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modelling of collective behaviour without the
maths

James A. R. MarshallID*, Andreagiovanni ReinaID, Thomas Bose

Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

* james.marshall@sheffield.ac.uk

Abstract

Collective behaviour is of fundamental importance in the life sciences, where it appears at

levels of biological complexity from single cells to superorganisms, in demography and the

social sciences, where it describes the behaviour of populations, and in the physical and

engineering sciences, where it describes physical phenomena and can be used to design

distributed systems. Reasoning about collective behaviour is inherently difficult, as the non-

linear interactions between individuals give rise to complex emergent dynamics. Mathemati-

cal techniques have been developed to analyse systematically collective behaviour in such

systems, yet these frequently require extensive formal training and technical ability to apply.

Even for those with the requisite training and ability, analysis using these techniques can

be laborious, time-consuming and error-prone. Together these difficulties raise a barrier-to-

entry for practitioners wishing to analyse models of collective behaviour. However, rigorous

modelling of collective behaviour is required to make progress in understanding and apply-

ing it. Here we present an accessible tool which aims to automate the process of modelling

and analysing collective behaviour, as far as possible. We focus our attention on the general

class of systems described by reaction kinetics, involving interactions between components

that change state as a result, as these are easily understood and extracted from data by nat-

ural, physical and social scientists, and correspond to algorithms for component-level con-

trollers in engineering applications. By providing simple automated access to advanced

mathematical techniques from statistical physics, nonlinear dynamical systems analysis,

and computational simulation, we hope to advance standards in modelling collective behav-

iour. At the same time, by providing expert users with access to the results of automated

analyses, sophisticated investigations that could take significant effort are substantially facil-

itated. Our tool can be accessed online without installing software, uses a simple program-

matic interface, and provides interactive graphical plots for users to develop understanding

of their models.
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Introduction

Collective behaviour models, in which individuals interact and in doing so change state,

describe a large variety of physical, biological, and social phenomena. One particularly general

formulation is that of reaction kinetics, developed to describe the time evolution of chemical

reactions, but also able to describe networks in molecular biology (e.g. [1]), collective beha-

vioural phenomena such as decision-making in animal groups (e.g. [2]), demographic and eco-

logical models such as predator-prey dynamics (e.g. [3]), epidemiological models (e.g. [3]), and

social behaviour in human groups, such as opinion dynamics and economics (e.g. [4]). The

generality of the reaction kinetics formalism is demonstrated by the fact that many of the afore-

mentioned processes, although apparently quite different, are in fact described by the same

dynamical equations; for example, the famous Lotka-Volterra equations were simultaneously

developed in the description of a chemical reaction, and predator-prey dynamics [5, 6].

Modelling collective behaviour is essential to develop understanding, yet mathematical and

computational modelling are skills than can be found in some disciplines much more than

others. To understand commonalities and analogies across disciplines it would be beneficial to

ensure a consistent standard of modelling is reached across all. However, it is unreasonable to

expect all disciplines to ensure the same standard of mathematical training in their practition-

ers. Reaction kinetics have the advantage that they describe observations of a system in a very

natural way, indeed the very way that experimental scientists tend to record those interactions.

Reaction kinetics can also be transformed into mathematical equations according to a variety

of procedures. The level of description attainable may vary, however. In their simplest form,

mathematical models as Ordinary Differential Equations will assume infinitely large, well-

mixed populations; this mean-field approach ignores fluctuations in subpopulation sizes due

to the stochastic effects that small populations entail, and also ignores spatial heterogeneity

and attendant sources of noise. Yet ODEs are analytically most tractable, and so enable general

insights to be developed into the behaviour of an idealised version of the system of interest. By

introducing finite population effects, noisy fluctuations around the mean-field solution can be

studied; these can be approximated analytically, through the application of techniques from

statistical mechanics, or numerically through efficient and probabilistically correct simulation

of the Master Equation, which gives the continuous-time change in the probability density

over the possible states of the system. These approaches are still idealisations, in that they

ignore noise due to spatial effects, but they retain some tractability. Finally, one may analyse

spatial sources of noise, by embedding a finite population in a spatial environment, such as a

network, or a 2-dimensional plane or 3-dimensional volume. While in some cases analytic

results may be possible, particularly in the case of networks, in general numerical simulation is

required, sometimes referred to as Individual-Based Simulation or Agent-Based Simulation.

This approach is therefore the most realistic, while also the least analytically tractable. In

understanding the collective behaviour of some real-world system, therefore, the approach is

generally to understand the simplest model of the system, then progressively introduce more

realistic sources of noise in order to see if that behaviour is changed in important ways.

Taking all of the above points into consideration, we here present a Multiscale Modelling

Tool, intended to simplify as much as possible the application of analytic and numerical tech-

niques to descriptions of simple collective behaviour systems. The tool has the following objec-

tives, and in the remainder of the paper we describe how these are achieved:

1. enable non-modellers to describe collective behaviour systems intuitively

2. enable a variety of analyses to be applied easily to such systems, accounting for increasingly

realistic sources of noise
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a. infinite-population non-spatial noise-free dynamics

b. non-spatial finite-population noisy dynamics

c. spatial finite-population noisy dynamics

3. enable interactive exploration of analysis results

4. enable expert-level access to analysis results

5. minimise overheads for installation and use of the software

Design and implementation

MuMoT (Multiscale Modelling Tool) is written in Python 3 [7] and designed to be run within

Jupyter notebooks [8]. This enables MuMoT to be used in interactive notebook sessions using

widgets, with explanations written in Markdown and LATEX to develop interactive computa-

tional documents, particularly suited to communication of results and concepts in research

or teaching environments. A Jupyter notebook server can be deployed with a MuMoT installa-

tion to allow users to work through a standard web browser, without the need to install client-

side software, facilitating access and uptake; at the time of writing, the interactive MuMoT

user manual can be executed in this mode via Binder [9] (see [10]). Despite being primarily

designed for interactive use, MuMoT uses a variant of the Model, View, Controller design pat-

tern [11] enabling a separation between model descriptions, analytic tools applied to models,

and interactive widgets for manipulation of analyses; this enables MuMoT to be used non-

interactively, for example with routines called directly from user code.

As MuMoT runs in Jupyter notebooks the user enters simple commands in notebook cells.

Models are generated from intuitive textual descriptions, or from mathematical manipulation

of previously-defined models, and most commands applicable to models result in interactive

graphical output. To enable users to concentrate on presenting the key relevant concepts, users

can partially or totally fix parameters in the resulting controllers, and have single controllers

connected to multiple model views, with nesting of views if desired [10].

MuMoT’s implementation, testing, and documentation seeks to adhere to the best stan-

dards for scientific software deployment [12, 13].

Specifying collective behaviour models

Users describe models as simple textual rules, standard in the description of reaction kinetics.

We refer to individuals as reactants which can be, for example, different classes of individuals

as in the case of chemical molecules or members of different biological species, or individuals

having different changeable states as in the case of voter models, or robot swarms. Rules

describe which reactants interact with each other, the resulting reactants, and the rate at which

such reactions occur. For example, Fig 1 shows the description of a model of collective deci-

sion-making in honeybee swarms [2, 14] within MuMoT, and how this is parsed into a mathe-

matical object.

Models can also be created from the mathematical manipulation of other models; for exam-

ple, it can be convenient to note that the frequency of one of the reactants can be determined

from the frequencies of the remaining reactants, and the total system size, in any closed system

where no reactant can be created or destroyed:

model2 = model1.substitute(’U = N - A - B’)
and to redefine rates in terms of other quantities, such as the qualities of potential nest sites in

this example:
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model3 = model2.substitute(’a_A = 1/v_A, a_B = 1/v_B,
g_A = v_A, g_B = v_B, r_A = v_A, r_B = v_B’)
or even in terms of the mean and difference between those qualities [2, 14]:

model4 = model3.substitute(’v_A = \mu + \Delta/2, v_B = \mu -
\Delta/2’)

Once parsed, a model exists as a mathematical object ready for analysis, as can be seen by

asking to see the Ordinary Differential Equations (ODEs) that describe its time evolution:

model4.showODEs()
which results in the following system of equations:

dA

dt
ؔ �ABs þ A

D

2
þ m

� �

�A � B þ Nð Þ � A
D

2
þ m

þ D

2
þ m

� �

�A � B þ Nð Þ;

dB

dt
ؔ �ABs þ B �D

2
þ m

� �

�A � B þ Nð Þ � B

� D

2
þ m

þ �D

2
þ m

� �

�A � B þ Nð Þ:
ð1Þ

Eq 1 have been automatically derived from the rule-based description of the model we pro-

vided. Two techniques can be used to derive these ODEs, either a mass action heuristic similar

to the one a mathematician would use to derive the ODEs, or a more involved statistical phys-

ics approach described in section ‘Analysing noisy behaviour’ (e.g. [15]). Both, however, have

the same result.

Fig 1. Specification of a collective behaviour model.Amodel is described using simple textual rules denoting interactions between reactants in
the system, and rates and which they are transformed into new combinations. Parsing this model description automatically results in a
mathematical model object ready for analysis.

https://doi.org/10.1371/journal.pone.0222906.g001
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Once a model has been parsed, a variety of analytic and numerical techniques can be

applied to it. Many of these result in interactive graphical displays of the analysis, which users

can manipulate to explore their model. For example, Fig 2 shows the result of performing a

numerical integration on the model of Eq 1 within the notebook environment, using the

integrate() command. Although not described in this paper, parameters can be fixed as

desired to focus on a particular set of free parameters (partial controllers), and multiple views

on the same model can be manipulated via a single controller (multicontroller). Users can also

bookmark interesting parameter combinations to reproduce subsequently, and save the results

from some views for analysis in external software packages. Such devices allow researchers and

teachers to focus exploration and exposition of important concepts. Full details are given in

the online user manual [10].

Analysing noise-free infinite population behaviour

The most analytically tractable means of analysing collective behaviour are typically those that

assume infinite populations; in this mean-field approach sources of intrinsic noise due to finite

population effects are neglected, and space is also ignored. Thus understanding the noise-free

Fig 2. Interactive manipulation of a model view via a controller.Most model analysis commands result in an
interactive graphical display of that analysis on the model. Users can explore and visualise the effects of changing free
model parameters, and other analysis-specific parameters, through manipulating interactive controls.

https://doi.org/10.1371/journal.pone.0222906.g002
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dynamics of a collective behaviour system is normally the most fruitful starting point in deal-

ing with any new system.

Numerical integration of ODEs and phase portraits. The simplest way to approach the

noise-free dynamics of a system is often to integrate the ODEs that describe it. To achieve this

MuMoT provides the integrate()method, which makes use of the odeint interface to

numerical integrators implemented in Python’s SciPy package scipy.integrate [16].

Solutions are displayed as interactive graphical output (see for example Fig 2). Plots can be pre-

sented either in terms of absolute numbers, or of population proportions (i.e. the number of

‘particles’ for each reactant divided by the system size at t = 0).

The dynamics of a MuMoT model can also be studied by means of a phase plane

analysis. To visualise the model’s trajectories in a phase portrait the methods stream()
and vector() can be applied. Both methods depict phase planes representing the time

evolution of the system as a function of its state; in a vector plot arrows give the direction in

which the system will move, and their lengths show how fast, whereas in a stream plot lines

show the average change of the system over time in finer resolution, and their shading repre-

sents the speed of change. It is also possible to calculate and display fixed points and noise

around these; the corresponding theory and computations are introduced below. Stream

plot examples are shown in Fig 4. More detailed explanations can be found in the online user

manual [10].

Bifurcations. Nonlinear dynamical systems may change behaviour qualitatively if model

parameters are varied. To detect such transitions between different dynamic regimes MuMoT

implements basic bifurcation analysis functionality by integrating with PyDSTool [17].

MuMoT’s method enabling bifurcation analysis is called bifurcation(). Currently avail-
able is the detection of branch points (BPs) and limit points (LPs) of one-dimensional and two-

dimensional systems; remember that a three-dimensional system may be reduced to a two-

dimensional one using MuMoT’s substitute()method. Detectable bifurcation points

in MuMoT belong to the class of local codimension-one bifurcations. For example, BPs are

observed for pitchfork bifurcations such as the one shown in Fig 5 (left panel). Saddle-node bifur-

cations are typical LPs (Fig 5 (middle and right panels)). For two-dimensional systems it may be

desirable to directly compare the behaviour of both dynamical variables (or state variables as we

call them within MuMoT) depending on a critical parameter in the same two-dimensional plot,

where the bifurcation parameter is plotted on the horizontal axis. MuMoT allows users to plot

single reactants as response variables, but also sums or differences of reactants, as illustrated in

Fig 5 (left panel). For more information on the usage of bifurcation() we refer the reader

to the online user manual [10].

When executing the bifurcation()method the following computations run behind

the scenes. For a given parameter configuration, which includes the choice of the initial

value of the bifurcation parameter, MuMoT attempts to determine all stationary states. If

this is successful, MuMoT then starts the numerical continuation of each branch on which it

found a stable fixed point. In case no stable fixed point could be detected, MuMoT numeri-

cally integrates the system using the initial conditions, and uses the final state at the end of

the numerical integration as the starting point for the bifurcation analysis. If LPs or BPs

were found those will be displayed and labelled in the bifurcation diagram. When MuMoT

finds a BP it then tries to automatically start another continuation calculation along the

other branch that meets the current branch at the BP. All curves that could be detected are

displayed together at the end of the automated bifurcation analysis, colour-coded and shown

with different line-styles to reflect the underlying stability properties of the corresponding

stationary states. Fig 5 shows examples of different types of bifurcations that can be studied

with MuMoT’s bifurcation()method.

Multiscale Modelling Tool: Mathematical modelling of collective behaviour without the maths

PLOSONE | https://doi.org/10.1371/journal.pone.0222906 September 30, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0222906


Analysing noisy behaviour

Any real-world system is subject to noise, hence the next step in analysing a collective behav-

iour system is to examine deviations from the mean-field solutions of the model under such

noise. There are two primary sources of noise, that due to finite population size, and that due

to spatial distribution of the population; MuMoT enables analysis of both.

Finite-population noise. We start with intrinsic noise, due to finite population size. In

any finite system the number of interactions fluctuates around an average value and hence so

do the numbers of agents in the states available. The following derivation is based on the classi-

cal textbook by van Kampen [18]. In analogy to a typical chemical reaction let us consider a

system of interacting agents Xk with k = 1, 2. . ., K being the different states agents might be in.

Here X denotes the type of agent and the state represented by index k may be the commitment

state. For example this could be a honeybee advertising a potential new nest site. The number

of agents in state k is denoted nk; when agents interact the numbers in any state k may change.

Using integer stoichiometric coefficients denoted ċk and Čk the change of the system’s state fol-

lowing interactions may be described by

a1X1 þ a2X2 þ � � � ! b1X1 þ b2X2 þ � � � ; ð2Þ

where the left-hand side characterises the state before the interaction (reaction) and the right-

hand side the state after the interaction (reaction). All interaction processes are affected by the

total number of agents. To account for this, we introduce the system size V as a formal (auxil-

iary) parameter that is necessary for the following derivation.

The Master equation. In order to sufficiently describe our system of interest, we need to

compute the averaged macroscopic numbers and we also need to quantify the fluctuations

around these averaged quantities. This may be achieved by means of the chemical Master

equation, which can be written as follows [18]:

@Pðfnkg; tÞ
@t

¼
X

i

rðiÞþ V
Y

k

Ea
ðiÞ
k
�b

ðiÞ
k

k � 1

 !

Y

j

ððnjÞÞa
ðiÞ
j

V
a
ðiÞ
j

0

@

1

A Pðfnkg; tÞ

0

@

þrðiÞ� V
Y

k

Eb
ðiÞ
k
�a

ðiÞ
k

k � 1

 !

Y

j

ððnjÞÞ
b
ðiÞ
j

V
b
ðiÞ
j

0

@

1

A Pðfnkg; tÞ

1

A ;

ð3Þ

where E is the step operator ([18], chapter VI, Eq 3.1), ∑i represents the sum over all reactions

i, and rate superscripts (i) denote the rates for reaction i. The first term in the sum on the

right-hand side represents reactions as in Eq (2) (proportional to a constant interaction rate

rðiÞþ ) and the second term their inverse reactions (proportional to constant interaction rate rðiÞ� ).

Note that the inverse reaction does not always exist. If it exists, in a MuMoT model definition

this would simply be written as an expression like the one in Eq (2), i.e. the convention used

in MuMoT strictly follows Eq (2). For example, see input cell In[2] in Fig 1; there are also

several examples in the online user manual to show how this works [10]. The expression

ððnjÞÞaj ¼ nj!=ðnj � ajÞ! is introduced as an abbreviation. Eq (3) describes the temporal evolu-

tion of the joint probability distribution that the system under study is in state {nk} at time t.

Here, {nk} summarises all agents’ individual states as a set. To express changes following inter-

actions we make use of step operators Ek which increase or decrease the number of agents

in state k [18]. MuMoT automates the derivation of Eq (3) using the initial model definition

according to Eq (2). The Master equation can be accessed as a symbolic equation object for

further analysis by expert users, if so desired.
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van Kampen expansion of the Master equation. In general, there are only very few

examples for which Eq (3) can be solved exactly. In what follows we describe an approximation

method known as system size expansion or van Kampen expansion that yields analytical expres-

sions to approximate the solution of a Master equation. However, here we only introduce

the main idea of the expansion method and refer to van Kampen’s textbook [18] for further

details. Let FXk
¼ Xk=V denote the proportion of the population Xk given the system size V .

Note that F is a reserved symbol in MuMoT used to express population proportions—the ana-

logue to concentrations of reactants in a chemical reaction. The probability to observe the sys-

tem in state nk has a maximum around the macroscopic variable FXk
with a deviation around

that maximum of order
iiiii

nk

p �
iiii

V
p

[18]. We may now replace the number nk by a new ran-

dom variable, say ZXk
, according to [18]

nk ¼ V FXk
þ

iiii

V
p

ZXk
: ð4Þ

This also means that the probability distribution P needs to be rewritten in the new variables,

i.e. Pðfnkg; tÞ ! PðfZXk
g; tÞ. Accordingly, the step operators E in Eq (3) are expanded to

yield [18]

E ¼ 1þ 1
iiii

V
p @

@ZXk

þ 1

2V

@2

@Z2Xk

þ � � � : ð5Þ

Calculating the time derivative of PðfZXk
g; tÞ by applying Eqs (4) and (5) to Eq (3) it is possible

to get the equation for PðfZXk
g; tÞ expressed in terms of different orders of the systems size

V (note that the ZXk
are time-dependent viaFXk

in Eq(4)). As a result, there are large terms

/
iiii

V
p

which should cancel, yielding the macroscopic equation of motion forFXk
. This corre-

sponds to directly deriving the macroscopic ODE for FXk
from the underlying reaction by

applying the law of mass action. The next highest order in this expansion is/ V 0. Collecting

all terms/ V 0 and neglecting all other terms (� OðV�1=2Þ) yields a Fokker-Planck equation
with terms linear in ZXk

(linear noise approximation). Although we do not attempt to solve

Master equations or their approximations in the form of linear Fokker-Planck equations in

MuMoT, we utilise the linear Fokker-Planck equation to compute analytical expressions that

represent fluctuations and noise correlations, by deriving equations of motion for first and sec-

ond order moments of PðfZXk
g; tÞ according to

@

@t
hZXi

iðtÞ ¼
Z

dđ ZXi

@

@t
PðfZXk

g; tÞ ;

@

@t
hZXi

ZXj
iðtÞ ¼

Z

dđ ZXi
ZXj

@

@t
PðfZXk

g; tÞ ;
ð6Þ

where dđ ¼ dZX1
� � � dZXK

, and @P/@t represents the linear Fokker-Planck equation. Both van

Kampen expansion and derivation of the linear Fokker-Planck equation can be readily per-

formed in MuMoT. In addition, in MuMoT explicit expressions for first and second order

moments following from Eq (6) may be derived. Furthermore, MuMoT can attempt to obtain

analytical solutions for these equations in the stationary state.

All mathematical procedures concerning the Master equation and Fokker-Planck equation

make extensive use of Python’s SymPy package [19].

Other methods to study noise in MuMoT. Making use of MuMoT’s functionality

described in the previous paragraph, it is possible to compute and display the temporal
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evolution of correlation functions hZXk
ðtÞ ZXj

ð0Þi; examples of how to do this are given in the

online user manual [10]. Noise can also be displayed in stream and vector plots; if requested

then MuMoT tries to obtain the stationary solutions of the diagonal elements of the second

order moments and then project these onto the direction of the eigenvectors of available stable

fixed points of the macroscopic ODEs. If the system is too complicated and MuMoT cannot

find an analytical solution, noise may be calculated by principled numerical simulation, as

described below.

Stochastic simulation. The Master equation of Eq (3) can be very difficult to solve for

even very simple systems, therefore most studies resort to the complementary approach of

numerical simulations [20]. Gillespie proposed a probabilistically exact algorithm for simulat-

ing chemical reactions called the stochastic simulation algorithm (SSA) [21]. Each simulation

computes a stochastic temporal trajectory of the state variables from a given user-defined ini-

tial condition @P({nk}; 0) for a user-defined maximum time T. Averaging various trajectories

gives an approximation of the solution of Eq (3) (for a given @P({nk}; 0)) that increases in accu-

racy with the number of simulations. MuMoT implements the SSA via the command SSA().
The user can run a single simulation to generate a single temporal trajectory, or otherwise run

several simulations and aggregate the data in a single plot. The user can visualise the entire

temporal trajectory (in a plot similar to Fig 3), or the final population distribution @P({nk}; T)

in the form of either a barplot or as points in a 2-dimensional space plane (in which the two

axes are state variables). Multiple trajectories can be aggregated in standardised ways of dis-

playing probability distributions, e.g., in the 2-dimensional space plane, simulation aggregates

are visualised as ellipses centred on the distribution mean and with 1-σ covariance sizes (e.g.

see the green ellipse in Fig 4(bottom panels)). This aggregate visualisation can be superim-

posed on to stream and vector field plots when requested, and if Eq (3) cannot be analytically

solved by MuMoT, as discussed above.

Spatial noise. MuMoT also enables the study of the effects of spatial noise on a model.

Including spatial noise relaxes the sometimes simplistic assumption of a well-mixed system in

which interactions between any group of reactants can always happen, at rates proportional to

the product of their relative frequencies in the population. Instead, each reactant has a set of

available reactants with which it can interact at each timestep. The set of possible interactions

Fig 3. Numerical integration of the Brusselator equations. The Brusselator equations ([3], p.253) exhibit either stable (left) or oscillatory (right)
dynamics according to the parameter values selected. Parameter sets:Fċ = FČ = ġ = Ď = č = ξ = 2.0,FXt(0) = 1.0, system size = 10 (left),Fċ = ġ = Ď = č = ξ
= 2.0,FČ = 5.5,FXt(0) = 1.0, system size = 10 (right).

https://doi.org/10.1371/journal.pone.0222906.g003
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corresponds to the system’s interaction topology, which the user can select among a set of stan-

dard graph structures. Graphs are handled by MuMoT through the functionalities offered by

the NetworkX library [22] which allows advanced users to easily add new topologies. In the

first MuMoT release, the available topologies are the complete graph, the Erdös–Rényi random

graph [23], the Barabási–Albert scale-free network [24], and the random geometric graph [25].

The latter is constructed by locating at random uniform locations the reactants in a square

environment with edge length 1, and allowing interaction between two reactants when their

Euclidean distance is less than or equal to a user-defined distance. The topology of the random

geometric graphs can be static or time-varying. The latter is implemented by letting each reac-

tant perform a correlated random walk in the 2-dimensional environment and recomputing

the topology each time based on the new distances between reactants.

Spatial noise is difficult to compute analytically in an automatised way, therefore MuMoT

computes it numerically via individual-based simulations. Each reactant is simulated as an

agent which probabilistically interacts at synchronous discrete timesteps with the available

Fig 4. Phase portraits with computed fixed points and noise.Upper-left: oscillatory dynamics in the Lotka-Volterra
equations ([3], p.79) (parametersFA = ċ = Č = č = 2.0). Upper-right: limit cycle in the Brusellator ([3], p.253)
(parameters Fċ = ġ = Ď = č = ξ = 2.0,FČ = 5.5). Lower-left: global attractor with isotropic noise in the Brusellator ([3],
p.253) (parameters Fċ =FČ = ġ = Ď = č = ξ = 2.0, system size = 10). Lower-right: co-existence of two stable attractors in
the honeybee swarming model [2], with anisotropic non-axis-parallel noise (parameters Δ = 0.0, μ = 3.0, s = 10.0,
system size = 20, runs = 100). Line shading indicates speed of flow, with darker representing faster. Fixed points are
denoted as stable (dark solid green circle), saddle (hollow blue circle), or unstable (hollow red circle). Light green
ellipses represent 1-σ noise around stable fixed points.

https://doi.org/10.1371/journal.pone.0222906.g004
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reactants. The agent’s behaviour is automatically implemented from the model’s reaction

kinetics as a probabilistic finite state machine following the technique proposed in [26]. Along

with the agents’ behaviour, MuMoT automatically sizes the timestep length to match the time-

scale with the population-level descriptions (e.g. ODEs and Master equation). This feature

can be particularly convenient if the user aims at a quantitative comparison between model

description levels. Similarly to SSA simulations, the user can select to run individual simula-

tions or to aggregate results from multiple independent simulations to compute statistical

distributions.

Results

All results can be reproduced using the MuMoTpaperResults.ipynb Jupyter notebook

[10].

Numerical integration

To illustrate the numerical integration functionality of MuMoT we repeat analyses of the Brus-

selator equations ([3], p.253) in Fig 3. The equations have two dynamical regimes, one with

a single globally stable attractor when Fb � F
2

a
(Fig 3 (left)), and one in which a stable limit

cycle exists when Fb > F
2

a
(Fig 3 (right)).

Phase portraits with fixed point and noise calculations

We illustrate the phase portrait functionality of MuMoT in Fig 4 by repeating analyses of a

variety of equation systems: the classical Lotka-Volterra equations ([3], p.79), the Brusellator

equations ([3], p.253), and a model of collective decision-making by swarming honeybees [2,

14]. These systems can exhibit a variety of dynamics including: oscillations (Fig 4 (upper-left)),

unstable fixed points with limit cycles (Fig 4 (upper-right)), globally stable attractors (Fig 4

(bottom-left)), and stable attractors co-existing with saddle points (Fig 4 (bottom-right)).

When stable fixed points are present MuMoT can calculate or compute the equilibrium noise

around them, dependent on system size (Fig 4 (bottom)); this can be either isotropic (Fig 4

(bottom-left)), or anisoptropic and/or non-axis-parallel (Fig 4 (bottom-right)). This latter case

is particularly interesting because the correct noise around the fixed point may differ substan-

tially from simply adding Gaussian noise to the dynamical equations.

Bifurcation analysis

MuMoT’s bifurcation analysis functionality is illustrated through reproducing a number of

bifurcation analyses [14] of the honeybee model presented above [2] (Fig 5). These reveal con-

ditions under which the dynamics exhibit: (i) a pitchfork bifurcation (Fig 5 (left)), a sample

post-bifurcation phase portrait for which is presented in Fig 4, (ii) an unfolding of the pitch-

fork bifurcation (i.e. saddle-node bifurcation) (Fig 5 (centre)), and (iii) a hysteresis loop (Fig 5

(right)). These can be compared to figures 5(i)-(iii) of [14].

Finite population and spatial numerical simulation

MuMoT can be used to perform a variety of spatial numerical simulations, illustrated in Fig 6

for the honeybee swarming model introduced above [2, 14]. Non-spatial finite-population

simulation reproduces the statistics of deadlock breaking observed in [14] (Fig 6 (left)). Spatial

noise can also be incorporated either by embedding the model in a network (Fig 6 (centre)) or

2d-plane (Fig 6 (right)).
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Derivation of the Master equation and expansion to derive the Fokker-
Planck equation

Here we reproduce the analysis presented in [18] (pp. 244-246) to derive the Master Equation

and Fokker-Planck equation for the following toy model:

ðAÞ !k
X

X þ X !h ; þ ; ð7Þ

The automated analysis results in

@

@t
P X; tð Þؔ Ak

V
ðEop ðX;�1Þ � 1ÞVP X; tð Þ þ hðEop ðX; 2Þ � 1Þ X

V
X � 1ð ÞP X; tð Þ ð8Þ

Fig 6. Numerical simulations of a nonlinear decision-making model.Numerical simulations of the honeybee swarming model [2, 14] given various
sources of noise. Left: finite-population noise effects during symmetry-breaking in a well-mixed model (cf. [14] Movie S1) (parameters Δ = 0, μ = 3.0,
s = 3.0,FUt(0) = 1.0, system size = 50, time = 10, runs = 10). Centre: finite-population and spatial noise effects due to embedding the model in a random
graph. Right: finite-population and spatial noise effects due to embedding the model in a plane, with agents performing correlated random walks; traces
indicate recent agent paths, links indicate current interaction events.

https://doi.org/10.1371/journal.pone.0222906.g006

Fig 5. Bifurcation analysis of a nonlinear decision-making model. Bifurcations of the honeybee swarming model [2, 14]. Left: symmetry breaking in
the two decision populations through a pitchfork bifurcation, with strength of cross-inhibitory stop-signalling s as the bifurcation parameter (cf. [14]
Fig 5i) (parameters Δ = 0.0, μ = 4.0). Centre: unfolding of the pitchfork bifurcation into a saddle-node bifurcation (cf. [14] Fig 5ii) (parameters Δ = 0.1, μ
= 4.0). Right: hysteresis loop with option quality difference Δ as the bifurcation parameter (cf. [14] Fig 5iii) (parameters μ = s = 4.0). Solid black lines
denote stable branches, dashed blue lines denote unstable branches.

https://doi.org/10.1371/journal.pone.0222906.g005
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and

@

@t
P ZX; tð Þؔ FAk

2

@2

@Z2
X

P ZX; tð Þ þ 2F2

Xh
@2

@Z2X
P ZX; tð Þ þ 4FXZXh

@

@ZX

P ZX; tð Þ þ 4FXhP ZX; tð Þ ð9Þ

as expected.

A substantially more complicated example derivation, for the honeybee swarming model of

Eq 1 [2, 14], is presented in S1 Text. This derivation is equivalent to that performed in [2] and

results in the same dynamical equations.

Availability and future directions

MuMoT is available as source code, as a package for Python 3 [27] via PyPI (pypi.python.
org), and as a server-based installation currently exemplified by free-to-use access to the

interactive user manual and other notebooks using the Binder service [9], which requires only

a web browser to use. MuMoT is written in Python 3 and integrates with Jupyter Notebooks

[8] and as such is platform-independent. Non-interactive aspects of MuMoT’s functionality

can also be accessed through using it as a standalone Python package, enabling its modelling

and analysis functionality to be used from within third-party code projects. MuMoT is avail-

able under the GPL licence version 3.0, and makes use of other software available under

the MIT licence. For further details including links to usage information are available at

github.com/DiODeProject/MuMoT/.
Numerous software products have been proposed to perform subsets of the analyses offered

by MuMoT. For instance, several tools offer the possibility to run the SSA and efficiently ana-

lyse reaction kinetics models [28–36]. Similarly, software to analyse mean-field dynamical sys-

tems and perform bifurcation analysis is widely available, e.g. MATCONT for Matlab [37], or

the Dynamica package for WolframMathematica [38]. Linear noise approximations have pre-

viously been implemented as well [32]. Several tools offers software to simulate complex sys-

tems, dynamical networks, and agent-based models [39–41], some of which run as Jupyter

notebooks as MuMoT does [42, 43].

In contrast to the previous solutions, MuMoT combines ease-of-use with a multi-level anal-

ysis that spans from ODEs analysis, to statistical physics approximations, bifurcation analysis,

and SSA and multiagent simulations, integrated within a simple interactive notebook docu-

ment interface. This makes MuMoT particularly appropriate for non-experts to learn to build

models and apply complex mathematical and computational techniques to them, to communi-

cate research results, and to enable students to interactively explore models, and modelling

and analysis techniques.

Future work should focus on integrating MuMoT with other software and standard. For

example, the simple textual input method for MuMoTmodels is very accessible to non-experts,

but precludes more sophisticated use cases. Import and export via interchange formats such

as Systems Biology Markup Language (SBML) [44] would enable users to connect between

MuMoT for general analysis, and external specialist software packages for more detailed analy-

ses; for example StochSS [36] can run the SSA algorithm on cloud infrastructure for larger-

scale computations, and perform parameter sweeps and estimation. Embracing data inter-

change formats will allow MuMoT to take its place as an integral part of the growing ecosystem

of open-source modelling software.
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Supporting information

S1 Text. Sample model analyses. van Kampen expansion and other analyses of the stop-signal

model (Eq 1).

(PDF)
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