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Abstract— Osteoporosis is an age-associated disease
characterised by low bone mineral density (BMD) and
micro-architectural deterioration leading to enhanced frac-
ture risk. Conventional dual-energy X-ray absorptiometry
(DXA) analysis has facilitated our understanding of BMD
reduction in specific regions of interest (ROIs) within the
femur, but cannot resolve spatial BMD patterns nor reflect
age-related changes in bone microarchitecture due to its
inherent averaging of pixel BMD values into large ROIs.
To address these limitations and develop a comprehensive
model of involutional bone loss, this paper presents a fully
automatic pipeline to build a spatio-temporal atlas of ageing
bone in the proximal femur. A new technique, termed DXA
region free analysis (DXA RFA), is proposed to eliminate
morphological variation between DXA scans by warping
each image into a reference template. To construct the atlas,
we use unprocessed DXA data from Caucasian women aged
20-97 years participating in three cohort studies in Western
Europe (n >13,000). A novel calibration procedure, termed
quantile matching regression, is proposed to integrate data
from different DXA manufacturers. Pixel-wise BMD evo-
lution with ageing was modelled using smooth quantile
curves.This technique enables characterisationof spatially-
complex BMD change patterns with ageing,visualisedusing
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heat-maps. Furthermore, quantile curves plotted at different
pixel coordinates showed consistently different rates of
bone loss at different regions within the femoral neck. Given
the close relationship between spatio-temporal bone loss
and osteoporotic fracture, improved understanding of the
bone ageing process could lead to enhanced prognostic,
preventive and therapeutic strategies for the disease.

Index Terms— Spatio-temporal atlas, DXA, region free
analysis, osteoporosis.

I. INTRODUCTION

AGEING is associated with a gradual and progressive bone
loss, which predisposes to osteoporosis. Osteoporosis is

a bone disease characterised by low bone mass and micro-
architectural deterioration, and improving the understanding
of the bone ageing process interests the osteoporosis research
community [1], [2]. To facilitate this understanding, we pro-
pose a method to develop a spatio-temporal atlas of ageing
bone in the femur.

Spatio-temporal imaging atlases quantitatively describe
detailed anatomical or functional phenotypes from large imag-
ing studies. For example, brain atlases enable quantitation
of disease progression in Alzheimer’s Disease [3]. However,
to the best of our knowledge, no spatio-temporal atlas of
ageing bone has been developed in osteoporosis research.
Developing a comprehensive model of involutional bone loss
is a challenging task. First, this requires a robust and accurate
quantification technique for bone mineral density (BMD)
measurement and its spatial distribution. Dual-energy X-ray
Absorptiometry (DXA) is the reference gold standard to mea-
sure BMD in clinical practice [4]. In conventional DXA analy-
sis, BMD data is acquired at the individual pixel level but at the
analysis stage these values are averaged in a priori specified
regions of interest (ROIs) to compensate for shape variation
between scans (Fig. 1). Data averaging reduces the ability of
the technique to quantitate local variation in textural BMD pat-
terns of clinical relevance to disease progression with ageing.

The second challenge is the ability to homogenise BMD
measurements across different technologies, as systematic
differences in instrument calibration exist between different
proprietary DXA manufacturers [5]–[7]. Two broad cross-
calibration procedures are commonly used. In one approach,
each scanner is separately calibrated by fitting bone phantom
measurements to its nominal density values. Pearson et al. [8]
suggested an exponential curve and explored the technique
using the European Spine Phantom (ESP) prototype. In the
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Fig. 1. Femoral Regions of Interest (ROIs). The green solid contour
around the bone shows the total hip. The neck and the wards’ triangle
regions are identified with red and yellow rectangles, respectively. The
A-B line shows the hip axis and the black line delineates between the
trochanteric and the inter-trochanteric regions.

other approach, different scanners are calibrated simultane-
ously using density values measured on a common group of
individuals [5]–[7].

Both DXA calibration procedures have several key lim-
itations. Cross-calibration using phantom measurements is
challenged by a study conducted under the auspices of the
International DXA Standardisation Committee (IDSC) [5].
Genant et al. [5] showed a disagreement between regression
curves fitted to the phantom measurements and those fitted
to the human measurements. The second approach requires
repeated measurements of each subject across all machines
[5]–[7]. This can be a seriously limiting factor in large multi-
centre studies, where the first approach may be preferred in
practice [9].

This paper offers solutions to these challenges: To maintain
fidelity to high-resolution pixel BMD values, we have pre-
viously proposed a region free analysis (RFA) approach and
demonstrated its application to analysing periprosthetic BMD
changes for patients who received a hip prosthesis [10]–[12].
DXA RFA aligns each individual scan to a reference tem-
plate and so eliminates the morphological variation between
scans. This deformable image alignment establishes a virtual
correspondence between pixel coordinates enabling statistical
inference at the pixel level. To control the correspondence
between scans, the initial RFA technique used a set of anatom-
ical landmark points selected semi-automatically around the
prosthesis and the bone contour. Here, we extend the technique
to the native femur and propose a fully automatic formulation
applicable to large-scale datasets (section II-B).

To amalgamate data from different centres, we propose
a novel calibration procedure termed quantile matching
regression. The proposed technique uses BMD measurements
collected from individuals but the requirement for scanning
the same group of subjects on all the machines is moderated.
In this method, different subject groups with similar
geographic, ethnic and demographic characteristics scanned
on each machine are assumed to be independent and
identically distributed samples from the same population. The
cross-calibration is achieved by matching the distribution of
the BMD values over the matched sample groups across the
centres.

Fig. 2. Bone ageing analysis pipeline. Scans are automatically organised
into sub-folders according to the study ID, geographic location, subject
ID, anatomic site, and follow-up time points. Each scan is then warped
into a reference domain to eliminate morphological variations. Pixel BMD
values are calibrated across different centres so the probability density
functions match one another for a subset of samples matched for gender,
age, body mass index, ethnicity, scan side, and geographic location.
Finally, a set of smooth quantile curves is fitted to the standardised pixel
BMD values for each pixel coordinate.

This paper aims to develop the first spatio-temporal ref-
erence atlas of ageing bone in the femur using DXA data
from over 13, 000 subjects (Fig. 2). To model the temporal
BMD evolution as a function of age, quantile curves were
fitted using vector generalised additive models (VGAMs) per
each pixel coordinate. Preliminary results using a subset of
n = 1, 714 subjects were presented in [13]. This paper expands
our previous work: first, the mathematical details are provided
here and the method is also extended to allow contribution
of confounding variables such as body mass index (BMI)
in the developed atlas. Second, the method is applied to a
considerably larger dataset here. This increase in sample size
reduces the uncertainty around each quantile ageing trajectory
leading to a precise and accurate model. Third, extensive
validation using experimental data was performed to evaluate
each module in the proposed pipeline (Fig. 2). Fourth, given
the atlas is developed on cross-sectional data, the ability of
the atlas to predict longitudinal changes is validated using a
subset of data (n = 120) with actual BMD measurements at
baseline and six years later. The proposed atlas is the first
comprehensive spatio-temporal model of ageing bone. The
observed spatially-complex ageing patterns may be used to
better map the development of osteoporosis with ageing and
enhance the prediction of consequent fragility fractures.

II. METHODS

Fig. 2 shows the conceptual outline of the proposed method.
Below, different steps of the proposed framework are explained
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in detail: pre-processing and data organisation, region free
analysis, comparative calibration, and quantile regression.

A. Pre-Processing and Data Organisation

The raw data from the densitometer is not immediately
usable for analysing BMD maps. We used Hologic Apex v3.2
(Hologic Inc, Waltham, MA) and Lunar enCORE v16 (GE
Healthcare, Madison, WI) proprietary software to extract
pixel BMD information for scans collected on a Hologic
QDR 4500A or a Lunar iDXA densitometer, respectively.

Spatial resolution and signal-to-noise ratio (SNR) vary
between the 2 densitometer manufacturers. For example,
the spatial resolution, expressed as height×width, is
0.50 × 0.90 mm2 for a Hologic QDR 4500A scanner and
0.25 × 0.30 mm2 for a Lunar iDXA scanner. Based on
our measurements, while the Lunar system provides a better
resolution by a factor of two in height and three in width,
pixel-wise SNR is ca. 10 dB higher in the Hologic system,
as estimated using a subset of repeated DXA measurements.
To enable data integration, an appropriate analysis scale should
be selected so both the spatial resolution and the pixel-wise
SNR are consistent across the two systems. For selection of
an appropriate scale, all scans were resampled at an isotropic
spatial resolution of 0.5 × 0.5 mm2. Following resampling,
each image was smoothed with a Gaussian kernel to enhance
the SNR. Given the higher SNR for the Hologic system, σ = 0
and σ = 4.5 were selected for the Hologic and the Lunar
systems so both systems have the same SNR of 22.4 dB.

B. Region Free Analysis

RFA aims to find a set of coordinate transformations such
that the warped scans are aligned with each other in the
template domain. Therefore, each pixel coordinate in the
template domain corresponds to the same anatomical location
in the image domain. This correspondence allows pixel-level
inference of the BMD values. The RFA technique has three
steps (Fig. 3): automatic landmark extraction, template deriva-
tion, and pairwise registration between the reference template
and each scan.

1) Automatic Landmark Extraction: This section addresses
the problem of automatically locating prominent feature points
in the femur. These feature points are used to compute the
geometrical warp between the image domain and the template
(see section II-B.3). A standard approach to this problem is
to first build a model of shape and texture variation from a
manually labelled training set, and then fit the model to an
unseen image [14]. For improved localisation accuracy, here
we used constrained local model (CLM) algorithm, which
combines the flexibility of appearance models with global
shape constraints [15].

In CLMs, a joint shape and texture model is learned in a
similar manner to Statistical Appearance Models (SAMs) [16];
however, the texture sampling method is in the form of rectan-
gle patches around landmark points. In the CLM framework,
a response image is generated per each landmark point inde-
pendently. To generate a response image for the mth landmark
point, random patches at its local neighbourhood are selected

Fig. 3. Conceptual illustration of region free analysis. Sixty-five landmark
points are automatically selected around the bone contour. A reference
shape is learned by averaging over all the scans after being aligned
to a common position, scale, and orientation. A thin plate spline (TPS)
deformation function is fitted for each individual scan such that the
controlling landmark points are mapped to the corresponding reference
landmark points in the template. Given the warp in the space, pixel
intensities are estimated using a linear interpolation technique.

and the correlation of each patch with a priori trained template
is computed. Then, the objective function J (bs) is maximised
to find the optimal shape parameters [15].

J (bs) = α

M∑
m=1

Rm(x ′
1,m, x ′

2,m) −
J∑

j=1

b2
j

λ j
, (1)

where [x ′
1,m, x ′

2,m]T is the current estimation of landmark point
m, Rm is the response image for point m, J is the total number
of shape parameters, and λ j are the corresponding eigenvalues
of the shape model. The algorithm iterates until convergence
happens.

Lindner et al. [17] applied CLMs in the setting of femur
segmentation. However, instead of computing the correlation
with a template, random forest voting was deployed to gen-
erate the response images where the decision trees voted for
the required displacements. To initialise the landmark points,
a Hough-like approach was utilised to automatically detect the
femur in the scan [18]. Here, we deployed BoneFinder v.1.2.0,
a software implementation provided by Lindner et al. [17],
to segment the femoral scans using the CLM approach. All
parameters were set as explained in [17].

2) Template Generation: General Procrustes analysis is
adopted to find the reference template T [19]. First, all scans
are aligned to a common position, scale, and orientation. Next,
the reference template is updated as the average of the aligned
shapes. The algorithm iterates between these two steps until
convergence as detailed below.
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The Procrustes analysis converges to a unique solution
except for a scaling, rotation, or translation factor. To can-
cel out the arbitrary scaling of the template, the con-
verged template was normalised with the scale k =[ 1

N

(
k∗

1 + · · · + k∗
N

)]−1
where k∗

n is the final scale factor after
convergence for each individual shape. To cancel out the
arbitrary rotation of the template, the template was rotated such
that the bottom cross-section at the femoral shaft is parallel
to the horizontal axis. To cancel out the arbitrary translation,
the centre of gravity, i.e. the average of all landmark points on
the template, is shifted to the origin at the [0, 0]T coordinate.

3) Pairwise Registration: To eliminate morphological varia-
tion between scans, each individual scan is warped to the tem-
plate domain using thin-plate spline (TPS) registration [20].
In this technique, a geometrical transformation is found such
that the landmark points in the source image are exactly
mapped to their corresponding landmark points in the ref-
erence template. Given the transformation, the whole image
space is warped to the template domain and the intensity
values are linearly interpolated.

C. Comparative Calibration

Systematic measurement differences occur between densit-
ometers from different manufacturers [5]–[7]. Discussing the
biological or technical reasons for this discrepancy is not the
purpose of this study, but to provide a universal standardisation
of BMD values. The first attempt at cross-calibration between
DXA scanners, sponsored by the International DXA Stan-
dardisation Committee (IDSC), showed that measurements
across different machines are highly correlated [5]. In this
study 100 healthy women were measured on three different
scanners, i.e. Norland XR26 Mark I1; Lunar DPXL; and
Hologic QDR 2000, demonstrating a linear relationship
between each pair of scanners. To avoid designating one
machine as the gold standard, they proposed an ad-hoc
method to measure true or standard BMD (sBMD) [5]. This
ad-hoc method has a few problems, as detailed in [6]. Later,
Lu et al. [7] proposed a fully statistical methodology to solve
this problem known as comparative calibration.

Assume C systems are each used to measure the same
characteristics on a common set of N subjects. Each system
may not be consistent in the repeated measurements of the
same patient resulting in a within-patient sampling variation.
However, this variation is assumed to be consistent for differ-
ent patients. Ignoring this sampling fluctuation, the mean of
repeated measurements is deemed to be the true underlying
value that is not directly observable. Furthermore, we assume
that a linear relationship exists between each pair of systems
given the true underlying measurements. Then, comparative
calibration refers to the problem of simultaneous estimation
of the pairwise relationships between these systems [7], [21].

Let the latent random variable X represent the underlying
true value and the random variable Y c represents the observed
value measured on the machine c. Barnett [21] proposed a
linear model for comparative calibration between the systems:

Y (c) = ac X + bc + E (c), for c = 1, · · · , C. (2)

E (c) ∼ N (0, σ 2
c ) represents the measurement noise for

each system and X ∼ N (μx , σ
2
x ) represents the distrib-

ution of the population. Given the observed measurements
yn = [

y1
n , · · · , yC

n

]T
for the subject n, the objective is to

estimate the model parameters {ac, bc, σc}C
c=1. This model is

overparametrised and to resolve this identifiability problem,
it is common to take one system, e.g. c∗, as the reference. For
this system, then, it is assumed that ac∗ = 1 and bc∗ = 0 [21].
Alternatively, Lu et al. [7] added two extra linear equations:

1

C

∑
c

bc = B0 and
1

C

∑
c

ac = A0, (3)

where B0 and A0 are two constants defined based on
either hypothetical assumptions or phantom measurements.
Barnett [21] presented the solution for C = 3 using second
order moment estimates. Lu et al. [7] presented an expectation
maximisation (EM) approach to estimate model parameters
for C > 3. For C = 2, the problem is known as Deming
Regression [22].

These techniques require a complete set of measurements yn
for each subject and may not be deployed when only one single
measurement is available for each subject due to insufficient
statistics [7]. Requiring multiple measurements of each subject
on all machines is a seriously limiting factor in large multi-
centre studies [9]. Here we propose a novel technique called
quantile matching regression to tackle this problem.

Quantile Matching Regression: The new technique is devel-
oped based on two assumptions: First, a unique distribution of
the latent variable X exists independent of the measurement
systems. Second, the SNR is sufficiently large such that

QY (c) (u) ≈ ac QX (u) + bc, (4)

where QX (u) and QY (c) (u) denote the quantile functions. For
a random variable X , the quantile function u → QX (u)
is defined as QX (u) := inf {x : u ≤ P(X ≤ x)} . Therefore,
if the noise power is zero, then the approximation would
be replaced with equality in Eq. 4. With this assumption,
estimation of the model parameters � = {ac, bc} can be
decoupled from the estimation of noise variances, i.e. {σ 2

c }.
This technique cannot estimate the noise variances because of
insufficient statistics due to missing multiple measurements.
However, this technique can provide reliable estimations for
the slope ac and intercepts bc as detailed below.

The parameters � are estimated by minimising

J = 1

2

C∑
c=1

∫ 1

0
(QY (c) (u) − ac QX (u) − bc)

2du,

subject to
∑

c

bc = 0 and
1

C

∑
c

ac = 1. (5)

To set the constants in Eq. 3, we assume that the true value
X equals the average of the expected observations given the
latent variable X , i.e. X = 1

C

∑
c E(Y (c)|X). This results in

B0 = 0 and A0 = 1.
Optimisation: To convert the constrained optimisation prob-

lem into an unconstrained one, we can simply express the
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Fig. 4. Quantile matching regression technique for comparative cal-
ibration between C systems (Eq. 5). For each system, the quantile
curve QY(c) is estimated using samples collected on the same system.
Next, calibration parameters ac and bc are iteratively estimated by
alternating between two steps: step one, estimate the standard quantile
curve QX using samples collected on all systems, and step two, minimise
the sum of difference between QX and each system-specific quantile
curve QY(c) .

parameters aC and bC based on the other parameters:

aC = C −
∑
c �=C

ac and bC = −
∑
c �=C

bc (6)

To estimate the parameters, an alternating minimisation
technique is adopted (Algorithm 1): Given the model para-
meters, the latent variable xn for each of N subjects can be
estimated as (step 1),

xn = E(X |y(cn)
n ; acn , bcn ) ≈ 1

acn

(y(cn)
n − bcn ), (7)

where cn is the corresponding system for subject n. To update
the model parameters, the gradients ∂J

∂ac
and ∂J

∂bc
are set to

zero.

∂J
∂ac

= (ac +
∑
c′ �=C

ac′ − C)

∫ 1

0
QX (u)2 du

+(bc +
∑
c′ �=C

bc′)
∫ 1

0
QX (u)du

+
∫ 1

0
QX (u)(QY (C) (u) − QY (c) (u))du = 0, (8)

∂J
∂bc

= (ac +
∑
c′ �=C

ac′ − C)

∫ 1

0
QX (u)du + (bc +

∑
c′ �=C

bc′)

+
∫ 1

0
(QY (C) (u) − QY (c) (u))du = 0. (9)

Computing QX (u) using the estimated latent variables,
Eq. 8 and Eq. 9 are linear with respect to the model parameters;

we have 2(C − 1) linear equations with 2(C − 1) parameters
for which a closed-form solution exists (step 2). The algorithm
iterates between these two steps until the root mean square of
the difference between estimated parameters at two consecu-
tive iterations is less than a user-defined tolerance ε.

D. Quantile Regression

Assume the real-valued random variable Y with cumulative
distribution function (CDF) FY (y) = P(Y ≤ y) represents
a response variable of interest, e.g. BMD values at a single
pixel coordinate, and the multivariate random variable X =[
X1, · · · , X p

]T represents an explanatory covariate vector,
e.g. age, BMI, etc. Then, the conditional quantile function
(u, x) 	−→ QY |X=x(u, x) is defined as

QY |X (u, x) := inf
{

y : u ≤ FY |X=x(y)
}
, (10)

where 0 < u < 1. The main objective is to estimate
QY |X(u, x) from N observed scattered points (yn, xn).

In [13], we formulated the problem for a scalar covariate,
i.e. age. Here, we extend the methodology to include other
covariates of interest, e.g. BMI, using the vector generalised
additive models (VGAMs) [23]. VGAMs model the condi-
tional probability distribution P(y|x) = h(y, η1, · · · , ηM ),
where h(.) is a known function and η = [η1, · · · , ηM ]T are
linear predictors. The mth predictor ηm is estimated as the
sum of smooth functions of the individual covariates x p,

ηm = ηm(x) = f(m)0 +
P∑

p=1

f(m)p(x p). (11)

To parametrise the model, we use the LMS technique [24]
and thereby M = 3, η1 = λ, η2 = μ, and η3 = σ . The
LMS method assumes a Box-Cox transformation (Eq. 12) with
appropriate parameters exists such that the positive random
variable Y can be mapped to a standard normal distribution
Z ∼ N (0, 1).

Z =

⎧⎪⎪⎨
⎪⎪⎩

( Y
μ(x) )

λ(x) − 1

σ(x)λ(x)
, λ(x) �= 0;

1

σ(x)
ln(

Y

μ(x)
), λ(x) = 0.

(12)

Under the LMS normality assumption, the log-likelihood of
the parameters is

	 =
N∑

n=1

[
λ(xn) ln

yn

μ(xn)
− ln σ(xn) − 1

2
z2

n

]
. (13)

To estimate smooth functions f(m)p(x), we deployed the
R-package VGAM to maximise the penalised likelihood
below [23].

J = 	 − 1

2

P∑
p=1

M∑
m=1

α(m)p

∫
f ′′
(m)p(x p)

2dx p. (14)

Estimating smooth functions λ(x), μ(x), and σ(x), quan-
tiles can be simply computed;

QY |X(u, x)

=
{

μ(x) [1 + λ(x)σ (x)QZ (u)]1/λ(x) , λ(x) �= 0;
μ(x) exp (σ (x)QZ (u)) , λ(x) = 0.

(15)
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Fig. 5. The best and the worst femoral segmentation in the test dataset
(n = 32). The green and the red contours show the ground truth and the
automatic segmentation, respectively.

In our experiments, we have modelled the two parameters λ
and σ as intercepts. To control the smoothness on the para-
meter μ, the equivalent degree of freedom (edf) was set to 3.
The optimisation procedure is numerically complex and the
algorithm failed to converge for a fraction of pixels (≈ 1.3%).
For these pixels, the outliers are first removed and then the
algorithm was run on the cleaned data.

To assess the precision of the estimated quantile curves,
a bootstrapping procedure was deployed; subjects were
randomly sampled with replacement and the quantiles were
re-estimated. This procedure was repeated 1, 000 times,
collecting a distribution of possible quantile values. From
these observations, the confidence intervals at 5% significance
level were estimated [25].

III. RESULTS AND EXPERIMENTS

A. Data

To generate the spatio-temporal bone ageing atlas over
the adulthood (20-97 years), we integrated data from three
Western European population studies: The UK Biobank [26]
(n = 6, 918, age = 45 − 80 years, White women), the
Osteoporosis and Ultrasound study (OPUS) [27] (n = 1, 402;
age = 20 − 39 and 55 − 79 years; White women), and the
MRC-Hip study [28] (n = 5, 018; age = 75−97 years; White
women). Scans were collected using either an iDXA Lunar GE
(the UK Biobank study) or a Hologic QDR4500 Acclaim
densitometer (the OPUS and MRC-Hip study cohorts).

B. Segmentation Accuracy

To evaluate the segmentation accuracy, a subset of scans
(n = 32) randomly selected from the database were manually
annotated. The segmentation accuracy was evaluated using the
Dice similarity coefficient (DSC). DSC is defined as the twice
the areal size of the overlap between two binary masks divided
by the sum of the areal size of each mask. The mean and the
standard deviation for DSC over the 32 selected scans were
0.9698 and 0.0048, respectively. Fig. 5 shows the worst and
the best segmentation results based on the DSC metric. Since
the cut-off point at the femoral shaft is arbitrary, the shorter
distal cut-off point between the manual and the automated
masks is used to cancel out the variation in the shaft before
computing the DSC metric.

Fig. 6. Point localisation error. Five landmark points (blue dots) were
selected manually at anatomically correspondent locations and then
mapped to the reference domain using the estimated TPS transforma-
tions for each image (n = 32). The average error was 1.57 mm. The
space is shown in millimetre.

C. Point Localisation Accuracy

The same dataset (n = 32) used for the evaluation of
segmentation accuracy was deployed here. To evaluate the
point localisation accuracy, five landmark points were selected
manually at key prominent geometrical locations: centre of the
femoral head; the centre, superior, and inferior positions at the
femoral neck; and, finally, the apex at the greater trochanter.
The landmarks were then transferred to the template using the
same TPS warping transformation computed per each image
(Fig. 6). The overall error was 1.57 mm [29].

D. Precision Analysis

Precision or reproducibility of a quantitative measurement
technique describes its ability to produce consistent results
when measuring the same quantity repeatedly. In other words,
precision is a description of random errors in the system. Three
sources of error exist [30]: the machine (e.g., the scanner
noise), the operator (e.g., patient positioning), and the software
(e.g., femur segmentation and deformable image alignment).

To assess the overall precision of the RFA technique,
25 Caucasian women (mean age = 70.1 ± 6.2 years) were
scanned on the same day twice with repositioning between
the scans. This data had been collected as part of the OPUS
study in Sheffield. In conventional DXA analysis, precision
is reported as the coefficient of variation (CV), i.e. the root
mean square standard deviation divided by the mean of paired
measurements, for the selected ROIs [31].

CV = 100% ×
√

1
N

∑N
n=1

(yn−y′
n)2

2

1
N

∑N
n=1

(yn+y′
n)

2

(16)

Here, N = 25 is the number of paired measurements; y
and y ′ are the measured BMD values at the two independent
positions.

Table I reports the precision of conventional region-based
DXA analysis at four common ROIs. To use RFA to reproduce
conventional region-based analysis, pixel BMD values of the
warped scans were aggregated at each ROI in the template
domain. RFA resulted in similar precision scores to those
reported in the literature at these ROIs (Table I). However,
as anticipated, a finer pixel-level analysis using the RFA
technique results in poorer precision. Fig. 7(a) shows the
distribution of pixel-level CV values at the proximal femur.
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TABLE I
COEFFICIENT OF VARIATION (%) AT FOUR COMMON ROIS

Fig. 7. DXA RFA precision analysis. (a) The pixel level CV (%) is
visualised using a heat-map. Precision is worse around the bone contour.
This may be due to the inaccuracy in placing controlling landmark
points at the bone surface. (b) The distribution of pixel-level CV values
in the femur. The median is 7.96% and the interquartile range is
6.69%−10.05%.

Fig. 8. Bilateral hip calibration. (a) The left and the right hips are highly
correlated inside the femur, but the correlation is worse at the boundary.
Estimated cross-calibration parameters between the left and the right
hips, i.e. [left] = a [right] + b, are shown for the Deming regression
technique in panels (b) and (c); and for the quantile matching regression
technique in panels (d) and (e).

Precision was worse around the bone contours. This may
be explained due to the inaccuracy in placing controlling
landmark points around the bone. Fig. 7(b) shows the his-
togram of pixel-level CV values where the median is 7.96%
and the interquartile range is 6.69% − 10.05%. The worse
precision in comparison to conventional region-based analysis
is a compromise that is offset against the substantially finer
spatial analysis that is necessary for characterising spatially
complex bone remodelling events.

E. Comparative Calibration

1) Validation: Since no paired measurements acquired on
both the Hologic and the Lunar systems were available for

Fig. 9. Sample selection for cross-calibration between Hologic
QDR4500A and iDXA Lunar GE scanners. (a) The probability distribution
of the age for white British women recruited in this study before sample
selection. (b) The probability distribution of the age for n = 406 subjectes
matched for age and BMI to be used in quantile matching regression.
No significant difference was observed between the age distributions
following sample section using a two-sample Kolmogorov-Smirnov test
(p-value = 0.9).

Fig. 10. Pixel-level median BMD values are visualised using heat-maps
as a function of age for 20, 35, 50, 65, 80, and 95 years and BMI values
of 15, 20, 25, 30, 35, 40, and 45 kg/m2. The atlas is shown for the Hologic
system at the left hip.

analysis, it was not possible to test the viability of the
proposed quantile matching regression technique directly for
DXA cross-calibration. Alternatively, we tested the technique
in the setting of bilateral hip calibration using n = 6, 916
DXA measurements from both left and right hips as part of
the UK Biobank study. Given the good correlation between
BMD of the left and the right hips (8(a)), one can postulate
that bilateral BMD values are noisy measurements of the same
underlying hidden variable except for a linear transformation
(Eq. 2). Since we had access to paired measurements for each
subject, Deming regression would give the ground truth for
the calibrations parameters (Figs. 8(b) and 8(c)). Ignoring the
fact bilateral hip scans came from the same subject, quantile
matching regression was deployed to approximate the calibra-
tion parameters (Figs. 8(d) and 8(e)). The estimated parameters
are similar to those computed using Deming regression. Over
the region with a high correlation between the left and the
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Fig. 11. Three examples of fitted quantile curves at three different pixel locations at the femoral neck region. The solid, dashed, and dotted lines
show the median, 50% and 90% quantile ranges, respectively. The green shadow shows the 95% confidence interval. The curves are shown for the
Lunar system at the left hip at median BMI = 25.4 kg/m2.

Fig. 12. Three examples of fitted quantile curves at three different pixel locations at the intertrochanteric region. The solid, dashed, and dotted lines
show the median, 50% and 90% quantile ranges, respectively. The green shadow shows the 95% confidence interval. The curves are shown for the
Lunar system at the left hip at median BMI = 25.4 kg/m2.

right hips (r2 ≥ 0.5), the RMS error was 0.013 for the slope
a and 0.017 for the intercept b, respectively

2) DXA Cross-Calibration: In this study, scans were collected
either on a Hologic QDR 4500A or an iDXA Lunar GE
scanner. For each scanner, n = 406 white British women
matched for age and BMI with an scan on the left side
were selected. Fig. 9 shows the age distribution of subjects
before and after this sample selection step. No significant
difference in age or BMI distribution was observed between
the two groups using a two-sample Kolmogorov-Smirnov test
(p-value = 0.9). Note that although the calibration factors
depend only on the technical properties specific to each imag-
ing system, our proposed quantile matching regression still
requires age- and BMI-normalisation to ensure any variation
in BMD distributions is due only to the difference in imaging
system technologies rather than patient characteristics. The
average and standard deviation of the estimated parameters
over all pixels within the femur were 1.019 (SD, 0.140) for
the slope a and 0.170 (SD, 0.130) for the intercept b.

We conducted a further validation experiment to confirm
the independence of estimated calibration parameters from
cohort age. Out of 406 subject pairs matched for age and
BMI, subjects from two age segments 60-65 years and
70-75 years (n = 148) were left out for testing and the
remaining scans (n=258) were deployed for estimation
of calibration parameters. Next, we tested the validity of
the fitted parameters on the test data using a two-sample
Kolmogorov-Smirnov test with FDR correction. No significant
differences were observed between the testing versus the
training datasets, confirming that the calibration parameters
are extendable to age segments 60-65 and 70-75 years.

F. The Spatio-Temporal Atlas

Fig. 10 shows the constructed atlas; visualising median
BMD values at different values of age and BMI using
heat-maps. Low BMI was associated with an overall decrease

in bone mass, where as high BMI resulted in increased bone
mass especially at the diaphysis and Ward’s triangle regions.
An overall decline in BMD with increasing age was observed
throughout the proximal femur. However, the observed bone
loss patterns were site-specific and spatially-complex. Cortical
thinning was observed consistently with ageing around the
femoral shaft from the 6th decade onwards. Widespread bone
loss was also observed in the trochanteric area.

Quantile regression curves demonstrated different rates of
bone loss at different anatomic locations within the proxi-
mal femur (Figs. 11 and 12). For example, the decrease in
BMD at the superior femoral neck cortex was bimodal; the
bone loss slowed down from the 70s onwards (Fig. 11(a)).
BMD at the mid-femoral neck showed a steady decrease
throughout the whole age range (Fig. 11(b)), whilst bone
mass was preserved the most in the inferior femoral neck
cortex (Fig. 11(c)). Fig. 12 shows quantile regression curves
at the intertrochanteric region. Bone mass at the superior
trochanteric region was preserved until just before 70 years,
and was followed by a decline with a similar slope to the other
trochanteric regions (Fig. 12(a)). Bone loss was observed at a
consistent rate at the mid trochanteric region throughout the
whole age range (Fig. 12(b)). BMD in the inferior cortex close
to the lesser trochanter was maintained until the 60th year, fol-
lowing which point BMD showed a steady decline (Fig. 12(c)).

The inflection point observed at age 75 in Fig. 12 is indeed
due to ageing rather than the integration of the MRC-Hip
dataset (age range: 75-97 years). Repeating the same analysis
using only the UK Biobank dataset (age range: 45-80 years)
demonstrated similar ageing trends (data not shown). Here,
the results for the integration of all datasets together is
presented.

G. Atlas Validation Using Longitudinal Data

The bone ageing atlas was developed based on cross-
sectional data. We acknowledge that this atlas does not
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Fig. 13. Atlas validation using paired longitudinal data collected at
baseline and 6 years later (n = 120). (a) Normalised BMD change
between baseline and follow-up measurements at six years. (b) FDR
q-map corresponding to panel a indicating regions with a significant
BMD change at 6 years. (c) The PP-plot corresponding to panel b. If the
null hypothesis of no significant BMD change is true, then the blue line
follows the identity (dashed red line). (d) Normalised BMD difference
between baseline maps projected at 6 years and the actual follow-up
measurements at 6 years. (e) FDR q-map corresponding to panel d.
(f) The PP-plot corresponding to panel e. These data show that the BMD
change projected by the atlas and the directly observed BMD change
are quantitatively and statistically similar, confirming the viability of the
developed atlas to predict temporal BMD change.

necessarily provide an ideal prediction of individual ageing,
for which, longitudinal data with the same subjects repeatedly
scanned along several years is required. However, the utility
of the developed atlas to predict longitudinal changes is tested
here using a subset of scans from the OPUS dataset (n = 120;
age range=55-60 years) with follow-up measurements at
6 years (mean time lapse, 70.9 months; standard deviation,
1.2 months). The hypothesis tested here is that no significant
BMD change should be observed between the expected BMD
values at 6 years based on the projected BMD atlas and the
actual measurements at 6 years. For this analysis, a paired
t-test preceded by false discovery rate (FDR) analysis [11]
was used once between the baseline and the actual follow-up
measurements, and another time between the projected and
the actual follow-up BMD values.

To project BMD values six years into the future, firstly,
the quantile value for the given pixel BMD at the baseline age
is read from the atlas. Next, the corresponding BMD value at
the follow-up age is read from the same quantile trajectory.
Significant bone loss was observed in the trochanteric region
and the medial femoral shaft; however, the projected BMD
values using the constructed atlas fits the actual measurements
where no significant BMD change was observed between the
projected and the actual BMD values (Fig. 13).

IV. CONCLUSION

This work presents the development of a reference spatio-
temporal atlas of ageing bone in the proximal femur using
cross-sectional data from a large cohort of Western European
Caucasian women (n=13,338). Here, we presented three
key contributions: first, the proposed DXA RFA framework

allowed high-resolution pixel-level BMD analysis. The
increased spatial detail made it possible to observe spatially-
complex bone ageing patterns for which conventional
region-based bone densitometry routine is insensitive.
Second, the proposed calibration technique allowed the
integration of data from different DXA manufacturers. The
new method does not require multiple scans from the same
subject and so is applicable to large multi-centre studies.
Third, a fully automatic bone ageing analysis pipeline was
proposed that would streamline the atlas generation process.
This automation would facilitate population-specific atlas
generation from other ethnic libraries.

Each module in the pipeline was evaluated separately. The
average segmentation accuracy expressed as the Dice index
was 0.97. The average point localisation error was 1.57 mm
equivalent to 3.15 pixels. The RFA precision expressed as
median pixel-level coefficient of variation was 7.96%. The
RMS error for quantile matching regression tested in the set-
ting of the bilateral hip calibration was 0.013 and 0.017 for the
slope and the intercept parameters, respectively. The precision
of the LMS quantile regression for modelling the temporal
BMD evolution was tested using a bootstrapping procedure.
The overall uncertainty was sufficiently small so the ageing
effect was observable (Figs. 11 and 12). We demonstrated the
utility of the proposed bone ageing analysis pipeline using
three large-scale datasets with n > 13, 000 scans collected on
two different manufacturer’s densitometers. However, the pro-
posed pipeline would facilitate population-specific atlas gen-
eration from other ethnic libraries, gender, and anatomic sites.
This, in turn, would allow the analysis of variations in ageing
patterns across different populations.

This technique also had limitations. The areal BMD mea-
sured by DXA does not represent the true volumetric BMD,
and so the constructed atlas is a 2D projection of the actual
3D patterns. A 2D/3D approach could address this issue
[35], [36]. These techniques are often based a 3D statisti-
cal shape/appearance model learned from a small subset of
QCT images, for example, n = 57 (all highly osteoporotic
women) [35]. Hence, the learned atlas cannot account for the
full population variation (cf. n = 13, 338 in this study). If a
large QCT dataset was available, the ageing atlas could have
been directly developed from them where the principle applied
here can be readily transferred to 3D imaging.

This technique shows promise in characterising spatially-
complex BMD changes with ageing. These patterns were visu-
alised using heat-maps. Furthermore, quantile curves plotted at
different pixel coordinates showed consistently different rates
of bone loss at different regions of the femoral neck. Our future
work aims at improving fracture risk assessment using the
developed atlas to determine whether this increased resolution
enhances the fracture predictive ability of DXA.
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