corresponds to the typical distance between adjacent clusters. The mega-310

herd developing in Fig. 2f appears as a large peak of pairs at short distances311

from the interaction of local repulsion and longer-distance attraction, with312

pairs becoming less frequent beyond the peak (Fig. 2i). The function does313

not tend to 1 at large distances, because the cluster is on the same spatial314

scale as the arena.315

At a single point in time, repeated realizations of the stochastic processes316

from the same initial statistical distribution have different spatial configu-317

rations, but the same basic information is retained in the pair correlation318

functions. As time goes on, the spatial patterns change, and the pair cor-319

relation functions track the developing spatial structure. This tracking is320

evident in Fig. 2g,h,i. The realizations all started as Poisson processes lack-321

ing spatial structure, and with pair correlation functions close to 1 at all322

distances. But, by t = 10, the functions are quite distinct from one another,323

as shown in Fig. 2. The significance of the time-dependent pair correla-324

tion becomes important below, because a measure of this kind becomes the325
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state variable of the spatial-moment dynamics. In some ecological systems,326

statistical stationarity may eventually be reached. But in others, such as327

predator-prey systems, it is conceivable that the pair correlation functions328

could develop periodic behaviour and continue to change indefinitely. The329

long-term behaviour of the pair correlation function under a given choice330

of bias kernel is not sensitive to the particular choice of initial conditions.331

3 Spatial-moment dynamics332

Here we show how the algorithmic rules of the individual-based stochastic333

process can be described mathematically to give deterministic approxima-334

tion in the form of a dynamical system for the second spatial moment.335

3.1 Definition of spatial moments336

In defining the spatial moments, it helps to think of small regions of area337

h, so that the O(h2) probability of containing more than one individual338

is vanishingly small. Formally, the first spatial moment at time t is the339

expected value of the density obtained from the stochastic process at time340

t, in the limit as h → 0:341

Z1,i(x) = lim
h→0

E[ni(δx)]

h
, (8)342

where ni(δx) is the number of individuals of type i in the region δx centred343

on x.344

In the case of the second moment, we consider two regions of area h:345

δx centred on x containing ni individuals of type i, and δy centred on y346

containing nj individuals of type j. The second spatial moment at time t is347

the expected value of the pair density from the stochastic process at time348

t, in the limit as h → 0 (Plank and Law, 2015):349

Z2,ij(x, y) = lim
h→0

E[ni(δx)nj(δy)− δijni(δx ∩ δy)]

h2
. (9)350

The second term in the numerator (with Kronecker delta δij) is needed to351

remove a pair that i in δx would otherwise create with itself. Below we352

also use the third moment, the density of triplets Z3,ijk(x, y, z), defined in a353

similar way after removing all non-distinct triplets (Plank and Law, 2015).354

12



  

xi j

xi j

i

xi j

i

xi j

i

x’’
x’

k

xi j

i

x’’
x + x+ + xx’’

A

B

C

D

E

F

xi j

k

i

x’

x
i j

i

x’’

Figure 3: Geometry of the six flux terms A, ..., F in which movement of an
individual of type i changes the pair density Z2,ij(ξ) in a model of spatial-moment
dynamics, numbered as described in the text. The object at the top is the ij
pair: an individual of type j displaced by ξ from the focal individual of type
i. Black-filled circles are locations of individuals after movement; empty circles
are the positions from which they move; grey circles are neighbours that affect
the movement; a dotted circle represents an integration over a neighbourhood;
arrows are vectors. Geometries A, B, C in the first column destroy the pair;
geometries D, E, F in the second column create the pair. A, ..., F are given as
formal expressions (10), ..., (15) in the text.
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3.2 Dynamics of the second moment355

For simplicity, we consider dynamics in a homogeneous space, meaning356

that the statistics of the spatial point process in any subdomain are the357

same, regardless of the location of that subdomain. In this case, the first358

spatial moment Z1,i is independent of spatial location x. Further, since the359

model consists only of movement and there is no birth or death, there is no360

change in first moment over time, so the first moment is simply a constant361

determined by the fixed population size. The second spatial moment Z2,ij362

can be expressed as a function of the displacement vector between two363

individuals ξ = y−x, rather than as a function of their physical locations x364

and y (see Fig. 3 for geometric interpretation). Similarly, the third moment365

Z3,ijk can be expressed in terms of two displacement vectors, ξ = y−x and366

ξ′ = z − x.367

Although the first moment is constant, the second moment does change368

over time as spatial structure develops, as was evident from the pair cor-369

relation functions in Fig. 2. The second moment and all higher moments370

are functions of time, but for clarity we omit the time argument below.371

The normalised second moment Z2,ij(ξ)/(Z1,iZ1,j) relates to the measure372

of spatial structure in Fig. 2g,h,i; it is the expected value of the pair corre-373

lation function ρij(r) under isotropy. Thus, to follow the dynamics of the374

second moment is equivalent to following the behaviour of the average pair375

correlation function over time. In other words, the dynamics track the de-376

velopment of spatial structure over time. With Z2,ij(ξ) as the state variable,377

we have a dynamical system describing changes in a function, as opposed378

to a dynamical system of a scalar quantity, the density of individuals (i.e.379

we have a partial as opposed to an ordinary differential equation). This380

is to be expected because the dynamical system has to carry information381

about the location of individuals relative to one another.382

A formal derivation from the stochastic process (Binny et al., 2015,383

2016a) leads to six terms affecting the rate of change in the second moment384

Z2,ij(ξ) due to movement by the focal individual of type i, labelled (A)–385

(F) below and with geometries illustrated in Fig. 3. Symmetric terms386

corresponding to movement of the other individual (of type j) in the pair387

are obtained by making the transformation 〈i, j, ξ → j, i,−ξ〉 to each of388

the terms below.389

First are three negative terms that account for the ways in which an ex-390

isting pair, consisting of a individual of type i separated from an individual391

of type j by a vector ξ, can be destroyed. Bias in the movement direction392

does not enter into these terms, because movement by the focal individual393

in any direction destroys the pair.394
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(A) Intrinsic rate of movement mi of the focal individual:395

fA = −Z2,ij(ξ)mi. (10)396

(B) Effect of the neighbourhood of the focal individual on its movement397

rate:398

fB = −
∑

k

∫

Z3,ijk(ξ, ξ
′)wik(ξ

′)dξ′. (11)399

This incorporates the density of neighbours of type k displaced by ξ′ from400

the focal individual (conditional on the presence of the individual of type401

j displaced by ξ from the focal individual), given by the third moment402

Z3,ijk(ξ, ξ
′). The kernel function wik(ξ

′) gives a weight to the effect of the403

neighbour on the movement rate of the focal individual. The overall effect404

of the neighbourhood is then obtained by integrating over all displacements405

ξ′ and summing over all types k.406

(C) The other individual (of type j) in the pair also affects the movement407

rate of the focal individual, with a contribution weighted by wij(ξ):408

fC = −Z2,ij(ξ)wij(ξ). (12)409

Mirroring the negative terms are three positive terms that account for410

the ways in which a pair, consisting of an individual of type i separated411

from an individual of type j by a vector ξ, can be created. Since this can412

only occur via movement, this always starts with an ij pair separated by413

a different vector, denoted ξ + ξ′′, followed by a movement by vector ξ′′.414

These terms are more intricate than those in Eqs. (10)–(12) because they415

have to cover all possible starting locations for the focal individual and this416

needs to allow for bias in movement direction.417

(D) Intrinsic movement rate of the focal individual, allowing for all starting418

points:419

fD = mi

∫

Z2,ij(ξ + ξ′′)µij(ξ
′′, ξ + ξ′′)dξ′′. (13)420

Here, the term inside the integral is the probability of starting with an421

ij pair separated by vector ξ + ξ′′, followed by a movement by ξ′′ of the422

individual of type i, which happens with probability density µij(ξ
′′, ξ + ξ′′)423

(see below). This is then integrated over ξ′′ to allow for all possible starting424

locations.425

(E) Effect of the neighbourhood of the focal individual on its movement426

rate, depending on its starting location:427

fE =

∫

µij(ξ
′′, ξ + ξ′′)

(

∑

k

∫

Z3,ijk(ξ + ξ′′, ξ′)wik(ξ
′)dξ′

)

dξ′′. (14)428

This is similar in structure to (11), accounting for the influence on the focal429

individual’s movement rate of a third individual of type k at displacement430

15



ξ′′. The outer integral over ξ′′ allows for all possible starting locations for431

the focal individual.432

(F) The other individual (of type j) in the pair also affects the movement433

rate of the focal individual:434

fF =

∫

Z2,ij(ξ + ξ′′)µij(ξ
′′, ξ + ξ′′)wij(ξ + ξ′′)dξ′′. (15)435

This is similar in structure to (13), but instead of the intrinsic movement436

rate mi, accounts for the contribution to the focal individual’s movement437

rate from the other individual (of type j) in the pair. When the pair is438

initially separated by vector ξ+ ξ′′, this contribution is wij(ξ+ ξ′′). Again,439

the integral over ξ′′ allows for all possible starting locations.440

The key ecological information for movement bias is contained in µij(ξ
′′, ξ+441

ξ′′), which is the probability density that the focal individual’s movement442

vector is ξ′′, conditional on the presence of an individual of type j located at443

ξ+ ξ′′ relative to the focal individual. This is the movement vector needed444

to create the ij pair separated by ξ as required. As with the stochastic445

model (Eq. (2)), this is composed of two independent parts:446

µij(ξ
′′, ξ + ξ′′) = fi(|ξ

′′|)g(arg(ξ′′), ηij(ξ + ξ′′)). (16)447

The first part fi(|ξ
′′|) relates to the distance moved by an individual of448

type i, which is independent of the neighbourhood and given by Eq. (3).449

The second part g(arg(ξ′′), ηij(ξ + ξ′′)) is the probability density of mov-450

ing in direction arg(ξ′′), which does depend on the neighbourhood. This451

dependence is encapsulated in the expected bias vector ηij(ξ + ξ′′) for an452

individual of type i separated from an individual of type j by a vector453

ξ + ξ′′:454

ηij(ξ + ξ′′) = βi

(

∑

k

∫

∇vik(ξ
′)
Z3,ijk(ξ + ξ′′, ξ′)

Z2,ij(ξ + ξ′′)
dξ′ +∇vij(ξ + ξ′′)

)

(17)455

Here ∇vik(ξ
′) is the gradient vector of the bias kernel vik(ξ

′). Eq. (17)456

integrates over the neighbourhood of the focal individual for neighbouring457

individuals of type k, then sums over all types k, and adds the effect of458

the partner individual of type j in the pair. The parameter βi gives an459

overall weight for the bias. The bias vector provides the parameters for a460

circular probability distribution. To match the stochastic model, we use a461

von Mises distribution with peak angle arg(ηij) and concentration |ηij|, to462

obtain the probability density function of the angle arg(ξ′′).463

Summing expressions (10)–(15), gives the total rate of change of the pair464

density Z2,ij(ξ):465

∂

∂t
Z2,ij(ξ, t) = fA(ξ, t) + · · ·+ fF (ξ, t) + 〈i, j, ξ → j, i,−ξ〉, (18)466
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where the matching symmetric terms for the partner individual in the ij467

pair are given by the substitutions 〈i, j, ξ → j, i,−ξ〉 (Plank and Law, 2015).468

We give the function arguments in full to make clear the time dependence.469

This is a formal, exact description of how the movement rules at the level470

of the individual translate into a dynamical system of pair densities at the471

macroscopic level, after averaging over many realizations of the stochastic472

process, starting from the same statistical distribution.473

3.3 Closure of the second-moment dynamics474

The dynamical system is not yet closed, because it contains the third spatial475

moment, the density of triplets. To deal with this, a closure approxima-476

tion is needed to replace the third moment by a function of lower-order477

moments. Although not usually recognized, closures are ubiquitous in eco-478

logical theory: ignoring spatial structure completely implies a closure of the479

form Z2,ij(ξ) = Z1,iZ1,j, giving a dynamical system for the first moment480

(average density), i.e. the law of mass action, or the so-called mean-field481

assumption. A formal theory of closures at second order is a matter for482

research (Raghib et al., 2011; Dieckmann and Law, 2000; Murrell et al.,483

2004). Here, we use the Kirkwood closure (Kirkwood, 1935):484

Z3,ijk(ξ, ξ
′) =

Z2,ij(ξ)Z2,ik(ξ
′)Z2,jk(ξ

′ − ξ)

Z1,iZ1,jZ1,k

(19)485

as we have found the exact choice of closure makes little difference when486

the dynamics deal only with movement (i.e. without birth and death) (see487

for example Fig 6.3 in Binny (2016)).488

3.4 Spatial-moment dynamics as an approximation489

scheme490

After closure, the dynamical system is no more than an approximation for491

the expected value of the second moment of the stochastic process, because492

it ignores spatial information carried by higher-order moments. How well493

does this approximation work? This is analogous to asking how well the494

mean-field assumption works as a description of population dynamics; the495

answer to that question is that the approximation is poor if neighbourhoods496

are important (Raghib et al., 2011). The second-order closure should be497

better because it does carry spatial information, but would still be expected498

to become poor as higher-order spatial structure becomes important.499

Fig. 4 compares the spatial signal of the spatial-moment dynamics with500

that of the stochastic individual-based model from which the dynamical501
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Figure 4: Solutions for the normalised pair density Z2(r)/Z
2
1 of the spatial-

moment dynamics, Eqs (18) (19), at time 10 (continuous lines), as a function
of the distance r between the pair. These are approximations for the stochastic
process of individual movement in Section 2, using parameter values that gener-
ated (a) territories in Fig. 2a, and (b) small clusters in Fig. 2b. For comparison,
we also show the pair correlation functions (sensu Fig. 2g,h) averaged over 100
realizations of the stochastic process at time 10 (dashed lines). Initial conditions
were spatial Poisson processes (dash-dot lines). Numerical integration was done
by the Euler method, using Eq. (18) (19), discretised as dξ = 0.02, dt = 0.05.

system (18), (19) was derived. For comparability with the stochastic re-502

sults, we assumed the movement rate to be independent of neighbourhood503

by setting wij(.) = 0 in Eqs (10)–(15), and leaving in place only an effect504

of neighbours on the direction of intrinsic movements. This means that505

the spatial-moment dynamics deal only with terms (10), (13) (geometries506

A and D in Fig. 3). We examined the dynamics for the bias kernels shown507

in Fig. 2a,b, as these generate structure at a small spatial scale. We would508

not expect to find a good approximation with the bias kernel in Fig. 2c,509

because spatial structure remains at large spatial scales. In other words,510

the pair correlation ρ(r) does not approach 1 as r increases in Fig. 2i.511

Fig. 4 shows that the approximation scheme captures some basic signals512

of the stochastic, individual-based model. Fig.4 shows the characteristic513

regular structure arising from repulsive bias, manifested as a lack of pairs514

at short distance. Fig. 4 shows the distinct cluster formation as a result of515

short-range repulsion, medium-range attraction, and long-range repulsion.516

Although the quantitative match between the stochastic results and the517

spatial moments approximation is far from perfect, the key qualitative fea-518

tures of the emergent spatial structure are captured in the second moment.519

This illustrates two key points. First, it shows that the rules responsible for520

generating the spatial structure in the stochastic model are encapsulated521

by the dynamical system of spatial moments, despite the latter appear-522

ing to be be completely different. Second it demonstrates that much of the523

information about spatial structure is carried just in the second spatial mo-524
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ment. In other words, there is some justification for closing the hierarchy525

at second order. The information shown in Fig. 4 would be lost completely526

in a mean-field model, which implicitly closes the system at the level of the527

first moment.528

4 Discussion529

This work draws on recent advances in spatial moment dynamics models530

of collective cell behaviour (Binny et al., 2016a; Surendran et al., 2018b)531

to address the issue of animal herding behaviour in ecology, and opens532

new research avenues in this setting. In particular, we have explored how533

using different forms of neighbourhood interaction kernels for directionally534

biased movement can give rise to formation of animal groups or herds.535

Individual-based models describing biased directional movement have been536

widely used in an ecological context (Codling and Hill, 2005; Benhamou,537

2006; Codling et al., 2007; Bode, 2011). However, this is the first time that a538

spatial moment dynamics model, capturing the outcomes of this directional539

bias at the macroscopic scale, has been used to describe animals living in540

groups. In doing this, we have shown the geometry of six flux terms that541

describe the exact relationship between the algorithmic individual-based542

model and the mathematical model (up to the second spatial moment).543

Our results show that herd-like spatial structure can be generated solely544

from interactions among neighbouring individuals of the same species. In545

reality, this spatial structure can be strongly affected by interspecific in-546

teractions, such as the presence of predators. Future work will include547

explicitly applying the model framework developed here to systems with548

multiple interacting species. This has been done for cell–obstacle interac-549

tions (Surendran et al., 2018b) and chase–escape interactions (Surendran550

et al., 2018a), but these models use simple attractive or repulsive inter-551

actions, rather than the distance-dependent interactions that we employ552

here.553

One advantage of spatial moment approximations over individual-based554

models is that the equations for the dynamics of spatial moments are de-555

terministic and only need to be solved once, rather than performing com-556

putationally intensive repeated simulations. They are also more tractable557

mathematically, permitting further analysis and exploration of parameter558

space. Computational power typically restricts simulation of individual-559

based models to systems with relatively low numbers of individuals, due to560

the requirements of tracking each individual’s movements and interactions561

with each of its neighbours over time. There are many such examples of562
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small-herd systems in ecology (see for example Table 1 in Reiczigel et al.563

(2008)). In contrast, the computational requirement for solving the spatial564

moments approximation is independent of population size. The methodol-565

ogy would lend itself to systems with much larger animal herds and offer566

insights that would otherwise require considerably greater computational567

resources to achieve through simulations alone.568

Although the spatial-moment model shows the basic spatial structure,569

its fit to the stochastic model could clearly be improved. Attenuation of570

the spatial signal with increasing distance is rather slow in Fig 4b, which571

generates inaccuracies that can propagate to shorter distances. Also, at the572

shortest distances, the model overestimates the strength of spatial struc-573

ture; this may be because, after discretisation, spatial resolution becomes574

less good as r → 0. Such issues could be dealt with by discretising over a575

larger space on a finer spatial grid, but this would have made computation576

unfeasible. In future work, a Fourier transform for the convolution inte-577

grals should be considered, as this could provide a major increase in speed578

of computation.579

Previous models for animals living in herds have used the idea of zones580

of attraction and repulsion (Couzin et al., 2002; Bode, 2011). A zone of581

repulsion is also supported by data (Krause et al., 2002). Zones of repulsion582

and attraction have also been modelled in the cell behaviour literature,583

for example using the Lennard-Jones kernel (Jeon et al., 2010) and the584

Morse potential (Middleton et al., 2014; Matsiaka et al., 2017). Our model585

incorporates and builds on these ideas, including the possibility for multiple586

zones of attraction and repulsion with different spatial scales. Examples587

of the types of behaviour encapsulated by the bias kernels we have studied,588

and the resulting spatial structure, can be found in real animal populations.589

For example, Gerum et al. (2018) observed strong regular structure in king590

penguin (Aptenodytes patagonicus) colonies, caused by short-range nest591

site-protecting repulsive interactions between neighbours. Gajamannage592

et al. (2017) studied the formation of small clusters in cows (Bos taurus),593

generated by a balancing of costs to an individual of synchronisation (e.g.594

needing to concede to the timings of a large group, causing interrupted595

rest or grazing) with the benefits of reduced predation risk for larger, more596

defensible groups. Olson et al. (2009) observed the formation of a mega-597

herd in Mongolian gazelles (Procapra gutturosa), driven by habitat quality598

in a fragmented landscape.599

Some animal behaviour models also have an orientation component to600

make individuals move in the same direction (Sumpter et al., 2008). This601

is more relevant for species where individuals in a group tend to be in602

continuous motion, such as shoaling fish or flocking birds. These situa-603
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tions require a velocity jump process (Codling et al., 2007, 2008), where604

reorientation events depend on the distance to and current orientation of605

other individuals in the neighbourhood (Agueh et al., 2011). In principle,606

the structure of such a population could be described by a second spatial607

moment in terms of the difference between the positions and orientations608

of two individuals in a pair, but this problem is currently untackled.609
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