
RESEARCH ARTICLE

Identification of gene specific cis-regulatory

elements during differentiation of mouse

embryonic stem cells: An integrative approach

using high-throughput datasets

M. S. Vijayabaskar1¤a, Debbie K. Goode2, Nadine Obier3, Monika Lichtinger3, Amber M.

L. EmmettID
1, Fatin N. Zainul AbidinID

1¤b, Nisar Shar1¤c, Rebecca HannahID
2, Salam

A. Assi3, Michael Lie-A-Ling4, Berthold GottgensID
2, Georges LacaudID

4,

Valerie Kouskoff5, Constanze Bonifer3, David R. WestheadID
1*

1 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United

Kingdom, 2 Wellcome Trust & MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical

Research, University of Cambridge, Cambridge, United Kingdom, 3 Institute for Cancer and Genomic

Sciences, College of Medical and Dental Sciences, University of Birmingham. Birmingham, United Kingdom,

4 CRUK Manchester Institute, University of Manchester, Manchester, United Kingdom, 5 Division of

Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom

¤a Current address: Wellcome Sanger Institute, United Kingdom

¤b Current address: Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi,

Selangor D.E., Malaysia

¤c Current address: Department of Biomedical Engineering, NED University of Engineering & Technology,

Karachi, Pakistan.

* D.R.Westhead@leeds.ac.uk

Abstract

Gene expression governs cell fate, and is regulated via a complex interplay of transcription

factors and molecules that change chromatin structure. Advances in sequencing-based

assays have enabled investigation of these processes genome-wide, leading to large data-

sets that combine information on the dynamics of gene expression, transcription factor bind-

ing and chromatin structure as cells differentiate. While numerous studies focus on the

effects of these features on broader gene regulation, less work has been done on the mech-

anisms of gene-specific transcriptional control. In this study, we have focussed on the latter

by integrating gene expression data for the in vitro differentiation of murine ES cells to mac-

rophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and

transcription factor binding. Combining a novel strategy to identify communities of related

control elements with a penalized regression approach, we developed individual models to

identify the potential control elements predictive of the expression of each gene. Our models

were compared to an existing method and evaluated using the existing literature and new

experimental data from embryonic stem cell differentiation reporter assays. Our method is

able to identify transcriptional control elements in a gene specific manner that reflect known

regulatory relationships and to generate useful hypotheses for further testing.
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Author summary

The inherited information in our DNA genomes is a code which defines both the func-

tional units (proteins, nucleic acids etc.), and patterns of their usage, necessary to make

life. The genome in mammals, such as man and mouse, has genes which code for about

20000 different proteins, but the usage of these proteins differs in each different type of

cell within these complex multicellular organisms. How this differential usage is con-

trolled in known as genetic regulation, and that is what we study here. We know that the

details lie in how genes are turned on and off, but until the advent of high-throughput

sequencing technology a genome-wide study was nearly impossible. Further complicating

our efforts to understand genetic regulation is the involvement of parts of the genome that

were previously deemed junk. In this work, we have focussed on how the genes are con-

trolled at various developmental stages in mouse, by looking at the sequencing data from

different regulatory mechanisms such as protein binding and local changes to DNA pack-

aging etc. On a gene-by-gene basis, we have built statistical models that predict how genes

are controlled when cells develop. These predictions provide a focus for future experimen-

tal studies of genetic regulation.

Introduction

The fate of a cell is determined by dynamics in the expression of genes, a process that is regu-

lated at the highest level by the control of transcription [1, 2]. Cell differentiation at the

genome level involves a complex interplay of processes [3], including DNA binding by tran-

scription factors (TFs) [4] and changes in the structure of chromatin and DNA, for example,

DNA methylation and epigenetic modifications of amino acids of the histones [5]. With the

recent developments in high throughput sequencing (HTS) researchers have been able to

study the genome-wide implications of these processes in various cell types and organisms [6].

From these studies, we have gained global insights into transcriptional regulation, such as the

relationship between chromatin accessibility around the promoter region and gene expression

[7, 8], the prevalence of histone modifications such as H3K27ac and H3K9ac near expressed

genes [9], the presence of H3K27me3 modification near transcriptionally repressed genes [10]

and the binding of master regulators to genes that are often associated with lineage differentia-

tion [11, 12].

While patterns in regulatory mechanisms have been identified, much of the detail of the

regulatory system still remains unknown, owing to the complex structure of the transcription

machinery. Of note is the implication of non-coding regions of the genome of higher eukary-

otes in transcriptional and post-transcriptional regulation of protein coding genes [4, 13].

Equally, it is becoming increasingly clear that much of the dynamics in gene expression is gov-

erned not by the regulatory input at promoters but to distal sites including enhancers [14, 15].

Enhancers have been a subject of interest in recent years because of their major role in tran-

scriptional control of tissue specific gene expression programmes [14, 16, 17]. There are several

proposed models for the mechanism of enhancer interaction with the RNA Polymerase II

(RNAP) machinery over large distances to control gene expression [18], whereby the looping

model is becoming widely accepted [19]. All the models propose binding of TFs to both

enhancer and promoter regions and involve formation of multi-protein complexes. This

aspect of combinatorial binding of TFs to control regions is well established [12, 20, 21].

Enhancer regions may be identified experimentally by reductionist approaches such as

mutations in genomic regions associated with loss of expression of a nearby gene, and by
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using reporter assays to investigate transcriptional enhancement in cell lines or in vivo. There

has also been significant interest in the identification of enhancers using theoretical methods.

These can be based on characteristics of the DNA sequence, particularly conservation, and the

large-scale availability of ChIP-seq data for well-known enhancer characteristics (the H3K27ac

and H3K4me1 chromatin marks, binding of the EP300 coactivator protein etc.) has led to

more sophisticated methods using machine learning to combine information from different

sources. These efforts have been recently reviewed [2, 22–24], and it has been shown that bind-

ing by transcription factors is a highly specific indicator of enhancer activity.

Extending the problem of identification is the issue of mapping those enhancer elements to

the genes they regulate. It is now widely accepted that physical enhancer-promoter (EP) inter-

actions are required for transcriptional control [25, 26]. A range of related experimental tech-

niques (3C, 4C, HiC, ChIA-PET, capture C) classed as chromosome conformational capture

assays enable us to determine the three-dimensional conformations of specified regions or the

whole of the genome [26] and EP interactions are likely to be a subset of the numerous chro-

mosomal interactions identified [4, 27]. These techniques are being rapidly developed and the

increasing availability of data sets, particularly in human cells, is leading to interesting insights

[28, 29].

The enhancer mapping problem has also received theoretical attention, and extending ear-

lier work [30–35] based on epigenetic activity correlations between enhancers and their puta-

tive target genes, more recent studies have taken advantage of the increasing availability of

experimental data for three-dimensional genome interactions [36, 37]. For human cells, proj-

ects like ENCODE [38] have made available genome scale data on chromatin structure, tran-

scription factor binding and gene expression, enabling the development of methods to predict

EP interactions from them, with training and validation employing appropriate 3D interaction

data [30–32, 39]. For example, RIPPLE uses a Random Forest classifier with 5C data and a

selected set of highly predictive features for identification of enhancers, while JEME [40] con-

siders the joint effects of multiple predicted enhancers on gene expression and earlier similar

methods based predictions on different features [37, 41, 42]. Recently, Xi and Beer [43] have

raised concerns about the validation and estimated accuracy of machine learning methods that

rely on 3D interaction data to predict enhancers. They focussed on Target Finder [42] which

uses Hi-C data, and they advocate careful consideration of cross-validation methods since the

coarser resolution of this data can lead to groups of potential enhancers all exhibiting the same

pattern of promoter interactions. Alternative approaches have employed the correlation of

enhancer activity and bidirectional enhancer transcription [44], and in other model organisms

such as Drosophila, the emphasis has been on sequence features of the predicted enhancers

linking to developmental gene expression patterns [45, 46].

In this study, we address the related problem of identifying those gene specific cis control

elements, many of which are expected to be enhancers, which are most relevant in controlling

the expression of key genes involved in cellular lineage specification and progressive lineage

restriction. Our focus is a data set from mouse, where three-dimensional interaction data are

not available in most of the cell types. This method integrates chromatin immunoprecipita-

tion, DNaseI-seq and RNA-seq data, and analyses two branching pathways of in vitro cellular

differentiation, leading from embryonic stem (ES) cells to the myeloid blood lineage (macro-

phages) in one branch and to cardiac cells (cardiomyocytes) in the other [15, 47]. Our method

is based on correlating a measure of the activity of a candidate cis-regulatory element (CRE),

as indicated by transcription factor occupancy and chromatin structure/modification, with the

pattern of gene expression. We introduce a new concept of cis-regulatory element communi-

ties (coCREs), which are genomic regions that show correlated patterns of activity and tran-

scription factor binding and are considered together for robust model building. We compare
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the observations with known and predicted sets of enhancers and furthermore with the results

from JEME trained on 3D interaction data from mouse embryonic stem cells.

Our study indicates a gene-specific coordinated binding of multiple master regulators dur-

ing differentiation to control lineage specific expression of important genes, implying that the

gene-centric approach may shed further light on the relationship between cell fate decisions

and the underlying transcriptional landscape. We were able to successfully recapitulate regula-

tion of cell type specific genes using previously known cis elements and also have been able to

propose gene specific control mechanisms using novel regulatory regions identified through

gene-specific expression modelling. Furthermore, we found that the genomic loci that are

most predictive were characterised by high phylogenetic conservation, epigenomic activities

and transcription factor binding. Finally, using reporter assays we were able to confirm two

novel cis regulatory elements for genes Nfe2 and Sptbn1. This statistical approach that works

with fewer assays and does not require topological data, is simpler to apply, adapt and under-

stand than machine learning approaches. Furthermore, by employing in vitro cell types and

focussing on mouse, an important model organism for which relatively less information on

enhancers is available, the data provided here is a valuable resource to the research

community.

Results and discussion

In order to study the mechanism of transcriptional control of genes involved in lineage spe-

cific cell fate decisions, we integrated gene expression and regulatory data from the two in
vitro mouse differentiation pathways described above. Details of the associated cell types

and data sets employed are given in Table 1. The results of integrating normalised expres-

sion data for protein coding transcripts are shown in (S1A–S1C Fig): both clustering and

principal components analysis indicate effective integration where related cell types from

both series (ES cells, ESC and CESC; mesoderm cells, MES and CMES) show clear similar-

ity, and terminally differentiated macrophages emerge as the most different cell type, never-

theless still showing clear lineage development from the intermediate haemopoietic cells.

From this data, we identified 9854 differentially expressed genes (for details see Methods),

and their patterns of expression were clustered using k-means to produce 391 clusters at the

optimal BIC (Bayesian Information Criterion) score (S1D Fig). For the purpose of predic-

tive modelling we considered 3 sets of genes: the 17 TFs for which we have ChIP-seq data

Table 1. Datasets and cell types used in this study.

Pathway Cell type Description ChIP-seq

(H3K27Ac)

DNase1-seq RNA-

seq

ChIP-seq (TF)

mESC!Macrophages ESC ES cells ✓ ✓ ✓ NANOG, OCT4, SOX2, ESRRB

MES Mesoderm ✓ ✓ ✓ C/EBPB, ELK4, OCT4

HB Hemangioblast ✓ ✓ ✓ C/EBPB, GATA2, LMO2, TAL1

HE Hemogenic

Endothelium

✓ ✓ ✓ C/EBPB, LMO2, TAL1, FLI1, MEIS1

HP Hematopoietic

Progenitors

✓ ✓ ✓ C/EBPB, FLI1, GATA1, GATA2, GFI1, GFI1B, LMO2, PU.1,

RUNX1, TAL1

MAC Macrophages ✓ ✓ ✓ C/EBPB, FLI1, LMO2, PU.1, RUNX1, TAL1

mESC!

Cardiomyocytes

CESC ES cells ✓ ✖ ✓ ✖
CMES Mesoderm ✓ ✖ ✓ ✖
CP Cardiac Progenitors ✓ ✖ ✓ ✖
CM Cardiomyocytes ✓ ✖ ✓ ✖

https://doi.org/10.1371/journal.pcbi.1007337.t001
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(the ‘TF set’), the 437 genes that co-cluster with the TF set (‘TF cluster set’) and finally the

remaining differentially expressed genes (‘DE gene set’). Details of the gene sets and cluster-

ing are provided in S1 Table and S2 Fig.

The essence of the method presented here is to identify for each gene studied, a small set of

CREs that best explain its pattern of expression (the ‘Gene Expression Profile’ (GEP)) from a

relatively large set of candidate CREs. The methodology is illustrated in Fig 1A and full details

can be found below and in Methods. In summary, for each gene, initial candidate CREs are

genomic regions within 100 kBases (kB) of the transcription start site (TSS) with significant

enrichment in H3K27ac ChIP-seq (a mark of active enhancers) data and/or a DNaseI-seq

hypersensitive site (DHS). Candidate CREs are characterised by a chromatin activity profile

(CAP, see Methods) across the cell types, derived from H3K27ac and DNase1-seq data, and

also a TF binding profile (TFBP). This information is integrated into a CRE network, from

which community CREs (coCREs) are identified (see Methods). The CAP of a coCRE is the

average of its constituent CREs. A gene-specific penalised regression is used to choose CREs

that best predict the gene’s expression profile (GEP) from the set of singleton and community

CREs.

Active chromatin regions as candidate CREs

The 262770 chromatin regions that are active (either H3K27ac enriched or a DNaseI Hyper-

sensitive Site (DHS), see Methods sections), form our candidate CREs and are characterised in

S3 Fig. A ‘chromatin event’ in a CRE is a H3K27ac peak or DHS peak in a particular cell type,

and S3A Fig is a frequency plot for chromatin events in all candidate CREs. Many CREs have

only one chromatin event over all cell types: in order to use only high confidence CREs we

retained only those with more than one chromatin event (118688 regions given in S2 Table),

and with enrichment level (either H3K27ac or DNaseI-seq) in at least one cell type higher than

the lower quartile in the distribution of enrichment levels (S3D and S3E Fig, 82165 regions).

S3B Fig shows that the sizes of the CREs used in this study are around 1–2 kB in width and

S3C Fig shows the distribution of their conservation scores. It can be seen that majority of

CREs have low conservation across the vertebrates, while a selective subset of regions is highly

conserved. From this initial set of CREs, coCREs are identified as given below.

Community CREs (coCREs)

Fig 1B shows that genes may have many candidate CREs, ranging from zero to 100 with an

average of around 18. This exemplifies the challenge of gene specific models that the number

of potential predictors of gene expression exceeds the number of measurements, and calls for

specific methods such as penalized regression (see below). However, preliminary data analysis

revealed subsets of candidate CREs with highly correlated chromatin activity and TF binding

profiles, and we developed a method to combine these first prior to model building. This

served two purposes pertinent to model development; a technical complexity, where multiple

correlated predictors can pose problems for penalized methods and a biological perspective,

where correlated regions could represent collaborative regulation and could possibly be inter-

acting in three-dimensional chromatin structure. Two candidate CREs were linked in a net-

work graph (Fig 1A, step 4) if they had high correlations in both their chromatin activity and

TF binding profiles, and from this graph we obtained subsets of candidate CREs that form

communities (dense sub-graphs), identifying these as coCREs (see Methods). The chromatin

activity profile (CAP) of a coCRE is the mean of the CAPs of the community members. The

coCREs along with the CREs near a gene were used to build a model predictive of the gene’s

GEP. The models based on coCREs performed better than models with all CREs used
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Fig 1. Gene-specific predictive models. (A) Schematic representation of the methodology involved in developing gene specific predictive models. 1. Integration of

DNaseI-seq and H3K27ac to quantify the chromatin activity profile (CAP) in candidate cis regulatory elements (CREs). TF ChIP-seq data is used to generate the

Regulation of developmental transcription landscape
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separately, in terms of drop-in-variances (p ~ 10−16, see methods section) and model p-values

(p ~ 10−13) (S3F Fig), and this methodology was retained for the remainder of the study.

Gene specific predictive models

In order to generate gene-specific predictive models the candidate CREs within 100 kb of the

TSS of a given gene were considered, and were reduced to a set of coCREs and singleton CREs

(those not in any community). To affect gene expression, distal CREs such as enhancers need

to interact with protein complexes nearer to the TSS, therefore singleton CREs were reduced

to those proximal (within 20kB) to the TSS, limiting distal CREs to those that occur in commu-

nities (coCREs). The CAPs of this mixed set were considered as the initial predictors in the

model building. Since the total number of candidate CREs mapped to genes are generally

more than the number of cell types used (Fig 1B), we have used a penalized regression model

(LASSO) [48, 49], which employs an additive penalty term with weight λ on the sum of the

absolute sizes of the regression coefficients. Appropriate λ values were determined by cross-

validation (Fig 1C) and two models were computed for each gene at λ = λmin (minimum cross-

validated mean square error) and at the more conservative (fewer non-zero regression coeffi-

cients) value obtained by adding one standard error λ = λ1se [50]. The CREs or coCREs with

non-zero regression coefficients β, were deemed to be the most predictive of the gene expres-

sion by the model (λ1se) and were termed ‘chosen CREs’ in this study. Statistical significance in

LASSO models is an open area of research [48–51], since inference must account for the fact

that the method sequentially chooses the most predictive variables from a set of candidates.

We adopted the covariance test [51] as a means to give a p value to each non-zero coefficient

in the model.

An example of a predictive model for Runx1 is given in Fig 2 (see Fig 1C for the cross-vali-

dation plot). Runx1 is a gene encoding a transcription factor that is crucial for normal haema-

topoiesis [52] and is expressed during the later stages of the hematopoietic specification (Fig

2B). A set of 21 CREs and 3 coCREs were considered as the initial predictors, and two regions

with non-zero β at λ1se (Fig 2A and 2D) were selected as chosen CREs by the model. One of

these is a coCRE, a community of four CREs bound by a range of blood specific TFs in differ-

ent haemopoietic cell types (Fig 2A) and the other a singleton. The expression that is predicted

by the model correlates well with the predicted gene expression profile for Runx1 as shown in

Fig 2C. The covariance test gives p values of 0.00 and 0.42 (S3 Table) for the chosen coCRE

and singleton CRE above, showing strong evidence for a relationship between activity at the

coCRE and gene expression.

Following the example of Runx1, models were generated for each member of the TF set.

Full details can be found in Table 2 and S3 Table, and details of the chosen (co)CREs for the

TF set are shown in S4 Fig. We chose to consider a model as potentially interesting if it had a

least one non-zero β with adjusted Benjamini-Hochberg q-value based on the covariance test

of< 0.05. Focusing first on the TF set, models were successfully built with at least one pre-

dicted (co)CRE for 14 of the 17 TFs and 9 of these were considered interesting by this statistical

criterion.

transcription factor binding profile (TFBP) to quantify the community effect of candidate CREs mapped to a specific gene. 2. Gene wise expression values are obtained

as RPKMs to form gene expression profiles (GEPs). 3. CAPs, TFBPs and GEPs are generated for all the regions and genes in the analysis. 4. CAP and TFBP are

integrated in order to generate gene specific CRE networks. A greedy community detection is performed in order to identify the communities of CREs (coCREs) in the

networks. A new set of CAPs involving aggregate CAPs of the coCREs along with the individual CAPs for singleton CREs are used to predict the GEP for a specific gene.

(B) Histogram showing the distribution of candidate CREs per gene within 100kB of the transcription start site over all genes in the study. (C) The plot shows the change

in cross-validated Mean Squared Error (MSE) as a function of increasing λ for a predictive model of Runx1 gene expression. The two vertical dotted lines show the two

cut offs λmin and λ1se. The total number of CREs with non-zero coefficients (β) at a given λ is shown above the plot.

https://doi.org/10.1371/journal.pcbi.1007337.g001
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Considering the TFs associated with pluripotency (see S4 Fig), Nanog is mapped to four sin-

gleton CREs and two coCREs, but only the coCREs are statistically significant. The coCREs are

located on either side of the Nanog promoter with one coCRE (a community of 4) overlapping

with its TSS and bound by all the four pluripotent TFs. Pou5f1 that codes for OCT4 is mapped

to one coCRE that includes the promoter region and a downstream region, and is bound to

pluripotent TFs in ESC. Three CREs are mapped to the Sox2 gene, two of which are coCREs

Fig 2. Predictive model for an example gene, Runx1. (A) A network representation of the model, where the gene (here Runx1) for which the model is built (red

octagon), chosen CREs (blue hexagons) and TFs bound to the chosen CREs are represented as nodes. Black arrows indicate the regulation of the gene by the CRE/

coCRE and coloured arrows represent the binding of TFs to the CREs in different cell types. The colours corresponding to the cell types are given below the network.

The TFBP of the CRE in a specific cell type is represented as a circular histogram and in the case of coCREs these represent the frequency of occurrence of a specific TF

in the regions of that community (here the community comprises of 4 regions). The p-value of observing a combinatorial binding profile in that cell type is provided

for each TFBP node and the methodology is given in Methods section. The abbreviations for the TFs in the circular histogram are: Esrrb (EB), Nanog (NG), Pou5f1

(O4), Sox2 (S2), Cebpb (CB), Elk4 (E4), Gata2 (G2), Lmo2 (L2), Tal1 (T1), Fli1 (F1), Tead4 (T4), Meis1 (M1), Gata1 (GA1), Gfi1 (G1), Gfi1b (GB), Runx1 (R1), Spi1

(P1). It should be noted that not all TFs in the circular histogram have supporting ChIP-seq data in all cell types (Table 1). In the absence of ChIP-seq data for a specific

cell type, the bar for that TF in the histogram of that cell type is zero. (B) The gene expression profile (GEP) of Runx1 with cell types along the horizontal axis and

FPKM on the vertical axis. (C) The plot shows the best linear fit between the actual (X) and predicted (Y) GEP for Runx1. The spearman correlation coefficient is also

provided. (D) The plot shows the tag density profile normalised as coverage per million aligned reads for the 10 cell types. Runx1 gene structure is provided in blue

below the coverage tracks. The predictor CREs that were used in the lasso model are given as grey boxes and the chosen CRE and the coCRE are given in red and

yellow respectively. The super enhancers (SE) identified by Whyte et al.[53] are given as green bars and the enhancers given by SEA is in blue. The experimental

enhancers identified by Schütte et al. and Dogan et al. are provided as well. In the case of Runx1 there is no overlap with the Dogan et al. dataset, and hence the absence

of any bars. It should be noted that the coCRE enhancer is represented as a composite of red boxes of member CREs.

https://doi.org/10.1371/journal.pcbi.1007337.g002
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comprising 2 and 3 regions respectively. One of the regions (the community of 3 CREs),

although in this case not statistically significant, is almost 75kB away from the promoter,

bound by the OCT4/NANOG/ESRRB TFs on all the three sites and was identified as a super-

enhancer by Whyte et al. [53].

Regarding TFs specific to the hematopoietic lineage, we commented on the chosen CREs

for Runx1 above (Fig 2A). The coCRE is related to the +23kb region that is experimentally ver-

ified [54]. It is bound mostly by LMO2 in HB, TAL1 in HE and the LMO2/TAL1/FLI1/

GATA1/PU.1 complex in HP and the increasing recruitment of TFs and the increasing signifi-

cances of the combinatorial binding closely follows its expression profile (Fig 2A). Tal1 has a

single coCRE encompassing the promoter region and two downstream regions, separated by

around 30kB [15]. The coCRE is primarily bound by LMO2/TAL1/GATA2/TEAD4 in HB,

LMO2/TAL1/FLI1 in HE, FLI1/PU.1 in HP and PU.1 in macrophages (S4 Fig). Gata2 has only

one CRE mapped to it and it overlaps with its promoter region and is bound by LMO2/TAL1/

FLI1 in HE and HP. It should be noted that although this locus fails to attain statistical signifi-

cance (S3 Table) it is experimentally well-characterised [55]. Lmo2 is mapped to a CRE lying

on the proximal promoter [56] and the other coCRE bound predominantly by PU.1/CEBPβ in

macrophages lying on the distal promoter region. Spi1 (PU.1) is a macrophage specific TF that

is mapped to two coCREs upstream of its TSS, with one coCRE overlapping with its promoter

and is bound by LMO2/FLI1/ CEBPβ in HP and with LMO2 possibly replaced by PU.1 in

MAC. This coCRE comprises of the promoter and a -17kB upstream region, which has been

shown to be involved in Spi1 expression control [28]. Cebpb is mapped to multiple CREs with

one CRE mapped to the promoter region and a coCRE that spans around 50kB and is bound

by PU.1/CEBPβ TFs. The coCRE is the most significant predictor and it overlaps with one of

the super-enhancers upstream of Cebpb and with a region lying in an intron of the Tmem189
gene downstream of Cebpb that shows high H3K27ac activity specifically in macrophages.

This indicates the involvement of PU.1 or PU.1/CEBPβ complex in upregulating Cebpb in

macrophages.

These results show that the proposed method has sufficient statistical power to discover at

least one significant predictor, which is a potential regulatory element, for more than half (9/

17) of this small set of key transcription factor genes. It is noteworthy that in many cases this

element is a coCRE, suggesting that these CRE communities are more likely than singleton ele-

ments to be predictive of gene expression.

Characteristics of the predicted cis-regulatory elements

The TF cluster and the DE gene sets represent much larger sets and the data in Table 2 show

that the method still generates a useful proportion of statistically significant models, although

this falls to 30% of genes in the largest set. Full details of the models are in S3 Table. Fig 3

Table 2. Generation of models.

Gene set Number of

genes

Number of models with at least one

β6¼0

Number statistically

significant1
Number of coCREs with

β6¼0

Number of singleton CREs with

β6¼0

TF set 17 14 (82%) 9 (53%) 34 22

TF cluster

set

437 340 (78%) 226 (52%) 163 282

DE gene set 9854 6715 (68%) 3212 (30%) 2592 5567

1A model is considered statistically significant if it has at least one regression coefficient β with Benjamini-Hochberg q value < 0.05. The details of the model parameters

and the CREs are given in S3 Table.

https://doi.org/10.1371/journal.pcbi.1007337.t002
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shows an analysis of the characteristics of the chosen CREs within statistically significant mod-

els. The phylogenetic conservation scores of the chosen CREs are significantly high compared

to the score distribution of the all CREs (Fig 3A). Similarly, the occurrences of H3K27ac peaks

and DHS across all cell types are higher for chosen CREs (Fig 3B) as are TF binding events

(Fig 3C). These observations suggest that regions that are predictive of expression are hotspots

for epigenomic activities and TF occupancies, confirming earlier observations [57].

Selected regulatory regions as enhancers

It is to be expected that a substantial number of the chosen (co)CREs are enhancers or include

enhancers as sub-regions. In order to investigate this further, we considered existing datasets

of enhancers from disparate sources including a dataset validated using in-vivo screening

(VISTA) [58], two sets that were collated based on TF binding and further experimental vali-

dation (Schütte et al. and Dogan et al.) [22, 24], a set of super-enhancers identified using

genome-wide binding profiles of TFs along with Mediator (Whyte et al) [53] and a dataset gen-

erated through integrative selection from various different NGS resources (SEA) [59]. It is to

be noted that any comparison is likely to be affected considerably by the type of data used for

integration in genome-wide enhancer datasets, the type of cells used in experimental validation

of enhancer activity, and the experimental or computational methodology used by the authors

Fig 3. Characteristics of chosen regions. Conservation, chromatin events and TF binding events in chosen CREs

(red) compared to all candidate CREs (blue). Left is the TF gene set, middle the TF cluster set and right all differentially

expressed genes (DE set). (A) The log of the phylogenetic conservation scores (see Methods), (B) the chromatin events

(H3K27Ac peaks and DHS), and (C) TF binding events. The p values were obtained using student t-test for

conservation and Kolmogorov-Smirnoff test for chromatin and binding events. All the p values were less than 0.01

except for conservation distribution in TF set (p = 0.07).

https://doi.org/10.1371/journal.pcbi.1007337.g003
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in compiling the dataset. In this analysis, we have therefore attempted a conservative and unbi-

ased approach of studying genomic overlaps between the chosen CREs/coCREs with each of

the known enhancer datasets. The results are shown in Fig 4A and the total number of regions

that overlap is provided in S4 Table. As expected there is a significant overlap with genome-

wide methods (Whyte et al. and SEA) that follow a similar approach. The overlap with Schütte

et al. is high but the selected CREs show no significant overlap with datasets by Dogan et al.

and VISTA. The likely reason for this discordance is the fact that Schütte et al. examined

enhancers active in haemopoietic stem/progenitor cells which will be similar to the enhancers

activated during haemopoietic specification (our study). Furthermore, with reductionist

approaches the analysis is influenced by the genes studied in the experiments. For example,

VISTA database has only 0 (0%), 6 (1%) and 75 (14.5%) of genes that overlap with our TF, TF

Cluster and DE gene sets respectively. As a negative control, we chose to compare the overlaps

of candidate CRE regions with similar H3K27ac levels that were not chosen as predictive by

our method (Fig 4A, right hand panel). As expected, genome-wide data sets (SEA and Whyte)

had significant overlaps with these negative control CREs. However, in the cell type specific

data set of Schütte et al. we found that these negative control regions overlap less significantly

with active elements and more significantly with inactive elements.

We performed an in-depth gene-wise analysis of the overlap with Schütte et al. because of

the significance of genomic overlap and also the similarity in the cell types used provides us

with an ideal, albeit small, dataset to check if the chosen CREs’ roles are enhancers (details in

S4 Table). The dataset overlaps with enhancers of 9 genes with 5 of the lasso models having a q

value� 0.05. The coCRE predicted by our Runx1 specific model overlaps with 3 active and 1

inactive enhancers by Schütte et al. (Fig 2D). Only one active enhancer (Runx1+204 [24]) was

rejected by our model because of the 100kB distance cut-off (see Methods). In Meis1 the single-

ton chosen CRE (S3 Table) overlaps with the only active +48kB hematopoietic enhancer iden-

tified by Schütte et al. The coCRE of the Spi1 (PU.1) overlaps with one enhancer and one

inactive region, where the latter is a promoter region (S5A Fig). The coCRE of Tal1 overlaps

with all the six enhancers (3 active and 3 inactive) from Schütte et al. (S5B Fig). Interestingly

one active enhancer was correctly mapped to the coCRE of Tal1 although the CRE is in close

proximity with the neighbouring gene, Pdzk1ip1. Although this enhancer is located far away

from the other active enhancers, being part of a single coCRE may be an indication of interac-

tion. In Erg, the model was able to map all the active enhancers to the single chosen coCRE

(S5C Fig). In Lyl1 the chosen CRE extends over a broad region comprising of one active and

two inactive enhancers. However, in the case of Fli1 the singleton CRE overlapped with two

haemopoietically inactive elements.

While our method is intended to produce gene specific regulatory models, and does not

aim directly to predict enhancer-promoter interactions, we considered that it would be useful

to compare the information from our model with that from a contemporary method for the

latter problem. We trained the JEME method [40] on 3D interaction data from ESC cells with

the reduced feature set available in our data, and used this to predict interactions in other cell

types (see Methods), focusing here on predictions in HP cells. An example of the Runx1 gene

is shown in S5D Fig and summary results over all nine Schutte et al. genes are in Table 3 and

S5E Fig. In the case of Runx1, our retrained JEME predicts 10 potential enhancers within

100kB interacting with the promoter; these overlap all four identified as positive by Schutte

et al., and only one of the four identified negatives. The remaining six JEME predictions repre-

sent untested regions, and may be false positives but equally could be regulatory. Our method

on the other hand makes only five predictions, which overlap 3/4 positives and 2/4 negatives.

Results for other genes are similar (Table 3 and full detail in S5 Table). Overall the retrained

JEME makes more predictions (S5E Fig), some of which may be false positives, and over the
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tested regions it is slightly more accurate than our method, although the difference is not sta-

tistically significant.

Fig 4. Validation of predicted enhancers. (A) Overlap of genomic regions between published sets of enhancers (vertical axis) and the CREs/coCREs chosen for genes

in the three gene sets (horizontal axis). The dot plot indicates the significance (-log10(p) with p adjusted for multiple testing) of the pairwise overlaps (red/large

size = high significance, orange/small size = low significance). The absence of a dot signifies p> 0.05. The right panel (Enrich) shows a negative control of overlaps

with candidate CREs that were not chosen as predictive by our method but with H3K27ac enrichment level similar to the chosen (co)CREs. (B) Expression of Sptbn1
across stages of haematopoietic and cardiac differentiation shown as a blue line chart. The inset plot shows the chromatin activity profile (CAP) for a CRE predicted to

be associated with this gene. (C) A UCSC browser snapshot of the predicted CRE within the Sptbn1 gene body. The snapshot shows this region shaded in blue,

illustrating the dynamics of the active chromatin mark, H3K27ac (top), and chromatin accessibility (bottom) across the cell types. The coordinate considered for

further validation is chr11:30166167–30166587 highlighted in transparent cyan box. (D) A 5-day time course of haematopoietic differentiation, tracking the expression

of a YFP reporter gene driven by the predicted CRE. Expression peaks on day 5 (D5), which is equivalent to the haemogenic endothelium (HE). The controls are the

ESC line HM1 (black) and HM1 cells targeted with the reporter construct containing the minimal promoter (MP) only (grey).

https://doi.org/10.1371/journal.pcbi.1007337.g004
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Novel enhancers for Sptbn1 and Nfe2 genes verified experimentally

We next sought to assess the utility of our gene specific chosen CREs by experimental testing

of previously unknown potential enhancer elements contained within them. We selected two

of our predicted CREs that exhibit discrete CAPs and that are associated with genes that are

important for haematopoiesis, namely Nfe2 and Sptbn1. Nfe2 encodes for NF-E2 transcription

factor expressed in HSCs, erythroid, myeloid and megakaryocytic lineages, and is known to be

involved in epigenetic modification thereby regulating blood cell maturation programmes.

Abnormal expression of this gene is linked to pathogenesis of myeloproliferative neoplasms

(MPNs) [60]. Sptbn1 encodes for β spectrin, a cytoskeletal protein and has been implicated in

the determination of cell shape, organelle organisation and cellular traffic [61]. A fusion gene

SPTBN1-FLT3 has been observed in a small population of BCR-ABL-negative CML [62].

For both of these genes the CREs were obtained from their respective gene-specific models

using λ1se. We segmented the predicted CRE region into 500 bp windows and identified the

window with the highest number of TF binding sites within it. This TF hotspot within the pre-

dicted CRE was then cloned upstream of a reporter gene and used for single site targeted inte-

gration into a mouse ESC line as described previously by Wilkinson et al. [63]. This enabled us

to follow the dynamics of reporter gene expression during blood specification.

Out of 11 possible predictors for CREs associated with Sptbn1, one is chosen within the

gene body and it is evident that its H3K27ac and DHS profile across the cell types coincides

with the expression profile of the gene (Fig 4B and 4C). The TF hotspot for this CRE shows

binding of TEAD4, TAL1, LMO2 in HB, FLI1, TAL1, LMO2 in HE and RUNX1, GFI1,

GATA2, TAL1, LMO2 in HP to this 500bp region (highlighted by cyan box in Fig 4C). Consis-

tent with our CRE prediction, we see enhancer activity with the reporter gene assay (Fig 4D)

and this shows an expression profile that reflects profile in Fig 4B with high expression in HE

and HP cells. In the case of Nfe2 (see S6 Fig) we find two predicted CREs and this presents an

interesting case because the q value of the model unlike Sptbn1 is high (S3 Table). CRE1 shows

a promoter like profile, having a high H3K27ac peak showing a characteristic bimodal

Table 3. Overlaps of predicted regulatory elements with experimentally tested regions.

Gene Predictions1 Overlap +ve2 Overlap–ve3 No overlap4

JEME CRE JEME CRE JEME CRE JEME CRE

Erg 12 4 1/3 3/3 1/2 0/2 10 2

Fli 15 1 2/2 0/2 0/3 2/3 13 0

Gata2 7 1 2/4 2/4 0/2 0/2 6 0

Gfi1b 15 4 3/3 0/3 1/1 0/1 11 4

Lyl1 13 4 1/1 1/1 1/2 2/2 12 3

Meis1 10 1 1/1 1/1 2/3 0/3 6 0

Spi1 14 4 0/1 1/1 0/2 1/2 14 2

Runx1 10 5 4/4 3/4 1/4 2/4 6 1

Tal1 10 3 2/3 3/3 0/3 3/3 8 0

Totals 106 27 16/22 14/22 6/22 10/22 86 12

1. The number of predicted regulatory regions within 100kB of the TSS for each method. (The present method is indicated as CRE in the table)

2. ‘True positives’–the number of regulatory regions experimentally verified as positive and overlapped by a predicted region. Numbers in the denominator indicate the

number of experimentally verified positive regions for this gene.

3. ‘False positives’–the number of regions experimentally verified as negative and overlapped by a predicted region. Numbers in the denominator indicate the number of

experimentally verified negative regions for this gene.

4. The number of predicted regions that do not overlap experimentally tested regions. Either false positives or novel discoveries.

https://doi.org/10.1371/journal.pcbi.1007337.t003
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distribution that dips where there is enrichment for hypersensitive sites (S6 Fig). CRE2 pres-

ents an interesting case because it does not have a strong H3K27ac signal, but has a very spe-

cific DHS at the HB stage that progressively opens up until HP. Also, the CAP correlates well

with the GEP of Nfe2. Furthermore, its TF hot spot is bound by the LMO2, TAL1 complex

from HB to MAC and is joined by the binding of GATA1, GATA2, GFI1 and GFI1B in HP

where the chromatin activity is the highest. The reporter gene assay shows a very similar

expression profile to the CAP, with expression as early as HB, peaking on day 5 when HPs

begin to emerge. Therefore, both enhancer studies demonstrate that the dynamics of expres-

sion regulated by the predicted CREs follows the CAP used in the model building.

Combinatorial binding and transcriptional regulatory network

The complex structure of transcriptional regulatory networks in higher eukaryotes reflects the

combinatorial control of genes by multiple transcription factors. It is poorly understood owing

to the multiplicity of potential regulatory elements and the associated difficulty in assigning

distal elements to the genes they control. The methods introduced here allow the construction

of networks where transcription factors link only to genes for which they bind to chosen CREs

and with which they are co-expressed. These networks contain putative causal regulatory rela-

tionships and here are called cis regulatory networks (CRNs); they are approximate and likely

to reflect only the strongest aspects of control for each gene, but nevertheless they represent a

substantial simplification compared to alternative approaches. S7 Fig illustrates this in com-

parison to simple co-expression networks (CENs, where TFs are connected to all genes whose

expression is correlated). This shows that the CRN is simpler in terms of vertex degree and

connectivity. It is also clear that those TFs with high betweeness centrality, a measure of the

importance of the node to the overall network structure, stand out much more clearly in the

CRN, and are enriched for known critical haemopoietic transcription factors, TAL1, RUNX1

and FLI1. Fig 5 illustrates CRNs for the TF cluster set (Fig 5A) and the TF set (Fig 5B). It is evi-

dent that the regulation involved in maintaining pluripotency is disconnected with other sys-

tems and that there are at least four different sub-graphs of regulation: (i) the pluripotency

network controlled by Nanog, Oct4, Sox2 and Esrrb, (ii) the HE dominant network controlled

by Fli1, (iii) the HP network comprising of the Runx1, Scl/Tal1-Lmo2 TFs and (iv) the MAC

specific network with Pu.1 (Spi1) forming the nexus between the HE/HP networks and the

Cebpb network.

Network complexity in higher eukaryotes has so far made it difficult to answer the funda-

mental question of how many different genes are regulated in the same way, or if a similar pat-

tern of gene expression can be produced by different regulatory processes. Fig 5C shows a

preliminary analysis of this question where genes are assigned to clusters where they share

common patterns of both gene expression (GEP) and transcription factor binding (TFBP) to

their single most significant/predictive (co)CRE, using a recently introduced joint clustering

method [64] (see Methods section). This analysis uses the “TF cluster set” with genes having

chosen (co)CREs bound to only one TF binding event removed, reducing the gene set from

437 to 222 genes, in order to focus on genes with clear combinatorial TF binding.

Clusters obtained from joint clustering are rather different to those from “expression only”

clustering shown in S2B Fig. Clusters based on joint information (TF binding and gene expres-

sion) are approximately two times larger than those based on gene expression only, and repre-

sent a broader range of expression patterns: in the case of using expression information only,

most of the TFs lie in separate clusters (with the exception of Tal1 and Gfi1b), while including

TF binding information draws together TFs into shared clusters. This suggests that shared TF

regulation leads to a broad range of similar gene expression profiles, and that other regulatory
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Fig 5. Cis regulatory networks (CRNs) and joint clustering of expression and regulation. (A) CRN for the TF cluster set. The genes are represented as nodes and

directed edges show the genes that are co-expressed and also bound by the TF of one gene (source) to a predicted CRE of the other gene (target). The cell type at which

the expression of the gene is highest is shown as colours on the node. The size of the node name is proportional to its degree. (B) The CRN for the TF set (colours as A).

(C) Joint clustering of genes in the TF cluster set. Genes cluster together according to the relatedness of both gene expression patterns (red-blue heatmap) and the binary

pattern of TF binding (green-white heatmap) at their main predicted (co)CRE. Each cluster is distinguished by a colour coded bar above the GEP heatmap (highlighted as

“Joint cluster ID”). For each cluster, the average of the TF binding profile is shown as the TF binding propensity, where 0 represents absence of TF binding and 1

represents binding of that specific TF in all the regions belonging to that cluster (green = TF binding; white = no TF binding).

https://doi.org/10.1371/journal.pcbi.1007337.g005
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processes, beyond the information in this data set, could define the detailed differences shown

between the smaller “expression only” gene clusters.

Among the interesting aspects of biology suggested by joint clustering is that the pluripo-

tency factors Esrrb and Sox2 form a separate cluster to Nanog and Oct4, which show an

expression pattern that persists longer and is associated to different TF binding profiles. In

relation to haematopoiesis, genes in the cluster containing Fli1, Lmo2 and Elk4 are bound pre-

dominantly by FLI1 at their CREs in HE and HP suggesting a tightly controlled regulatory

mechanism by Fli1 underlining its importance in haemopoiesis and vasculogenesis [65].

Genes in the cluster with Runx1 express in the later stages of haemopoiesis (HE, HP, and

MAC) and exhibit a more complex binding pattern of factors including FLI1, SCL/TAL1,

RUNX1 and GATA2 in HB, HE and HP. Thus, the hematopoietic differentiation from HB to

MAC seems to be regulated by distinct regulatory mechanisms at various stages of the pathway

that start with the FLI1 controlled genes co-expressing with Fli1 and Lmo2 in HB resulting in

the initial activation of hematopoietic genes, followed by the controlled cluster of Runx1, Tal1,

Gata2 and Meis1 involved in the formation of HE and later the transition from HE to HP dic-

tated by CEBP/β bound genes and finally PU.1 specifying the macrophage transcriptional

network.

Conclusion

Transcriptional regulation can be investigated at the level of a single gene, where studies lead

to detailed understanding of all or most relevant cis-control elements, or at genome-scale

where high-throughput studies can reveal many general aspects of regulation. Here we have

attempted to create methodology that can bridge the gap between these contrasting types of

study. One of the challenges of genome-scale study is that the data sets involved are indeed

very large, but the information per gene is relatively small. Coupled with the plethora of poten-

tial regulatory elements for any gene in higher eukaryotes, it is a significant challenge to iden-

tify those elements most relevant to its regulation. We have shown that careful integration of

high-throughput data of a range of types and sources, coupled with the building of gene spe-

cific predictive models, can identify a few (typically 1–4) statistically significant potential regu-

latory elements for a large proportion of genes. We view the method as a means of hypothesis

generation that will feed into further detailed study of individual genes and regulatory ele-

ments, and here we have illustrated this with experimental confirmation for two example

genes.

The CREs identified by our method, show many of the expected characteristics, including

higher than average conservation, binding of transcription factors and activity in multiple cell

types. Counter-point to this is that many of the CREs are not conserved, perhaps reflecting the

fact that regulation of genes may diverge more quickly than the genes themselves in closely

related species, showing that conservation is not an effective way of reducing the number of

candidate CREs in model building. Introducing the concept of a community of CREs, related

by similar profiles of transcription factor binding and activity measures across the cell types

involved, has aided this work technically by reducing the number of potentially predictive vari-

ables and reducing multicolinearity. Equally importantly, it may have deeper biological signifi-

cance, for instance in three-dimensional genome structure, and this will be a subject of future

investigations. This feature of using network-based construction of collaborating CREs prior

to model building, to the best of our knowledge, is presented for the first time in this work.

From our analysis of haemopoietic master regulators, we found that many of the chosen

coCREs contain elements close to promoters, but also link in distal CREs (�20 kB) with simi-

lar profiles of transcription factor binding and activity.
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In comparison of regulatory regions chosen by the models with experimentally and compu-

tationally known enhancers we find that coCREs overlap more significantly than CREs, further

emphasising that collaborations between distal regulatory elements could be a prevalent mode

of transcriptional regulation. In addition, we were able to exploit the loci identified by the

models to transform incomprehensible co-expression networks (CENs) to tangible cis-regula-

tory networks (CRNs). The derived CRNs more clearly define the networks and subnetworks

of TFs and master regulators responsible for different stages of differentiation.

The comparison of our method with JEME provides an interesting perspective on two

completely different computational approaches to predicting how genes are regulated, one

(ours) designed to be independent of 3D chromosome interaction data and to identify a small

number of the most predictive elements for the expression of a gene, and the other trained on,

and designed to predict 3D interactions. Comparison of methods in this area for mouse is dif-

ficult owing to a lack of gold standard data for real regulatory relationships. Three-dimensional

interaction is often used in this way, but not all interactions are regulatory [66]. Comparison

on the Schutte et al. data set, albeit relatively small, showed the methods to have similar perfor-

mance. The JEME related method produced more predicted elements for each gene and may

have a higher false positive rate for this reason. On the other hand, for known elements, perfor-

mance of our method was marginally worse, but this difference was not statistically significant.

Overall these results show that our rather simple method, based on the limited data sets avail-

able for mouse cells in this case, is useful and able to perform comparably to a method devel-

oped for the larger data sets typically available for human cell lines.

Materials and methods

Dataset

For this study, high-throughput data from two in vitro differentiation pathways of mouse

embryonic stem cells (ESCs) were considered: differentiation to macrophages [15] and to car-

diomyocytes [47]. The fastq files for H3K27ac, DNaseI, RNA-seq and Transcription Factor

(TFs) experiments were downloaded from Gene Expression Omnibus (GEO identifiers:

GSE69101 and GSE47950 respectively). Gene and transcript definitions from RefSeq [67] were

obtained using the UCSC Table Browser utility [68, 69]. The conservation scores are the phast-

Cons evolutionary conservation scores for 60 vertebrate species obtained from the UCSC

genome browser using its Table Browser. Enhancers defined by Whyte et al. [53], Schütte et al.

[24] and Dogan et al. [22] were obtained from their respective publications. The enhancers

from SEA [59] and VISTA [58] were downloaded from their respective websites.

Data processing

The sequences were processed uniformly by first trimming reads for sequence quality of 20

using Cutadapt [70]. The trimmed reads were aligned to mm10 (UCSC genome browser)

using Bowtie2 [71] for letter-space reads and SHRiMP [72] for colour-space reads. Only reads

aligned to unique chromosomal positions and with a mapping quality of at least 20 were

retained for further calculations. Total reads that overlap the exons of the genes were calculated

using HTSeq-count [73]. Gene level expression values were computed as reads per kilobase of

exons per million mapped reads (RPKMs) [74] (Eq 1), and a standardised expression value for

a gene was computed as (x-μ)/σ where x is the expression value, μ the mean and σ the standard

deviation over cell types. For the initial data analysis, the expression data for protein coding

genes in each cell type were analysed by principal component analysis (PCA) and hierarchical
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clustering to confirm the expected biological relationships between the cell types (see S1 Fig).

RPKM ¼
n� 109

s� N
ð1Þ

Here n = total number of reads aligned to exons of size s bp and N is the total reads aligned

to the genome.

DNaseI Hypersensitive Sites (DHSs) were called using DFilter [75] with default parameters

(-bs = 100 -ks = 50 –refine and FDR� 0.05) while the TF peaks were called using MACS

(default parameters) since the method of generating shifting tags is well suited for DNA bind-

ing proteins. For TF peaks manual assessed p-values were used and are described in Goode

et al. [15]. H3K27ac enriched regions in hematopoietic lineage were the “gapped peaks” called

by MACS2 [76] using q-value cutoffs of 0.01 for narrow peaks and 0.1 for broad peaks [39]

and the H3K27ac enriched regions in the cardiac lineage were obtained from Wamstad et al.

[47]. DHSs and H3K27ac peaks that had an overlap of at least 125 bps were merged and the

read abundances in these peak regions were computed as RPKMs (Eq 1, where s is the size of

the region in bp) using BedTools [77]. Conservation scores for the regions were obtained as

the 3rd quartile value (top 75%) using bwtool [78].

Differentially expressed genes were identified by all against all pairwise cell type compari-

sons using DESeq [73]. A gene was defined as differentially expressed (DE) if its expression

has changed at least four-fold with an adjusted p-value of less than 0.05 in at least one compari-

son. We identified 9854 genes that were differentially expressed and with expression value

greater than 1 in at least one cell type. The standardised expression values of these DE genes

were then clustered using k-means and the Bayesian Information Criterion (BIC) scores were

obtained as a function of k using the adegenet R package [79, 80]. The optimal number of clus-

ters (K = 391) was thus determined as the k with the lowest BIC score (S1D Fig). For a given

DE gene its Gene expression profile (GEP) is an m-dimensional vector where m is this the

total number of cell types analysed (here m = 10) standardized gene expression values over all

cell types, GEPs) were generated for all the differentially expressed genes considered in this

study.

Identification of candidate cis regulatory elements (CREs)

The DHS and H3K27ac peaks that had an overlap of at least 125 bps were merged to obtain

the initial set of candidate cis-regulatory elements (candidate CREs). For each candidate CRE,

a “chromatin activity profile” (CAP) is a m-dimensional vector representing the chromatin

activity of the CRE in the m cell types (here m = 10). For a given CRE and a given cell line the

chromatin activity is the log2(RPKM) of H3K27Ac computed as given in Eq 1 where s here is

the width of the H3K27ac peak, and if DNaseI-seq data was available for the cell type, the aver-

age of the log2RPKM of the H3K27ac and the DNaseI-seq data (Table 1), since these two mea-

sures have been shown to be highly correlated in cell type specific DHSs [81]. For each gene

the predictors are the set of candidate CREs within 100kb of a gene’s transcription start site

(TSS) identified using ChIPpeakAnno [82].

Identification of community CREs

The CREs were overlapped with the 33 TF ChIP-seq peak sets (Table 1) and for each region

the “TF binding profile” (TFBP) was generated as a binary vector indicating the overlap (1) or

non-overlap (0) of the 33 peak sets (Fig 1A, Step: 3). For a given gene, we identified the N
CREs with 100 kB of the gene and in order to generate community CREs (coCREs) two matri-

ces of N×N dimensions were generated: (i) the activity correlation matrix (C) that represents
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the pairwise similarity between the CAPs of the N CREs, and (ii) the TFBP correlation matrix

(B) that represents the pairwise similarity of the TFBPs of the N CREs. Each element of matrix

C (Cij) is the Spearman correlation coefficient of the CAPs of the two CREs (i and j) and simi-

larly Bij is the Jaccard index of the TF binding profiles of i and j. From these two matrices, an

adjacency matrix (A) of N×N dimensions were computed as given in Eq 2. A network then is a

representation of A where CREs within 100kb of the gene represent the nodes and an edge

between two nodes (if Aij = 1) represent highly correlated activity of both their CAPs and

TFBPs.

Aij ¼
1 if Bij:Cij > 0:5;

0 otherwise:
ð2Þ

(

For such a network, communities are the dense sub-networks of sets of nodes with rela-

tively large numbers of edges among them and were identified using a greedy optimization of

modularity score [83]. The coCREs are defined as communities of more than one region with

at least two TFs binding to them. The CAP of a coCRE is the average of the activity profiles of

the constituent CREs. To differentiate the rest from coCREs, candidate CREs not assigned to

communities are referred to as ‘singleton CREs’.

Penalized linear models

All coCREs within 100kB of a transcript’s start site (TSS), and singleton CREs within 20kb,

were considered as potential predictor variables in building the linear model. The CAPs of the

CREs were considered as a column in the independent term matrix (X). The response vector

Y, consisting of expression values corresponding to the cell type in X was modelled using linear

regression as

y ¼ b0 þ
Pn

i¼1
bixi; ð3Þ

where βi are the regression coefficients. For a penalized linear model, the aim is to minimize

the penalized likelihood (assuming a normal distribution), minbðky � ŷk2

2
þ l

Pn
i¼1
jbijÞ,

where the penalty is on the summed absolute values of the regression coefficients and λ is the

regularisation parameter. The l1 norm form of the penalty leads to zero values for a subset of

the β coefficients, depending on the size of this parameter. A leave-one-out cross validation

was performed for a sequence of λ values to obtain the optimal value of λ where mean square

error is minimized λmin and also λ1se = λmin+1×stdev, which is a more conservative estimate

for λ (Fig 1C). The CREs/coCREs with β 6¼ 0 at the optimal λ are the most predictive for that

gene, and are termed ‘chosen CREs’. If at the λ cutoff the total number of predictors with non-

zero regression coefficients is zero, then the highest λ value at which at least one predictor has

a non-zero coefficient was considered. The penalized regressions and cross-validations were

performed using glmnet package in R [84]. In order to generate p values for the predictors

with β 6¼ 0 we have used the covariance testing as implemented by the covTest package in R

[51] and adjusted for multiple testing using Benjamini-Hochberg method (q values). The

covariance test tests the significance of a predictor as it enters the active set at a given step in

the lasso path [51]. The p-value for a predictor takes into account the adaptive nature of lasso

and also the shrinkage effects due to the l1-norm penalty. The q-value for each gene model is

the q-value of the most significant predictor at λ1se. The models generated, the λ values, the

chosen predictors along with the q-values are provided in S3 Table. It can be seen from S3

Table and S8 Fig that for the selected models there are non-zero beta with p> 0.05. They

should be viewed with caution in comparison to better supported interactions, because on one
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hand the cross validation indicates they have a significant contribution to prediction accuracy

but one the other hand the covariance test, which is more conservative, considers them

insignificant.

Apart from using covariance tests for assessing a model’s significance one can obtain

empirical p-values by randomising either the CAP or GEP. Here for a given gene, we retained

the CAP of the predictors and randomised the GEP N = 10000 times and generating N models.

The spearman’s correlation (Cr) between the randomised GEP and the GEP predicted by the

model is calculated. If the correlation derived for the actual model is Ct, and x the total number

of iterations where Cr� Ct, then an empirical p-value can be generated as x/N. The compari-

son between the two tests for model significance is given in S7E Fig. Although there is general

agreement with the exception of Runx1 and Spi1, the randomisation approach is time consum-

ing (limited by the number of iterations), and we preferred the covariance test method which

is explicitly designed for LASSO models and therefore likely to be more powerful.

It should be noted that if there are more than one highly correlated CREs for a given gene

that are predictive of the expression, then LASSO is designed to select one of the CREs. In

order to ascertain the ability of the model to accurately choose the best correlated regions, we

removed the chosen regions from the list of predictors for a given gene and generated a new

model. We performed this analysis for all the genes in the three gene sets and found only 15

new models with at least one chosen region (β 6¼ 0) at λ1se and a p-value of less than 0.05.

While this may remain an issue with LASSO regression, it indeed shows that in this study such

effects are minimal possibly due to the construction of coCRE prior to model building.

For each gene, two models (λ1se) were generated, one with regions before the construction

(pre-coCRE) and the other with regions after the construction of community CREs (post-

coCRE), as predictors. The difference in drop-in-variances (Δdiv = div(post-coCRE)–div(pre-

coCRE)) and in p-values (Δpv = pv(post-coCRE)–pv(pre-coCRE)) for the best predictor (high-

est div), were computed for any given gene if p< 0.05 in at least one of the two models. In

order to ascertain the technical impact of coCREs, we used paired Student t-tests for comput-

ing the significances for higher drop in variances (+Δdiv, S3F Fig, red), and decrease in p-val-

ues (-Δpv. S3F Fig, red) in post-coCRE models compared to pre-coCRE models. S3F Fig shows

that in the TF Cluster set, both the div, and p-values for post-coCRE models are significantly

better than pre-coCRE models. This trend remains true when applied to all the genes consid-

ered in this study.

Overlaps with data sets of experimentally determined enhancers

We considered the overlap of the set of (co)CREs chosen in our models with several external

data set of enhancers described above (see Fig 4A), using the hypergeometric test. To form a

negative control set for these studies, for each gene, a set of CREs/coCREs were selected from

the available set of rejected predictors (P) that match the chromatin activity level of the predic-

tors chosen by the model (C). If CAPr is the chromatin activity profile vector of a CRE/coCRE

(r), then mr = max(CAPr). The set of rejected regions with matching chromatin activity for

that gene is {r2P|mr>mc−0.5} where mc is the max(CAP) of any of the chosen predictors. Such

sets were generated for the three gene sets (Table 2) and their overlaps with known enhancers

are given in Fig 4A.

Application of JEME to the myeloid lineage data set

Cao et al.’s Joint Effects of Multiple Enhancers (JEME) method employs a two-step machine

learning framework to predict cell line specific enhancer-TSS interactions [40]. Firstly, LASSO

linear regression models calculate the ability of DNase, H3K27ac, H3K27me3 and H3K4me1

Regulation of developmental transcription landscape

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007337 November 4, 2019 20 / 29

https://doi.org/10.1371/journal.pcbi.1007337


signals to predict the expression of a TSS within 1Mb of an enhancer. Secondly, LASSO error

terms are input, along with DNase and histone enhancer, promoter and window features, into

a Random Forest classifier trained on chromosome conformation data.

JEME was applied to the myeloid lineage (ESC to MAC) dataset, for which DNase-seq,

ChIP-seq and RNA-seq data were available. As we did not have data for H3K4me1, this mark

was substituted for H3K4me3. Input files were processed as described in Cao et al. 2015 [40].

TSS co-ordinates were obtained from the mm10 RefSeq curated annotation using the UCSC

Table Browser. Cell specific active enhancers were defined by the 4-state ChromHMM predic-

tions from Goode et al. 2016 [15]. JEME code for Cao et al.’s ‘Roadmap + ENCODE’ dataset,

was downloaded from https://github.com/yiplabcuhk/JEME and adapted for our dataset.

JEME’s Random Forest classifier was retrained in WEKA [85] on a set of 18,353 positive and

122,353 background pairs, assembled from the ESC HiC data (GEO identifier: GSM2026260)

[86] using the ‘random targets’ method [40]. Predictions were made for enhancer-TSS interac-

tions in MES, HB, HE, HP and MAC cells, using the default threshold of 0.35. JEME predicted

64.2% of selected CRE-gene pairs, accounting for 7.9% of all JEME predictions within 100kB

of a TSS considered by our method (p value for overlap� 10−65). The results shown in

Table 3 do not change significantly by varying the threshold.

Joint clustering of TFBPs and GEPs

In order to jointly cluster gene expression and regulatory input we employed a method we

recently developed [64]. This adopts a probabilistic mixture model-based clustering with inte-

gration of binary (TF binding) and continuous (expression) data using Bernoulli and Gaussian

distributions respectively. The mixture components (clusters) represent sets of genes with

related TF binding and expression patterns. In this context, a TF binding pattern is a binary

string reflecting binding (1) or not (0) for a set of TFs to the chosen (co)CRE in question in

each cell type. A data matrix was constructed with the GEPs of the genes in the TF cluster set

(Table 2) and the TF binding pattern (TFBP) of the statistically best predictive (co)CRE for

each gene based on their p-values (S3 Table). In case of ties between two or more predictors,

the (co)CRE with the most regulatory input in terms of total number of bound TFs was consid-

ered. Gene-(co)CRE pairs with only one TF binding event were further removed. The method

determines a clustering solution that minimizes an information criterion related to the stan-

dard Bayesian Information Criterion (BIC = kln(n)−2ln(L)), where k is the number of parame-

ters in the model, n the number of data points and L the maximized likelihood) or Akaike

criterion (AIC = 2k−2ln(L)). In this case we used a criterion related to the latter, AIC2.5 = 2.5k
−2ln(L), which was shown to be optimal in similar problems [64].

Statistical significance of combinatorial binding of TFs

We calculated the statistical significance of multiple TF occupancy of M potential CREs as fol-

lows. Let the ith TF (TFi) have Ni binding peaks overlapping the M CREs, then the probability

that any CRE is occupied by at least one TFi peak is 1 � M� 1

M

� �Ni
: The probability a CRE is occu-

pied by at least one peak of each of N independently binding TFs is
QN

i¼1
1 � M� 1

M

� �Ni
� �

:

The expected number of CREs occupied by at least one peak of each of the N TFs is M �
QN

i¼1
1 � M� 1

M

� �Ni
� �

and this was used with the Poisson distribution to obtain p values for the

occurrence of CREs occupied by a combination of N TFs.
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Core regulatory network

TF gene set and TF cluster gene sets were used for generating two different types of network,

namely the co-expression network (CEN) and cis-regulatory network (CRN). For the CEN, a

pairwise Spearman correlation matrix (M) was generated for the gene expression values (GEP)

in the set and an adjacency matrix (A) was derived from M where Aij = 1 for the top 25% of the

node pairs with highest correlation coefficient. The resultant matrix was represented by an

undirected graph where an edge was drawn between two genes i and j if Aij = 1. CRNs were

generated with a directed edge from gene i to gene j if and only if they were connected in the

CEN and gene i is a TF that binds to a chosen (co)CRE in the expression model for gene j. For

generation of CRNs only selected CREs/coCREs with q� 0.05 were used.

For computing the network parameters both CRNs and CENs are considered as undirected.

A degree of a node is the total number of edges incident on it. For a node “x” in a network of N
nodes, if “o” is the total number of all possible shortest paths, and if “m” is the total number of

shortest paths from all N\x (all nodes except x) to N\x that traverse through x, then between-

ness centrality is m
o . A node is termed as a neighbour of another node if there exists an edge

between them and connectivity of a node is the total number of neighbours of the node.

Neighbourhood connectivity of a node “x” is the sum of the connectivities of its neighbours

[87, 88].

Availability of data and materials

All the NGS based data are publicly available from Gene Expression Omnibus (GEO) with

GSE69101 and GSE47950 accession numbers. These datasets are already published by Goode

et al, 2016, Dev Cell (PMID: 26923725) and Wamstad et al, 2012, Cell (PMID: 22981692)

respectively. The code is available in github as an R package (https://github.com/vjbaskar/

lenhancer)

Supporting information

S1 Table. The three gene sets for which predictive models were generated and the gene

expression data.

(XLSX)

S2 Table. Table containing CREs used in this study.

(XLSX)

S3 Table. Gene-wise predictive models for the genes and the chosen CREs/coCREs.

(XLSX)

S4 Table. Overlap between chosen CREs/coCREs and known enhancers.

(XLSX)

S5 Table. (A) Positive enhancer elements for the genes in Schutte et al. data and their overlap

with predictions from our (co)CRE method and retrained JEME method. (B) Negative

enhancer elements for the genes in Schutte et al. data and their overlap with predictions from

our (co)CRE method and retrained JEME method.

(DOCX)

S1 Fig. Gene expression analysis. (A) Principal components analysis of gene expression data

where the cell types are projected on the first two principal components (PCs). (B) The cumu-

lative contribution of the PCs to the variance observed. (C) Heatmap showing the hierar-

chically clustered cell types based on the correlation (Pearson) of their gene expression
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profiles. (D) BIC scores as a function of number of clusters (K) when clustering gene expres-

sion profiles for differentially expressed genes. The vertical line corresponds to the K with the

lowest BIC score.

(EPS)

S2 Fig. Gene sets used in this study. (A) The normalised expression values of the genes in the

“TF set”. (B) shows the hierarchically clustered heatmap of the genes in the “TF cluster set”. (C)

is a table containing the total number of genes that are differentially up (red) and down (blue)

when comparing two cell types (rows to columns). See S1 Table for information on the genes

used in this analysis.

(EPS)

S3 Fig. Statistical overview of the cis-regulatory elements (CREs). Frequency of the CREs

with a given number of chromatin events (A), size of CREs in (log10 of bp) (B), conservation

scores (C), H3K27ac enrichment (D) and DNaseI-seq enrichment (E). (F) Gene specific mod-

els are built for the TF Cluster set with coCRE (post-coCRE) and without construction of

coCREs (pre-coCRE, see Methods). A gene is considered if p< 0.05 in either of the two mod-

els. For a given gene the predictor with best drop in variance (div, from covariance test

[49,50]) and p values (pv) for each of two models are considered and compared. The differ-

ences in the div and p values, Δdiv and Δpv respectively, were computed for each gene and the

frequencies are plotted as bar charts (lower panel). The logged div and pv for both models for

TF Cluster genes are plotted with lines coloured as given in the legend (upper panel). A +Δdiv
or a–Δpv (red) indicates that the post-coCRE model is better than that of pre-coCRE and a–

Δdiv or a +Δpv (blue) indicates vice versa. A paired t-test shows that post-coCRE models are

significantly better than pre-coCRE models (div: 1.8e-06 and pv: 3.5e-06).

(EPS)

S4 Fig. Gene expression models for the genes in the TF set. The gene-specific models show-

ing the chosen coCREs and singleton CREs that are most predictive of the transcription fac-

tor’s gene expression profile. The method of generating the network and annotating the nodes

and the edges is same as Fig 2A. S3 Table contains all the relevant details of the models and the

CREs shown here. Please note that not all the TFs have supporting ChIP-seq data (Table 1). If

a TF does not have ChIP-seq data in a given cell type, the value in that histogram is zero (see

also Fig 2A)

(EPS)

S5 Fig. Comparison of CREs/coCREs of key genes with known enhancer datasets. The

genome browser snapshot for the tag density tracks and the datasets of known enhancers are

generated similar to Fig 1D. The overlap between chosen (co)CREs (red bar below the density

tracks) for Spi1 (A), Scl/Tal1 (B) and Erg(C) with Schütte et al. (blue and purple bars) are

shown. (D) Browser snapshot showing enhancers predicted by JEME in the Hematopoietic

Progenitors (HP) in blue, alongside the tested regions investigated by Schütte et al. in green

and dark red, and CREs/coCREs selected by our method in red. (E) Overlap of predicted CREs

of our method, and JEME, with Schütte et al (active).

(EPS)

S6 Fig. Experimental testing of predicted enhancer for Nfe2. (A) Gene expression profile of

Nfe2 and chromatin accessibility profile of the predicted enhancer (inset). (B) Chosen CRE

containing the predicted enhancer is highlighted as transparent cyan box. (C) Reporter gene

investigation of the enhancer activity.

(EPS)
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S7 Fig. Network parameters for the GRNs. Network parameters such as the degree (A),

Betweenness centrality (B) and Neighbourhood connectivity (C) for the key genes (TF set)
(left) and all the genes (right) in the TF Cluster set. CRNs (yellow) and CENs (black) are gener-

ated as described in Methods section. (D) The co-expression networks (CEN) of genes in the

TF set. The edges are drawn if the correlation coefficients (spearman) of GEP between two

genes were in the top 25%. (E) Comparison of p values generated by the covariance test (covT-

est) and those from GEP randomisation for predictive models of the indicated TF genes.

(EPS)

S8 Fig. Covariance tests’ significance values of CREs and coCREs in gene-wise models.

The–log2P (adjusted) cutoffs on the x-axis and the total number of CREs or coCREs with the–

log2P (adjusted) better than a given cut off for all the gene models with at least one β6¼0 in blue

and only for the significant models in red i.e. with q� 0.05 (Table 2), on the y-axis.

(EPS)
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