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Abstract
Accurate hourly two-metre temperature gridded fields available in near real-time

are valuable products for numerous applications, such as civil protection and energy

production planning. An analysis ensemble of temperature is obtained from the

combination of a numerical weather prediction ensemble (background) and in situ
observations. At the core of the flow-dependent spatial interpolation method lies the

analysis step of the local ensemble transform Kalman filter (LETKF). A scaling fac-

tor and a localization procedure have been added to correct for deficiencies of the

background. Each observation is characterized by its own representativeness, which

is allowed to vary in time. We call the method described here an Ensemble-based

Statistical Interpolation (EnSI) scheme for spatial analysis and it has been integrated

into the operational post-processing systems in use at the Norwegian Meteorologi-

cal Institute (MET Norway). The benefits of the analysis are assessed over a 1-year

time period (July 2017–July 2018) and a case-study is presented for a challenging

situation over complex terrain. EnSI gives more accurate results than an interpola-

tion method based exclusively on observations. The analysis ensemble provides a

more informative representation of the uncertainty than a spatial analysis based on

a single-field background. EnSI reduces the number of large prediction errors in the

analysis compared to the background by almost 50%, reduces the ensemble spread

and increases its accuracy.
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1 INTRODUCTION

Near-surface fields of temperature are among the most widely

used products made available by national meteorological

services. In this article, we consider the representation of

instantaneous two-metre temperature sampled at an hourly

rate (or hourly temperature) either for the recent past or as

soon as the temperature observations from a network of auto-

matic weather stations (i.e. in situ measurements) become

available. In Norway, near-surface variables available on a
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real-time basis are used for instance by national civil protec-

tion authorities for the monitoring of floods, avalanches and

landslides (Saloranta, 2012; Skaugen and Onof, 2014; Mag-

nusson et al., 2015) and energy companies for the planning

of renewable energy production. Real-time gridded temper-

ature fields are also important in public weather forecasting

to represent current conditions. For example, the Norwe-

gian Meteorological Institute (MET Norway) uses the gridded

datasets of hourly temperatures on the weather forecast portal

Yr (https://www.yr.no). Our experience is that the estimated

temperature for the current time is an important parameter

for the users and its accuracy affects their confidence in the

products.

This study deals with spatial interpolation because obser-

vations are used to estimate temperature values at unobserved

points on a grid. The main idea of this article is to combine

two-metre hourly temperature gridded fields derived from

numerical model output with the corresponding in situ obser-

vations to achieve a high-resolution product that (a) can serve

real-time applications, (b) is as accurate as observational grid-

ded datasets in data-dense regions, and (c) is as accurate as

numerical model output in data-sparse (or data-void) regions.

Numerical weather prediction (NWP) local area models are

operated by national weather services to serve real-time appli-

cations so the use of their output in our work is a natural

choice. In addition, NWP models often provide ensemble

output. At any observation time, our spatial interpolation

scheme considers as its background the two-metre tempera-

ture ensemble forecast valid at that observation time (i.e. just

1 h) and returns an analysis ensemble adjusted by taking into

account the observations.

The core of our statistical interpolation is based on

the analysis step of the filtering problem typical of the

state-estimation theory. The prediction step is ignored

because it is not applicable to our problem. An excellent

overview of linear filters and how they are usually formulated

in atmospheric sciences can be found in the recent review

paper by Carrassi et al. (2018). A brief overview of the rele-

vant literature for our work begins with the original papers on

the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961)

and the traditional optimal interpolation (OI: Gandin and

Hardin, 1965) that was developed to combine a climatological

background with meteorological observations in the context

of objective analysis. OI has been used for decades as a data

assimilation technique in NWP (Lorenc, 1986; Ide et al.,
1997) and in oceanography (Kaplan et al., 1997) to combine a

model-derived background with the observations. OI replaces

the Kalman filter background error covariance matrix with

a convenient and constant-in-time approximation. The back-

ground error covariance matrix has usually been modelled

with analytical functions, such as the ones described by Gas-

pari and Cohn (1999). An adaptation of OI to statistical inter-

polation aimed at the production of observational temperature

datasets has been described by Uboldi et al. (2008) and it has

been subsequently used for daily mean temperature over Nor-

way (Lussana et al., 2018b). Equivalent methodologies based

on Kriging have been used by Krähenmann et al. (2011), Frei

(2014), Hiebl and Frei (2016) and Brinckmann et al. (2016)

to obtain daily temperature fields across Europe. As pointed

out by Amezcua and Leeuwen (2014), the analysis step of

the Kalman filter is optimal when “(a) the distribution of the

background is Gaussian, (b) state variables and observations

are related via a linear operator, and (c) the observational

error is of additive nature and has a Gaussian distribution”.

These conditions are generally considered valid for two-metre

temperature, as the widespread application of statistical tech-

niques based on similar assumptions demonstrate (Haylock

et al., 2008; Frei, 2014). OI has been used for the interpolation

of several other variables, both within the context of meteorol-

ogy (Lussana et al., 2009) and outside it (e.g. leaf area index:

Gu et al., 2006). Examples of OI applications to the combi-

nation of numerical model output and independent (i.e. not

used in the data assimilation cycle) in situ observations have

been described for example by: Mahfouf et al. (2007) present-

ing the Canadian Precipitation Analysis (CaPA); Soci et al.
(2016) combining precipitation from regional reanalyses and

in situ observations from gauges; and more recently Crespi

et al. (2019) demonstrating the benefits of the combination

of model data and in situ observations for the reconstruc-

tion of monthly precipitation climatologies in Norway. In the

context of the European project Uncertainties in Ensemble

of Regional Reanalysis (UERRA, uerra.eu), the work pre-

sented by Soci et al. (2016) has been applied to two-metre

temperature, among the other variables, and the gridded fields

have been used for hydrological simulations. The spatial

interpolation methodology developed in UERRA is now oper-

ated as a service by the Copernicus Climate Change Service

(https://climate.copernicus.eu), thus confirming that the com-

bination of model data and in situ observations is a widely

supported approach in atmospheric sciences.

The original contribution of our study compared to the

aforementioned methods is that we consider both the back-

ground and the analysis as ensembles. Ensemble datasets pro-

vide an ideal way to communicate interpolation uncertainty.

NWP output is often available as an ensemble (e.g. Frogner

et al., 2019). Observational gridded datasets begin to be avail-

able in that form too, for instance the newest E-OBS version

is now available as an ensemble dataset (Cornes et al., 2018),

as is the high-resolution spatial interpolation of precipitation

in the Alps described by Frei and Isotta (2019). We call the

method described here an Ensemble-based Statistical Inter-

polation (EnSI) scheme developed for spatial analysis. The

analysis steps of the Ensemble Kalman filter (Evensen, 2003)

and of the Local Ensemble Transform Kalman filter (LETKF:

Hunt et al., 2007) have been used to transform the background

into the analysis ensemble. The spatial interpolation scheme

http://www.yr.no
http://climate.copernicus.eu
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is flow-dependent as the forecast-error covariances are shaped

by the background ensemble. A scaling factor has been intro-

duced to adjust for deficiencies of the background ensemble.

The in situ observations have been characterized individually

by a station-dependent representativeness error that is also

varying in time.

Statistical spatial interpolation of near-surface field often

borrows methods from data assimilation. Literature on data

assimilation is vast, and here we may refer to the classical

books by Daley (1993) and Kalnay (2003). As an example

of intersection between the two, the calculation of chapter 5

of Kalnay (2003) can be used to derive the OI scheme used

by Uboldi et al. (2008). In this regard, it is worth spending

a few words on the terminology used in spatial interpola-

tion. A reader more familiar with data assimilation might

get confused by our use of the word “analysis”. In classi-

cal linear filter theory (Jazwinski, 2007), the analysis is the

best estimate of the unknown true state and it is obtained

combining a first-guess, or background field, with the obser-

vations. In data assimilation, the word analysis also indicates

the process aimed at obtaining the initial conditions to run

a numerical model, making the analysis a prerequisite for a

weather forecast. In this article, our point of view is closer to

that of the classical linear theory. The state vector contains

a single meteorological variable (i.e. two-metre temperature)

over a two-dimensional grid in terrain-following coordinates.

The analysis is meant to be an estimate of the true state of

two-metre hourly temperature based on the combination of

model data and observations.

The structure of the article is as follows. Section 2

describes our spatial interpolation method. Then, the method

is implemented and validated using MET Norway's products.

Section 3 presents the NWP model and the observations used.

The evaluation is described in section 4.

2 ENSI, ENSEMBLE-BASED
STATISTICAL INTERPOLATION
FOR SPATIAL ANALYSIS

The mathematical notation used hereinafter is introduced in

appendix A. The spatial interpolation scheme is depicted in

Figure 1. The graph illustrates how the spatial interpolation

method works for three consecutive hours. The unknown tra-

jectory of the true temperature state is represented by the

blue line. The analyses are the estimates of the true state at

the observation time steps obtained by combining the back-

ground ensemble and the observations with a scheme based

on the Kalman filter analysis scheme. In accordance with the

linear filter theory (Jazwinski, 2007), the errors are assumed

to be Gaussian and unbiased. Therefore, the error PDFs are

characterized by the covariance matrices only, because the

error mean values are set to zero. The first guesses from the

background are the ensemble means xb (green triangles). The

F I G U R E 1 Sketch of the spatial interpolation scheme (based on

Carrassi et al. (2018)). The truth is the blue line. The background is the

green line. To avoid confusion, the background ensemble members are

only initially indicated with several green lines, then only the ensemble

mean is shown. Ellipses represent the error covariance matrices

observed values yo (blue circles) are more accurate estimates

of the truth than the background, as shown by the smaller

areas (i.e. uncertainty) associated to the observation error

covariance matrices R compared to the background error

covariance matrices Pb. At a fixed observation time step, the

best estimate of the truth is the analysis ensemble mean xa

(red squares), which is derived from the analysis ensemble Xa.

The analysis constitutes a more accurate and precise estimate

of the truth than the background because xa is closer to the

truth than xb and its uncertainty, represented by the analysis

error covariance matrix Pa, is smaller than the background

uncertainty. Figure 1 has been inspired by similar figures

reported on the review paper on data assimilation by Car-

rassi et al. (2018). Unlike in data assimilation, in our spatial

interpolation method the background is not influenced by the

previous analysis steps of the Kalman filter and, as a conse-

quence, the analyses at different hours are independent from

each other. Eventually, the output of our scheme is the anal-

ysis ensemble Xa, which allows us to compute both xa and

Pa = [1/(k− 1)]AaAaT.

The key point in using a background ensemble is that a

flow-dependent Pb can be included in our scheme. Because

of the limited number of ensemble members, Pb may con-

tain spurious long-distance correlations and to deal with this

issue we have: (a) implemented a gridpoint-by-gridpoint anal-

ysis scheme based on Hunt et al. (2007), where for each grid

point a local domain is defined and only the nearest obser-

vations are considered, and (b) introduced an R localization

technique (Greybush et al., 2011), where the R elements are

multiplied by a distance-dependent function. The localization

used is indicated as “local analysis” by Sakov and Bertino

(2011) and they emphasize that for such a method “the impact

of observations close to the boundary of the local domain is

reduced by artificially increasing its error variance”.
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Considering the generic ith grid point, the local domain

includes only the nearest q observations (q< p). As in Sakov

and Bertino (2011), upper accents have been used to denote

the local version of a variable. The local observation q-vector

is
𝑖

y𝑜 and its q× q error covariance matrix is
𝑖

R. Pb is written

as:

P𝑏 = Δ(𝑘 − 1)−1A𝑏 A𝑏T, (1)

where an ensemble scaling factorΔ is used to adjust for under-

or over-estimation due to deficiencies in the background

ensemble. We opted for a constant Δ that has been manually

optimized (see section 4.1.2). A time- and location-dependent

ensemble scaling would indeed be desirable and it is consid-

ered for future developments. Δ plays a similar role as the

covariance inflation factor used in data assimilation (Li et al.,
2009; Miyoshi, 2011). Note that in order to get Xa it is not

required to explicitly compute the rather big m×m matrix Pb.

The analysis ensemble mean at the grid point and the (local)

error covariance matrix are obtained as per the analysis step

of the standard Kalman filter (Kalnay, 2003):

x𝑎
𝑖 = x𝑏

𝑖 +
𝑖

K𝑖,∶(
𝑖

y𝑜 −
𝑖

Hx𝑏); (2)

𝑖

P𝑎 = (I −
𝑖

K
𝑖

H)P𝑏. (3)

I is the m×m identity matrix.
𝑖

H is the linear observation

operator mapping m-vectors into q-vectors (when applied to

a matrix it is intended to be applied separately to each of its

columns); it consists of a nearest-neighbour interpolation with

an adjustment for elevation differences between stations and

their nearest grid points using a constant near-surface lapse

rate of −6.5 ◦ C/km (i.e. when using the International Stan-

dard Atmosphere defined by the International Civil Aviation

Organization, the temperature decreases at a constant rate of

6.5 ◦ C per km; such an approximation is reasonable also near

the Earth's surface (Brunetti et al., 2014)).
𝑖

P𝑎 approximates

the actual analysis error covariance matrix only in the sur-

roundings of the ith grid point, in the same way as Pb does for

the background error.
𝑖

K is the local gain matrix and by substi-

tuting Equation 1 in the expression for the standard Kalman

gain matrix
𝑖

K = P𝑏
𝑖

H
T
(

𝑖

HP𝑏
𝑖

H
T

+
𝑖

R

)−1

, it is possible

to write:
𝑖

K𝑖,∶ = A𝑏
𝑖,∶

𝑖

Γ𝑎(
𝑖

HA𝑏)T
𝑖

R−1; (4)

𝑖

Γ𝑎 = [Δ−1(𝑘 − 1)I + (
𝑖

HA𝑏)T
𝑖

R−1(
𝑖

HA𝑏)]−1. (5)

I is the k×k identity matrix.
𝑖

HA𝑏 is the q× k matrix

of the background perturbations evaluated at the q station

locations.

The analysis ensemble at the ith grid point X𝑎
𝑖,∶ is obtained

from the equivalence of the following two expressions for
𝑖

P𝑎:

𝑖

P𝑎 = (𝑘 − 1)−1
𝑖

A𝑎
𝑖

A𝑎T, (6)

𝑖

P𝑎 = A𝑏
𝑖

Γ𝑎A𝑏T. (7)

Equation 7 is derived in Hunt et al. (2007) by substitut-

ing Equation 1 into Equation 3. Note that
𝑖

Γ𝑎 is the projection

of
𝑖

P𝑎 onto the ensemble-space of dimension k by the linear

transformations Ab and this enables us to obtain the analysis

ensemble members. Equations 6 and 7 lead to:

𝑖

A𝑎
𝑖,∶ = A𝑏

𝑖,∶ [(𝑘 − 1)
𝑖

Γ𝑎]1∕2, (8)

such that the analysis ensemble is:

X𝑎
𝑖,∶ = x𝑎

𝑖 +
𝑖

A𝑎
𝑖,∶. (9)

As Pb does not explicitly appear in the equations to obtain

the analysis ensemble (i.e. Equations 2, 4, 5, 8), it is natu-

ral to apply an R localization technique. In the assumption of

independent observation errors, the q× q matrix
𝑖

R is diag-

onal and each of its elements has been factorized into the

product of two main factors: (a) an observation-dependent

error variance, and (b) the localization function. The first fac-

tor is defined as the product of 𝜎2
𝑜 , that is the error variance

characterizing the observational network as a whole, and an

observation-dependent correction factor (e.g. cj indicates the

correction factor for the jth observation). 𝜎2
𝑜 is constant in

time and space and its value is optimized as described in

section 4.1.1. The correction factors are introduced so as to

give more weight to representative observations, as described

in appendix B. The second factor, the localization function

𝜌, returns a value for two arbitrary points, e.g. the ith grid

point and the jth observation location identified by the respec-

tive position vectors ri and rj, on the basis of the differences

between selected geographical parameters at those two loca-

tions. The parameters considered are: the horizontal (radial)

distance between the two points d(ri, rj), their elevation dif-

ference z(ri, rj) and the difference between their land area

fractions w(ri, rj). 𝜌(ri, rj) is modelled as:

𝜌(r𝑖, r𝑗) = exp

{
−1

2

[
𝑑(r𝑖, r𝑗)
𝐷ℎ

]2

− 1

2

[
𝑧(r𝑖, r𝑗)
𝐷𝑧

]2
}

⋅ …

[1 − (1 −𝑤min)|𝑤(r𝑖, r𝑗)|]. (10)

Dh and Dz are reference length-scales used to introduce dif-

ferent covariance suppression rates along the horizontal and
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vertical dimensions. wmin sets the minimum value for the

factor related to land area fraction when w(ri, rj) is maxi-

mum (i.e. equals 1). Contrary to the flow-dependent Pb, the

localization function is not related to the atmospheric flow.

Because
𝑖

R−1 appears in Equation 4 and 5 instead of
𝑖

R, it

is more convenient to write:

𝑖

R
−1

𝑗𝑗 = (𝜎2
𝑜 𝑐𝑗)−1 ⋅ 𝜌(r𝑖, r𝑗), (11)

where the two main factors have been separated by the sym-

bol. Note that the localization function 𝜌 in Equation 11

decreases near the boundary of the local domain, therefore the

observation error variance is increased.

3 NWP MODEL AND
OBSERVATIONS

The two-metre air temperature forecasts from the

AROME-MetCoOp (i.e. Meteorological Cooperation on

Operational Numerical Weather Prediction) model for the

Nordic countries (Müller et al., 2017) have been used to

obtain the EnSI ensemble background. In particular, the Met-

CoOp Ensemble Prediction System (MEPS: Frogner et al.,
2019) has been considered in our study. MEPS has been

running operationally four times a day (0000, 0600, 1200,

1800 UTC) since November 2016 at MET Norway and its

ensemble consists of 10 members. The two-metre tempera-

ture fields are available over a regular grid of 2.5 km. The

finer resolution of topography contributes to the improved

two-metre temperature forecast skill of the high-resolution

model compared to the global model. For each analysis,

we use the available MEPS forecast with the shortest lead

time (0–6 h). The forecast fields are downscaled onto a 1 km

grid by using the elevation differences between the 2.5 km

grid and the 1 km grid. To better account for inversions,

the method computes an elevation temperature gradient in

a neighbourhood (15× 15 km2) surrounding the point. A

smaller neighbourhood yields less reliable estimates of the

gradient, while a larger neighbourhood is more likely to

incorporate other temperature gradients not due to eleva-

tion difference. The air temperature from the lowest model

level (approximately 12 m) was used to estimate the gra-

dient as it gave better results compared with using the 2 m

temperature (not shown). The downscaling procedure has

been implemented in the open-source software gridpp (see

https://github.com/metno/gridpp). The choice of a 1 km grid

has been proven useful for several applications over Norway

requiring high-resolution meteorological fields (Saloranta,

2014; Gisnås et al., 2016; Lussana et al., 2018a; 2018b).

The in situ observations come from the hourly two-metre

air temperature measurements collected by the network of

meteorological weather stations directly managed by MET

F I G U R E 2 Terrain map (grey shades, 1× 1 km2 grid) and

station locations over Norway (white dots, stations with more than 90%
of valid data in the period from July 2017 to July 2018). Grid points

over the sea are shown in cyan. In the boxes, two sub-domains are

shown: (a) Oslo Fjord and its surroundings; (b) coastal region in

western Norway. The white lines mark the coastlines. The blue lines are

the contour lines (m a.m.s.l), sub-domain (a) 250, 500, 750 m;

sub-domain (b) 1,000, 1,250 m

Norway. The observations have been quality controlled by

experienced staff and with the help of automatic procedures.

We have opted for not including a check of the observations

against the MEPS temperature fields. In fact, we prefer to

allow for large deviations between model data and obser-

vations because we know that this might happen during

wintertime over complex terrain. The possibility to improve

the temperature fields in those situations is highly significant

for the purpose of this study. By using professional stations

subject to regular maintenance and installed mostly for cli-

matological purposes, we may consider observations as fairly

accurate estimates of actual temperatures in the immediate

surroundings of station locations. As a consequence of the

quality assurance system in place at MET Norway, the rare

gross measurements errors, as defined by Gandin (1988), do

not have a significant impact on the evaluation.

We focus on the Norwegian mainland, as shown in

Figure 2, though MEPS covers a larger domain. The 1 km

topography is also shown, together with the land area fraction.

The white dots mark the stations used for verification. Panel

A shows the Oslo Fjord and its surroundings, an area that is

used in several examples in the following. Panel B shows the

extremely steep elevation gradients along the western Norwe-

gian coast with high mountains just a few kilometres away

from the sea.

https://github.com/metno/gridpp
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Norway with its intricate coastline and complex terrain is

an excellent region for testing spatial interpolation schemes

under challenging conditions. The meteorological stations

have been mainly installed to monitor the weather in cities

and villages, so the network is denser in urban areas. In the

mountainous regions, the digital elevation model can reach

2,000 m but most of the stations are located below the eleva-

tion of 1,000 m. A difference in the station density between

the southern and the northern portion of the domain is also

clearly visible, with a higher density in the south of Norway.

The average distance between a station and its fifth clos-

est station is approximately 50 km in the south and 75 km in

the north. On a regional level, the average distance between

a station and its twentieth closest station is approximately

125 km in the south and 250 km in the north. Ideally, spatial

interpolation would require a denser network of observations

where the temperature variance is larger, in order to get a

fine-scale representation of the temperature field where it

varies the most. However, this is hardly the case in most

situations because of the inherent difficulties in station instal-

lation and maintenance over complex terrain and in remote

areas. As a result, we should expect better performances of

the interpolation methods over urban areas and larger analy-

sis uncertainties over data-sparse areas, such as mountainous

regions.

4 RESULTS AND VALIDATION

The objective of this section is the validation of our method

with real data (section 4.2) and, at the same time, we propose

two procedures for parameter optimization (section 4.1). The

next paragraphs are an introduction to sections 4.2–4.1. First,

we outline the evaluation strategy. Then, the diagnostics used

in both parameter optimization and evaluation are defined.

Next, the OI equations are briefly summarized, since we will

make extensive reference to them. Finally, the OI-based Inte-

gral Data Influence (IDI: Uboldi et al., 2008; Lussana et al.,
2010) for the evaluation of the impact of station density on

the analysis is described.

EnSI has been implemented over Norway for the year-long

period from July 2017 to July 2018 with the optimal param-

eter values found in section 4.1 and reported in Table 1. The

background and the observations used have been described

in section 3. All the available stations have been used for

spatial analysis, while for validation only those stations with

more than 90% of valid data have been considered. Section

4.2.1 describes the EnSI evaluation over the year-long period

and it is mostly based on leave-one-out cross-validation (CV).

EnSI has also been compared against two OI-based analysis

schemes (section 4.2.2): (a) an observations-only OI which

makes no use of NWP model output, and (b) a “classical” OI

using a single field as the background, instead of an ensemble.

These two methods have been used to create ad hoc gridded

T A B L E 1 Optimal values for the parameters of EnSI as

it has been implemented over Norway (section 3)

Dh(km) Dz(m) wmin 𝝈o(◦C) 𝚫

70 200 0.5 1 2

datasets based on the same observational network used for

the EnSI implementation. The seNorge2 spatial interpolation

method (Lussana et al., 2018a; 2018b) has been used to cre-

ate the observations-only gridded dataset (henceforth referred

to as the seNorge2 dataset). Observational gridded datasets

provide accurate data sources in the surroundings of station

locations (Isotta et al., 2014) and their performances degrade

in data-sparse regions (Hofstra et al., 2008). The seNorge2

method is based on the OI scheme described by Uboldi et al.
(2008), which is used here as a reference also for the imple-

mentation of the classical OI (henceforth referred to simply

as OI). The only difference is that seNorge2 estimates the

(pseudo)background field from the observations, while OI

uses an observation-independent background gridded field.

In particular, the EnSI background ensemble mean is used

as the OI background, such that OI and EnSI operate under

comparable conditions. As a final point in the validation, in

section 4.2.3 we have considered a case-study where we inves-

tigate the analysis performance in representing temperature

inversions, that is one of those cases that may lead to large

prediction errors.

Diagnostics can be obtained combining quantities avail-

able after the spatial analysis, such as: observed values; back-

ground and analysis in the observation space. The innovation

(observation-minus-background) statistics are used in section

4.1 for parameter optimization and in section 4.2 as a base

reference to assess the analysis improvements over the back-

ground. The CV-analysis ensemble at a station location is the

analysis ensemble obtained considering all the observations

except the one measured at that location. The analysis resid-

uals (analysis-minus-observation) and CV-analysis residuals

(CV analysis-minus-observation) statistics are used in section

4.1.2 to set the ensemble scaling factor and in section 4.2

as performance indicators. As a matter of fact, the analy-

sis error (analysis-minus-truth) at grid points is the quantity

we would like to study. Since the true temperatures at grid

points are unknown, we base our investigation on CV. In

the comparison between analysis and background, often the

ensemble mean and spread are used instead of the whole

ensemble. In those cases, the residuals are given by the

ensemble means minus the observations. The statistics we

use as verification scores are the mean absolute error (MAE)

and the root-mean-squared-error (RMSE). The first quantifies

average mean absolute deviations, while the second quanti-

fies the associated spreads. As some users are not interested in

small deviations, MAE 1 ◦ C considers only absolute values of

CV-analysis residuals or innovations greater than 1 ◦ C. The
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3 ◦C threshold is used at MET Norway to define a significant

deviation from the observed temperature that undermines the

user confidence in the forecast. For this reason, absolute val-

ues of residuals or innovations greater than 3 ◦C are referred

to as “large errors” and their frequencies of occurrence are

compared to assess the added value of EnSI in reducing the

number of large errors.

OI assumes both the observation error covariance matrix

R (p× p) and the background error covariance matrices B
(m×m) as global and static. H is the linear observation oper-

ator mapping m-vectors into p-vectors (it is implemented as

the
𝑖

H operators of section 2), therefore Hxb is a p-vector. The

B matrix does not appear explicitly in the equations; instead,

the two matrices used are the error covariance between station

locations S = HBHT (p× p) and between grid points and sta-

tion locations G = BHT (m× p). The OI best linear unbiased

estimate can be written as the Kalman filter's analysis step of

Equation 2:

x𝑎 = x𝑏 + G(S + R)−1(y𝑜 − Hx𝑏). (12)

The analysis is shaped by the definitions of R and B. We

assume a diagonal R with an observation error variance 𝜎2
𝑜 ,

that in the following will be related to the error variance char-

acterizing the observational network as a whole introduced

in section 2. Analogously, a constant error variance 𝜎2
𝑏

is

introduced for the background. The background error corre-

lations between points are modelled through the function 𝜌 of

Equation 10, previously introduced as the localization func-

tion. 𝜌 has been used by Lussana et al. (2009) as a correlation

function for spatial interpolation, with the land use instead of

the land area fraction. We can write our assumptions on the

error covariance matrices as:

R = 𝜎2
𝑜 I, (13)

B𝑖𝑗 = 𝜎2
𝑏
𝜌(r𝑖, r𝑗), (14)

such that xa of Equation 12 can be rewritten as:

x𝑎 = x𝑏 + G̃(S̃ + 𝜀2I)−1(y𝑜 − Hx𝑏), (15)

where the error variances do not need to be specified. Instead,

we need to specify the ratio 𝜀2 ≡ 𝜎2
𝑜∕𝜎2

𝑏
. Because we believe

the observations to be, on average, more precise estimates of

the truth than the background, we set 𝜀2 = 0.5. We anticipate

here that in section 4.2.2, both seNorge2 and OI implementa-

tions use the EnSI optimal values of Table 1.

The station density is one of the most important factors to

take into account in evaluating the performances of any spatial

interpolation method. We use IDI as a diagnostic to quantify

the added value of the observational network over the analysis

at an arbitrary point. Cardinali et al. (2004) defined a sim-

ilar diagnostic and named it “degrees of freedom”. IDI has

been used also to evaluate the fit-for-purpose of a distribu-

tion of weather stations (Horel and Dong, 2010). In practice,

IDI is obtained as the analysis in Equation 15 by arbitrarily

assigning the value of 1 to the observations (i.e. correspond-

ing to the maximum amount of information available) and

the reference value of 0 to the background (i.e. basic amount

of information available everywhere). In the vicinity of an

observation, the IDI field is close to 1 whereas for data-void

regions it is 0. Since we use CV to link statistics at station

locations to statistics at grid points, we have introduced the

CV-IDI, that is IDI at a station location obtained without

considering the presence of that station. Note that when IDI

is computed at a station location, its lower bound is always

greater than zero because the station presence adds informa-

tion to the background alone. On the other hand, CV-IDI for

a completely isolated station is equal to zero. Consider the

observational network used for validation, Figure 3a shows

the CV-IDI computed at station locations and Figure 3b shows

the IDI field at grid points. Both IDI and CV-IDI are based

on Equation 15, modified according to the definition of IDI.

The correlations 𝜌 of Equation 14 have been computed with

the EnSI optimal values of Table 1. Because of uneven station

distribution described in section 3, Figure 3a and especially

Figure 3b show that the added value of the observational net-

work over the analysis is limited in complex terrain, where

the elevation differences among nearby grid points are signif-

icant (compared to Dz in Table 1). The bottom-right panel in

Figure 3a shows the close relationship between CV-IDI and

station density, which is here defined as the horizontal dis-

tance between a station and its nearest five stations. IDI at

grid points and CV-IDI at station locations have been divided

into four classes: data-sparse regions have values smaller than

0.45, that corresponds to a distance to the nearest five stations

of approximately 100 km or more; data-dense regions have

IDI greater than 0.85, that corresponds on average to a dis-

tance to the nearest five stations of less than 60 km; then, two

transitional classes have been defined.

4.1 Parameter optimization
4.1.1 Localization
The innovation statistics are used to set the error variance

characterizing the observational network 𝜎2
𝑜 (Equation 11)

and the localization parameters Dh and Dz (Equation 10). 𝜌

requires the specification of a third parameter: wmin. In an

ideal situation of a very dense observational network, one

may consider relying on adaptive estimates for all the param-

eters. This is not the case for our rather sparse network, so

we have opted for a simplification that yields robust estimates

for the more important parameters. The impact of land area

fraction differences on 𝜌 is less dramatic than those of the
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F I G U R E 3 Integral Data Influence (IDI) for the observational network used for evaluation. (a) The CV-IDI at station locations. Different

symbols have been associated to the colours; the box-plot on the bottom-right corner shows the relationship between CV-IDI and the station density.

(b) The IDI at grid points. The colour scales are the same for both panels

other geographical parameters. Eventually, we have manually

set wmin = 0.5 to achieve the desired effect of attenuating the

influence of coastal areas over inland areas and vice versa,

while at the same time avoiding the introduction of sharp

gradients.

The same function 𝜌 is used to define the (static) OI

background error correlations in Equation 14 and to shape

indirectly the background error correlations in EnSI via the

R-localization of Equation 11. B can be thought of as a

time-averaged version of Pb, such that we can write:

S = HBHT = ⟨HP𝑏HT⟩. (16)

The ensemble average ⟨… ⟩ is defined as the average over

the hours in the year-long evaluation period. By averaging

over thousands of cases, the temporal mean in Equation 16

is damping the spurious long-distance correlations which are

present in Pb. That is exactly the task the localization function

carries out on an hourly basis.

The innovation sample covariance matrix is related to the

sum of observation and background error covariance matri-

ces, R and S of section 4, by:

⟨(y𝑜 − Hx𝑏)(y𝑜 − Hx𝑏)T⟩ = R + S. (17)

This equation follows directly from the definitions of errors

(Desroziers et al., 2005). The key point in the optimiza-

tion of the localization parameters is that S is present in

both Equations 16 and 17. The optimization of the match-

ing between the innovation sample covariance matrix, on the

left-hand side of Equation 17, and the sum of R and S, defined

in Equations 13 and 14, allows us to set the values of 𝜎2
𝑜 , Dh

and Dz. In particular, with reference to the innovation sample

covariance matrix: the diagonal elements are used to set 𝜎2
𝑜 +

𝜎2
𝑏
, which is the constant value of all the diagonal elements

of R+ S (it is worth recalling that we impose the constraint

𝜎2
𝑜∕𝜎2

𝑏
= 0.5, as in section 4); the off-diagonal elements are

used to set Dh and Dz. Then, because of Equation 16 we

believe that the same values of 𝜎2
𝑜 , Dh and Dz are also useful

for the EnSI localization function.

The optimal values, as returned by a least-mean-squared

fitting procedure, are (Table 1): Dh = 70 km, Dz = 200 m and

𝜎o = 1 ◦ C. A reference horizontal length scale of Dh = 70 km

coincides with the meso-𝛽 atmospheric scale according to

Orlanski (1975) and Thunis and Bornstein (1996). In Figure 4,

the decrease of the S covariances with the increase of the

horizontal distance between a pair of observation locations is

shown, together with 𝜎2
𝑜 and 𝜎2

𝑏
estimates. Only pairs of points

whose elevation differences are less than 250 m are shown

in the graph. The cloud of empirical points shows a gradual

decrease of the covariances, while the theoretical decrease is

sharper.

The optimization procedure described is ultimately based

on a few subjective decisions. We carried out a sensitivity

analysis on the impact of those decisions. A first experiment

reveals that the optimal values are robust to deviations of

𝜎2
𝑜∕𝜎2

𝑏
from the pre-set value of 0.5: the variations in 𝜎2

𝑜 , Dh

and Dz are of the order of a few per cent from their optimal

values. A second sensitivity experiment has been made where

the stations in the north and in the south of Norway have been

considered separately; also in this case the variations of the

optimal values were not significant. A third sensitivity exper-

iment has been made by replacing the ensemble mean xb in

Equation 17 with the individual ensemble members (i.e. the

columns of Xb). The results were: Dh between 70 and 80 km;

Dz between 200 m and 215 m; 𝜎2
𝑜 between 1 and 1.4 ◦C.

Figure 5 shows the values of the localization function

𝜌(ri, rj) (Equation 10) for a selection of Dh and Dz values.

ri corresponds to the city of Oslo (i.e. the blue point in the

centre of the domain, see Figure 2 sub-domain A) and rj varies
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F I G U R E 4 Interquantile ranges of: the innovation sample

covariances (“empirical” distribution, left-hand side of Equation 17,

light grey); R+S (“theoretical” distribution, right-hand side of

Equation 17, dark grey), when wmin = 0.5, Dh = 70 km, Dz = 200 m,

𝜎o = 1 ◦ C, assuming 𝜎2
𝑜∕𝜎2

𝑏
= 0.5. 𝜎2

𝑜 and 𝜎2
𝑏

are shown as dots on the

vertical axis. Horizontal distance bin width is set to 10 km and it has

been used to compute the interquantile ranges. Only pairs of stations

with absolute elevation differences less than 250 m are shown

over the neighbouring grid points. At the bottom-left corner,

with Dh = 35 km and Dz = 100 m, the localization is more

extreme and only those locations relatively close to Oslo will

have a chance to influence the analysis. On the other hand,

when Dh = 140 km and Dz = 400 m, as it is in the upper-right

corner, the analysis in Oslo would include more information,

thus making its value representative of a larger region. 𝜌(ri, rj)

based on the optimal values in Table 1 is shown in the central

panel.

4.1.2 Ensemble scaling factor
The fixed scaling factor Δ in Equation 1 is used to adjust Pb

so as to obtain an analysis that is possibly sharper than the raw

ensemble background and more accurate. The optimization

aims at reducing the average deviation between CV-analyses

and observations.

Figure 6a shows that the Continuous Ranked Probability

Score (CRPS: Jolliffe and Stephenson, 2012) depends on the

station density even for the background. Since the background

ensemble spread does not depend on the station density (not

shown), it can be concluded that the station network is denser

where the model is performing better (see the black diamonds

in Figure 3). It is worth pointing out that since the statistics for

data-sparse regions are based on a few stations only, it should

be taken more as a rough indication than a robust estimate.

The CRPS (Figure 6a) indicates thatΔ= 5 yields better results

for data-sparse areas, while for data-dense areas the CRPS

has similar values for all the Δ. According to Figure 6b, in

data-dense areas large errors are 30% less likely to occur in

F I G U R E 5 Localization function 𝜌(ri, rj) (Equation 10) for

several values of Dh and Dz (wmin = 0.5). The domain is centred on the

blue dot ri (Oslo, Figure 2a), rj are the grid points within a box of

280 km by 280 km

the CV-analysis residual than in the innovation when Δ is set

to 1 or 2. On the contrary, with Δ = 5 the analysis is less

effective in reducing the occurrence of large errors. Note that

the statistics shown in Figure 6 are based on the differences at

station locations between: (a) CV-analysis residual ensemble

mean and observation, and (b) innovation ensemble mean and

observation.

The optimal value has been set to Δ = 2 (Table 1) as

a trade-off between the need to maximize accuracy of the

ensemble mean and the reliability and resolution of the anal-

ysis ensemble, as summarized in the CRPS score.

An example of how EnSI modifies the patterns of uncer-

tainty in temperature estimation is shown in Figure 7. For

both EnSI and OI the model parameters are set to the val-

ues in Table 1. Even though the example refers to just 1

h of the case-study presented in section 4.2, it helps us to

describe some general properties of EnSI. Figure 7a shows

the background ensemble standard deviation for each grid

point. The background uncertainty is of course independent

of the observational network; the largest uncertainty is for

temperatures on the valley floors. The EnSI analysis ensem-

ble standard deviations are shown in Figure 7b. The analysis

reduces the ensemble spread in densely observed areas, with-

out destroying the spatial pattern of the uncertainty given

by the numerical model. The largest analysis uncertainties

are still on the valley floors, and data-void areas maintain

the same ensemble spread as in the background. Without an

ensemble background but with a single-field background, it

is possible to apply methods such as the OI presented in

section 4. Figure 7c shows the analysis standard deviation at
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F I G U R E 6 CV-analysis residual and innovation ensemble mean statistics as a function of: (a) the scaling factor Δ (Equation 1), and (b)

CV-IDI; based on data from July 2017 to July 2018. (a) shows the averaged Continuous Ranked Probability Score (CRPS) for classes of CV-IDI

(Figure 3). (b) shows the averaged percentage of reduction in the number of large errors when comparing the CV-analysis residual against the

innovation for classes of CV-IDI. A negative reduction indicates an increase in the number of large errors

grid points, which can be obtained as per the analysis step of

the Kalman filter in Equation 3. 𝜎2
𝑜 is obtained as in Eqn (32)

of Lussana et al. (2010), which gives 𝜎2
𝑜 = 0.798(◦C)2. The

analysis uncertainty displayed in Figure 7c depends totally

on the observational network: it is smaller close to station

locations, while it increases up to the maximum value of

𝜎2
𝑏
= 1∕𝜀2𝜎2

𝑜 in data-void areas. According to OI, the tem-

perature estimates on the valley floors are less uncertain

than those on the mountain ridges because valley floors are

better covered by observations. The uncertainty patterns in

Figure 7c are very different from those in Figure 7b, even

though the standard deviations at station locations are rather

small in both figures. The added value of the ensemble is that

the analysis uncertainty is shaped not only by the observa-

tional network but also by the weather, as simulated by the

NWP model.

4.2 Validation
4.2.1 Evaluation over one year of hourly
data
The benefits of the analysis over the background depend on

the observation density (Figure 8), especially for the reduc-

tion of large errors. At grid points where the nearest five

stations are less than 30 km away, the fraction of large errors

is reduced by almost 50%, while the improvements for MAE

and RMSE are between 20 and 25%. MAE 1 ◦ C behaves like

the reduction of large errors, and in data-dense regions the

improvement is over 40%. The analysis improvement over the

background gradually decreases with decreasing station den-

sity; nonetheless the analysis scores better than background

even at points where the distance to the five nearest stations

is between 100 and 140 km.

The expected reduction in the number of large errors over

grid points is shown in Figure 9. A relationship between IDI

at the ith grid point (𝑥IDI
𝑖

) and the percentage of reduction in

the number of large errors (𝑥r
𝑖
) can be assumed, such as:

𝑥r
𝑖 = 39.757 exp

⎧⎪⎨⎪⎩−
1

2

[
𝑥IDI
𝑖

− 1.171

0.367

]2⎫⎪⎬⎪⎭ , (18)

where the three coefficients (39.757, 1.171, 0.367) have been

optimized so to get the best match between the Gaussian

function and the empirical data used in Figure 6b. We have

tested other functions (e.g. polynomial) to model this rela-

tionship, but eventually the Gaussian function provided the

best-fitting results. According to Equation 18, in the case of

an ideal station density (IDI = 1) the percentage of reduc-

tion in the number of large errors is approximately 35%. In

Figure 9, boxes A and B show data-dense regions. Because of

the extremely complex terrain in B (Figure 2), IDI (Figure 3)

indicates that the observations' influence onto the analysis is

limited to a small number of grid points. For this reason, the

analysis is more effective in reducing large errors in A than in

B. Note that Equation 18 can also be used for planning vari-

ations in the observational network by assessing the potential

of new stations in reducing large prediction errors.

4.2.2 Comparison against OI-based
spatial analyses
The EnSI analyses are compared against seNorge2. The

CV-analysis residual statistics have been compared in

Figure 10. For EnSI, the residuals are the CV-analysis ensem-

ble means minus the observations. The stations have been

classified according to the station density as represented by

the CV-IDI (Figure 3a). The class labelled with CV-IDI = 0.5

includes all those stations with CV-IDI < 0.55. Then, CV-IDI

has been divided in bins of 0.1, up to CV-IDI = 1.1; within

each bin the distributions of CV-analysis residuals are shown

through the median (dots) and the interquartile range (IQR,
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F I G U R E 7 25 January 2018, 0900 UTC, uncertainty of the temperature estimates at grid points over sub-domain A in Figure 2: (a)

model-derived background, ensemble standard deviation; (b) EnSI analysis, ensemble standard deviation; (c) OI analysis, standard deviation as

derived from the analysis error covariance matrix, Equation 3. Black dots in (b,c) mark the station locations

F I G U R E 8 CV-analysis residual and innovation ensemble mean

statistics as a function of the station density (distance to the nearest five

stations) based on data from July 2017 to July 2018. Analysis

improvement over the background is shown as % reduction for four

different verification metrics (section 4). MAE 1 ◦ C is the mean

absolute error (MAE) beyond 1 ◦ C, that is, errors less than 1 ◦ C are not

counted

envelope). The regression lines for the median are also shown.

EnSI performs constantly better than seNorge2, as highlighted

by the regression lines. In data-dense areas, the percentage of

large errors (Figure 10c) is around 10% for both datasets. In

data-sparse regions, EnSI performs significantly better than

seNorge2 for all the verification scores. The spreads of the

distributions of RMSE (Figure 10a) and MAE (Figure 10b)

are always smaller for EnSI, especially in data-sparse areas,

thus indicating that the combined analysis is more stable with

respect to variations in the station density than seNorge2.

Furthermore, from Figure 10 it can be inferred that EnSI

ensemble mean at grid points has: MAE between 0.8 and 1.8
◦C, RMSE between 1 and 2.5 ◦C and an occurrence of large

errors between 8 and 18%.

EnSI has been compared also against the OI of

Equation 15, with MEPS ensemble mean as the background.

The OI background could also have been the output of a

deterministic NWP model, if this is available. If we con-

sider MAE, RMSE and percentage of large errors over the

year-long period under examination, the verification scores

for OI are almost identical to the verification scores of EnSI

presented in Figure 10. This is not surprising, given that the

EnSI localization function has been optimized so as to match

the OI settings, as described in section 4.1.1.

4.2.3 A wintertime case-study
During 25 January 2018 a low-pressure system pushing west-

wards in northern Norway brought unsettled conditions to

parts of southern and middle Norway (Figure 11). The advec-

tion of moist air from over the Atlantic Ocean towards the

mountains in the central part of the region caused intense

precipitation on the west coast. East of the mountains, no pre-

cipitation has been registered. The satellite images show the

presence of clouds for most of the day over the whole region.

In the first part of the day, southerly winds advected warm air

over Oslo Fjord. At the same time, localized föhn episodes

associated with winds from west-northwest are likely to have

occurred in the inland valleys and in the lateral valleys over-

looking Oslo Fjord, as suggested by localized temperature

rises during night-time. Then, the wind gradually turned

everywhere from west-northwest and temperatures dropped.

At 0900 UTC some valleys in both Oslo Fjord (O,

Figure 11) and inland (I, Figure 11) were experiencing warm-

ing episodes. According to Figure 12, the decrease in tem-

perature started at 1100 UTC in domain I and after 1400

UTC over domain O. By 2300 UTC, the temperature was

dropping fast all over the domain. At 0900 UTC (Figure 11,

left-column), the EnSI analysis increment shows that the

background has been adjusted so to better represent the
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F I G U R E 9 Estimates at grid points of the percentage of reduction in the number of large errors in the analysis compared to the background

(section 4.2). Boxes A and B are the same as in Figure 2

F I G U R E 10 CV-analysis residual ensemble mean and seNorge2 CV-analysis residuals as a function of CV-IDI based on data from July 2017

to July 2018: (a) RMSE; (b) MAE; (c) percentage of large errors

warming, especially over the southeastern part of the domain

where increments of 5 ◦ C can be found in lateral valleys. At

2300 UTC (Figure 11, right-column), the analysis increment

shows a composite pattern with positive values over the O

domain and negative values over the I domain. As a matter

of fact, the situation is more complex at 2300 UTC and the

interpolation uncertainty is larger, especially over domain I,

as is shown by the fields of the ensemble spread (Figure 11,

bottom-row).

The EnSI analysis increments over sub-domain A of

Figure 2 are shown in Figure 13 and they are compared with

the OI analysis increments. Since the observational network
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0900 UTC 2300 UTC

0900 UTC

O

I

2300 UTC

F I G U R E 11 25 January 2018. Analysis ensemble mean increment (top row) and analysis ensemble standard deviation (bottom row) at 0900

and 2300 UTC over southern and middle Norway. Units are ◦C. The two rectangles in the top-left panel display the two sub-domains (O, Oslo Fjord;

I, inland) used in Figure 12

F I G U R E 12 25 January 2018. Time series of spatially averaged observations, background ensemble mean, and CV-analysis ensemble mean

for Oslo Fjord and the inland areas (Figure 11)

used is the same, the two analysis increments for the same

hour are not too different. However, the topography influence

is much more evident in the OI because of the predominant

role of Dz in suppressing the correlations in 𝜌 (Equation 10).

As stated in section 4.1.2, the background ensemble allows

EnSI to use more information because the analysis increments

are shaped not only on the basis of geographical parameters

characterizing the surface but also on similarities between
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0900 UTC

(a) (b)

(c) (d)

0900 UTC

2300 UTC 2300 UTC

F I G U R E 13 25 January 2018. Analysis increments over sub-domain A in Figure 2: (a) 0900 UTC, EnSI ensemble mean increment; (b) 0900

UTC, OI increment; (c) 2300 UTC, EnSI ensemble mean increment; (d) 2300 UTC, OI increment. The same colour scale as for the analysis

increments of Figure 11 is used

ensemble members. For instance, consider two nearby val-

leys where only one of them has observations on the valley

floor. OI will give significant weights to those observations

in the analyses in both valleys. EnSI will do the same only if

the weather is similar in both valleys, otherwise the analysis

increments will be different.

Finally, in this paragraph we consider only the Oslo Fjord

region (Figure 2a) and we focus on the vertical profile of

near-surface temperature at 0900 UTC. Figure 14 shows the

profiles as they can be reconstructed by values at station loca-

tions or at grid points. The observed profile (dots) is rather

complex and it shows a “thermal inversion” in between the

elevations of 100 and 200 m, where the two-metre tempera-

ture is increasing with elevation. This situation is quite typical

in winter and local thermal inversions not resolved by the

NWP model may cause large errors. The background ensem-

ble (light grey envelope) follows the observed temperature

profile, although it appears to be systematically colder and the

narrow temperature inversion is not represented. The analysis

ensemble (black) matches the observed temperature profile

better and most of the observations fall within its envelope,

which is also characterized by a smaller spread than the back-

ground. The observation dots are coloured on the basis of the

correction factors (appendix B). Note that those observations

with small values of the correction factors – between 0.25 and

0.5 – are constraining the analysis even more towards them.

5 SUMMARY AND CONCLUSIONS

The EnSI scheme developed at MET Norway provides

two-metre temperature ensembles, on a real-time basis, that

constitute a convenient alternative to the direct use of raw

NWP ensembles. The flow-dependent interpolation method

is derived from the analysis step of the LETKF and com-

bines a background ensemble with in situ observations. We

have introduced an ensemble scaling factor, a localization

procedure, and station-dependent correction factors into the

definition of observation error variances. The observation

errors are characterized such that the most representative

stations have a higher influence on the analysis.

EnSI has been validated over Norway by using the oper-

ational MEPS and the MET Norway observational network.
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F I G U R E 14 25 January 2018, 0900 UTC. Vertical temperature profiles in Oslo Fjord (Figure 2a): observations (dots, colours refer to the

correction factors (appendix B)); background ensemble (grey); analysis ensemble (black)

The procedure presented for parameter optimization may con-

stitute a guide for the application of the scheme to other

regions. The evaluation has been carried out using 1 year

of hourly data. In data-dense areas, the analysis reduces the

number of predictions that deviate more than 3 ◦ C from the

actual temperature by 35% compared to the background. This

number is closer to 50% for grid points having the nearest

five stations within a radius of 30 km. Even in data-sparse

areas, such as regions where the average distance between a

point and its five nearest stations is larger than 100 km, the

combined analysis reduces the number of large errors. EnSI

analysis can capture thermal inversions in near-surface tem-

perature better than the background, as we have shown for a

typical wintertime situation. That is particularly important as

thermal inversions are the source of large prediction errors in

Norway.

The temperature analysis has also been compared to an ad

hoc version of the seNorge2 observational gridded dataset,

which is quite popular in Norway for applications requir-

ing high-resolution fields. In data-dense areas, EnSI performs

similarly or slightly better than the seNorge2 interpolation

method. In data-sparse regions, not surprisingly large errors

are more likely to occur in seNorge2 than in EnSI analyses.

The fact that EnSI can provide more precise and accurate

analyses than observational gridded datasets is an important

result.

If compared to a classical OI with a (single) background

field, the EnSI analysis ensemble mean verification scores are

almost identical to those of the OI analysis. However, the EnSI

analysis ensemble includes weather-related uncertainty that

the OI analysis error covariance matrix is unable to represent.

The flow-dependent temperature patterns represented by the

NWP ensemble are kept in the EnSI analysis ensemble.

The method can be improved by taking into account more

sophisticated optimization schemes for the scaling factor and

the localization function, which can also be allowed to vary in

space and time. The use of a denser network of observations

may also lead to a better representation of the temperature

field because of the reduced de-correlation lengths that could

be used in the localization procedure. In this sense, the use

of third-party data (e.g. crowd-sourcing and amateur sta-

tion data) constitutes an interesting option to gain access to

massive amounts of weather data.
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APPENDIX A: MATHEMATICAL NOTATION
The notation used is based on both Ide et al. (1997) and

Sakov and Bertino (2011). The number of grid points is m.

The number of ensemble members is k. The number of obser-

vations is p. Upper-case bold symbols are used for matrices,

lower-case bold symbols for vectors and italic symbols for

scalars. For an arbitrary matrix X, Xi means the ith col-

umn; Xi, : the ith row; and Xij the element at the ith row

and jth column. For an arbitrary vector x, xi denotes the ith
element. The background ensemble members are combined

by columns into the m× k matrix Xb. The ensemble mean

is the m-vector xb = (1/k) Xb1, where 1 is the m-vector with

all elements equal to 1. The m× k perturbation matrix Ab

has columns A𝑏
𝑖
= X𝑏

𝑖
− x𝑏. A similar notation applies to the

analysis, only with the superscript a instead of b. The in situ
observations are stored in the p-vector yo.

APPENDIX B: CORRECTION FACTORS
The correction factors aim at improving the analysis qual-

ity by giving extra weight to representative observations. The

observation representativeness is assessed with respect to the
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other observations in the network, without considering the

background. In fact, the correction factors are used to include

into the analysis those small-scale features that may not be

properly resolved by the background but that are resolved by

the observational network. For this reason, the background is

not mentioned in this appendix.

The correction factors are computed at each analysis

step, independently from the results of the other steps. This

choice allows the correction factors to adapt instantaneously

to weather variations. On the other hand, robust quantitative

estimates require the simultaneous consideration of several

consecutive time steps. To overcome this last limitation, the

correction factors are allowed to take values only between

the range from 0.25 to 1. We impose the most representative

observations to be weighted four times as much as the less

representative ones. In the following, first we will introduce 𝛾:

the relative representativeness of an observation with respect

to the average observation representativeness of the observa-

tional network. Then, we will use the distribution of 𝛾 values

to re-scale the correction factors within the predefined range

(0.25 to 1).

To assess the observation representativeness, the defini-

tions of large- and local-scale temperature are introduced.

Consider the jth station, the large-scale temperature (𝑦𝐿
𝑗

) is

the temperature reconstructed at that station location using

dozens of the surrounding stations. The local-scale tempera-

ture (𝑦𝑙
𝑗
) is the adjusted large-scale temperature using the few

closest stations only. In practice, 𝑦𝐿
𝑗

is obtained by fitting the

temperature vertical profile proposed by Frei (2014) to the

20 nearest stations (up to 50 in data-dense areas). Depend-

ing on the observation density in the neighbourhood of the

jth station, the region considered has a radius ranging from

approximately 125 to 250 km. The OI Equation 15 is used to

obtain 𝑦𝑙
𝑗

as the analyses, with yL as the pseudo-background

values. The OI parameters are set to the same values of

Table 1, except for Dh that is location-dependent as it is set

to the average distance between a station and its nearest five

stations. For the observational network described in section

3, Dh assumes in most cases values between 50 and 70 km.

The relative representativeness of the jth observation with

respect to the average observation representativeness 𝛾 j is

determined considering the deviations of the observations

from the large- and local-scale temperatures. If the observa-

tion 𝑦𝑜
𝑗

is close either to 𝑦𝐿
𝑗

or 𝑦𝑙
𝑗
, then it is reasonable to

assume that this observation represents a feature resolved by

the observational network. This level of confidence will be

even higher if 𝑦𝑜
𝑗

is close to both yL and yl. On the other hand,

non-representative 𝑦𝑜
𝑗

deviates from 𝑦𝐿
𝑗

and 𝑦𝑙
𝑗 , and it may

introduce unrealistic features in the analysis (e.g. bull's-eye

effects). 𝛾 j is defined as:

𝛾𝑗 =
(𝑦𝑜

𝑗
− 𝑦𝑙

𝑗
)(𝑦𝑜

𝑗
− 𝑦𝐿

𝑗
)

𝛾
, (A1)

with the normalization coefficient 𝛾 =
[∑𝑝

𝑛=1
(𝑦𝑜𝑛 − 𝑦𝑙𝑛)

(𝑦𝑜𝑛 − 𝑦𝐿𝑛 )
]
∕𝑝.

Given the distribution of values obtained by Equation 19

for a single hour, the correction factor cj for the jth observation

is determined as (px% indicates the xth-percentile):

𝑐𝑗 =
⎧⎪⎨⎪⎩

0.25, if 𝛾𝑗 < 𝑝25%

0.25 + 0.75
𝛾𝑗−𝑝25%

𝑝75%−𝑝25%
, if 𝑝25% ≤ 𝛾𝑗 < 𝑝75%

1, if 𝛾𝑗 ≥ 𝑝75%

(A2)


