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ABSTRACT 1 

Rainforests on Borneo support exceptional concentrations of endemic insect biodiversity, but 2 

many of these forest-dependent species are threatened by land-use change. Totally protected 3 

areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of 4 

the current TPA network for conserving range-restricted butterflies in Sabah (Malaysian 5 

Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter 6 

of the year were the most important predictors of butterfly distributions (N = 77 range-restricted 7 

species), and that species richness increased with elevation and aboveground forest carbon. On 8 

average across all species, TPAs were effective at conserving ~43% of species’ ranges, but 9 

encompassed only ~40% of areas with high species richness (i.e. containing at least 50% of our 10 

study species). The TPA network also included only 33-40% of areas identified as high priority 11 

for conserving range-restricted species, as determined by a systematic conservation prioritization 12 

analysis. Hence, the current TPA network is reasonably effective at conserving range-restricted 13 

butterflies, although considerable areas of high species richness (6565 km2) and high 14 

conservation priority (11,152-12,531 km2) are not currently protected. Sabah’s remaining forests, 15 

and the range-restricted species they support, are under continued threat from agricultural 16 

expansion and urban development, and our study highlights important areas of rainforest that 17 

require enhanced protection.  18 

 19 

 20 
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1 INTRODUCTION  24 

Tropical rainforests constitute many of the world’s biodiversity hotspots and contain 25 

disproportionately high concentrations of rare and endemic species (Mittermeier, Turner, 26 

Larsen, Brooks, & Gascon, 2011; Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 27 

2000). Conversion of rainforest to agriculture greatly reduces tropical biodiversity (Laurance, 28 

Sayer, & Cassman, 2014; Meijaard et al., 2018), and high concentrations of endemism in the 29 

tropics mean that loss of species through anthropogenic environmental changes could result in 30 

widespread extinctions and biodiversity losses globally (Brook, Sodhi, & Ng, 2003; Koh & 31 

Sodhi, 2010; Mittermeier et al., 2011). With demand for cropland expected to increase in 32 

future (Laurance et al., 2014), there is a pressing need to better understand biodiversity 33 

distributions in rainforest ecosystems in order to locate and protect important areas of high 34 

diversity that may face increased pressure from continued agricultural expansion.  35 

A large component of tropical biodiversity is comprised of insects, which perform 36 

important ecological functions in rainforests (e.g. herbivory, pollination, dung removal, 37 

decomposition; Ewers et al., 2015; Noriega et al., 2018; Slade, Mann, & Lewis, 2011; Weissflog, 38 

Markesteijn, Lewis, Comita, & Engelbrecht, 2018; Wikelski et al., 2010), yet we lack 39 

information on factors affecting the distributions of insects in the tropics. Given that many 40 

rainforest species are vulnerable to extinction from land-use and climate change (Brook et al. 41 

2003; WWF, 2018), and that insect biomass is declining globally (Hallmann et al., 2017), it is 42 

important to map species’ ranges and determine the effectiveness of protected areas (PAs) at 43 

conserving rainforest insects. Data on insect species ranges are limited in the tropics (Cheng & 44 

Bonebrake, 2017), and so museum collections are an important resource for supporting insect 45 

conservation (Kharouba, Lewthwaite, Guralnick, Kerr, & Vellend, 2018; Ponder, Carter, 46 
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Flemons, & Chapman, 2001; Tarli, Grandcolas, & Pellens, 2018). Museum records have been 47 

used to document insect population declines (Grixti, Wong, Cameron, & Favret, 2009), predict 48 

species’ distributions (Klorvuttimontara, McClean, & Hill, 2011), and measure phenological 49 

shifts (Kharouba et al., 2018); hence, they are an important source of baseline data for 50 

conservation planning (Ponder et al., 2001; Tarli et al., 2018), especially in tropical regions 51 

where detailed information on species’ distributions is generally lacking.  52 

The rainforests of Southeast Asia contain exceptionally high levels of diversity and 53 

endemism (Myers et al., 2000), much of which is now restricted to montane regions as a 54 

consequence of palaeogeographical range shifts (Gathorne-Hardy, Syaukani, Davies, Eggelton, 55 

& Jones, 2002; Lohman et al., 2011; Sodhi, Koh, Brook, & Ng, 2004), combined with recent loss 56 

of forest at low elevations (Carlson et al., 2013; Miettinen, Shi, & Liew, 2011). It is important to 57 

focus conservation strategies on range-restricted species in remaining areas of forest because 58 

these species can be particularly sensitive to disturbance (Bonebrake et al., 2016; Cleary & 59 

Mooers, 2006; Hill, Hamer, Tangah, & Dawood, 2001; Koh, Sodhi, & Brook, 2004) and because 60 

local extirpations could lead to extinction (Mittermeier et al., 2011). However, we currently 61 

know little about where range-restricted insects occur in biodiverse tropical systems (Myers et 62 

al., 2000), and so understanding the climatic limits to species’ ranges may facilitate conservation 63 

planning in areas threatened by land-use change (Cheng & Bonebrake, 2017; Klorvuttimontara et 64 

al., 2011). Knowledge about range-restricted insect distributions in relation to aboveground 65 

forest carbon could also be important by linking species conservation to climate change 66 

mitigation strategies from avoided deforestation. Although we currently lack information on 67 

whether range-restricted insect richness is related to forest carbon stocks.  68 
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Conserving range-restricted species requires an effective network of PAs, which now 69 

comprise the remaining strongholds of biodiversity in many tropical regions (Boakes, Fuller, & 70 

McGowan, 2018; Curran et al., 2004). However, PAs have become increasingly isolated within 71 

human-modified landscapes (DeFries, Hansen, Newton, & Hansen, 2005), and there is little 72 

research on the effectiveness of tropical PAs for conserving range-restricted invertebrates 73 

(Cheng & Bonebrake, 2017). We addressed this issue by modelling the distributions of range-74 

restricted butterflies on Borneo and examining whether the current network of totally protected 75 

areas (TPAs; a state governmental land designation) in Sabah overlaps with butterfly species 76 

ranges and areas of high species richness. We assessed range-restricted butterflies, defined as 77 

species restricted to Sundaland, because butterflies in this region are highly diverse (>900 78 

species on Borneo), with many endemic to Borneo (~50 species) (Otsuka, 1988). A large number 79 

of butterflies on Borneo are also dependent on closed-canopy forest and hence threatened by 80 

forest loss in areas that do not fall within existing PAs (Benedick et al., 2006; Scriven, Beale, 81 

Benedick, & Hill, 2017). In addition, there are good records of butterfly ranges compared to 82 

many other insect groups (e.g. see Corbet & Pendelbury, 1992; D’Abrera, 1985; Otsuka, 1988, 83 

2001), including information from museum collections (Klorvuttimontara et al., 2011).  84 

We collated distribution records for 77 range-restricted butterflies on Borneo from 85 

published data sources and museum collections, and ran species distribution models (SDMs) to 86 

project butterfly distributions within forest habitat in relation to climate factors. From overlaying 87 

the species’ distributions, we determined the locations of current forest areas in Sabah projected 88 

to have high species richness. We also used systematic conservation prioritization methods to 89 

determine the most important (i.e. the most climatically suitable) areas of remaining rainforest 90 

for conserving the distributions of our study species in Sabah. We focus on Sabah because of the 91 
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high density of butterfly records, combined with availability of ancillary data, particularly for 92 

aboveground carbon (Asner et al., 2018) and TPA coverage (Sabah Forestry Depertment, 2016). 93 

Our main aims were to: (1) determine the most important climatic factors limiting the 94 

distributions of range-restricted butterflies on Borneo, in order to improve our understanding of 95 

the bioclimatic limits underpinning the ranges of tropical insects; (2) assess whether elevation 96 

and aboveground carbon predict areas with high species richness; and (3) quantify the 97 

effectiveness of the TPA network in Sabah for conserving range-restricted butterflies.  98 

 99 

2 METHODS  100 

2.1 Butterfly locality records 101 

We obtained butterfly records from the ‘Borneo Butterfly Distribution Database (B2D2)’ 102 

retrieved from: http://www-users.york.ac.uk/~jkh6/index.htm (accessed 10th September 2018). 103 

This database was compiled from museum specimens, published papers, field reports and 104 

University PhD theses dating from 1878 to 2006; see Ghani, 2012 for more details). Overall, the 105 

database contains over 22,000 records from more than 300 butterfly species belonging to the 106 

families Papilionidae, Pieridae and Nymphalidae. We filtered records to include only those 107 

collected after 1950, to try to balance ensuring that our butterfly records were relevant to the 108 

current climate (i.e. 1970-2000; see below), while not discarding too many historical records. 109 

This resulted in 7661 records at 398 unique sampling localities for all butterfly species across 110 

Borneo (Figure 1a). We selected records for species that are restricted to Sundaland, including 15 111 

species that are endemic to Borneo (see Otsuka, 2001 for details). Only one Sundaland species, 112 

Papilio iswaroides, had fewer than 10 locality records and so was excluded from the analysis. 113 
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We therefore ran SDMs for 77 species, based on 2277 presence records from 289 unique 114 

sampling locations.  115 

 116 

2.2 Climate and elevation data 117 

To project the potential distributions of the 77 study species, 19 climate variables representing 118 

average monthly temperature and precipitation data for 1970-2000 were downloaded from the 119 

WorldClim database (http://worldclim.org/version2; accessed 9th June 2018) (see Fick & 120 

Hijmans, 2017) at ~1 km2 (30 arc-second) resolution for Borneo. Elevation data were 121 

downloaded from the CGIAR-CSI GeoPortal (http://srtm.csi.cgiar.org/; accessed 1st October 122 

2018) at 250 m resolution and then aggregated by a factor of four to 1 km grid-cells. To assess 123 

whether climate variables were correlated, we performed a pairwise Spearman’s rank correlation 124 

analysis on the 19 WorldClim variables and elevation. Analyses revealed that many 125 

environmental variables were collinear (see Dormann et al., 2013) (Table S1 in Appendix S1); 126 

for those variables with a regression coefficient value greater than 0.7, the variable from the pair 127 

most correlated with other variables was included. Thus, five climate variables were included in 128 

the SDMs: (1) annual mean temperature (°C); (2) mean diurnal temperature range (°C); (3) 129 

temperature seasonality (standard deviation in monthly temperatures × 100; a measure of 130 

temperature variation within years) (°C); (4) precipitation of the driest month of the year (mm); 131 

and (5) precipitation of the wettest quarter of the year (mm) (Figure S1 in Appendix S1). We did 132 

not include forest cover data within the SDMs because of land-use change since many of the 133 

locality records were collected (Gaveau et al., 2014; Figure S3a in Appendix S1) (also see 134 

Appendix S1 for additional details and implications of land-use change following record 135 

collection). Instead, we used our SDMs to characterize the location of suitable climate space 136 
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between 1970-2000 for our study species in areas of remaining forest in 2016. We applied 137 

outputs from the SDMs and prioritizr software (see below) to forested areas (excluding 138 

mangrove forests) that contained more than 40 metric tons of aboveground carbon per hectare 139 

(Mg C ha-1) (mean across 1 km grid-cells resampled from 30 m grid-cells; Asner et al., 2018). In 140 

this way, we tried to ensure that areas of degraded and/or regenerating forest were included in 141 

our projections of species’ potential ranges while production plantations were not (Rosoman, 142 

Sheun, Opal, Anderson, & Trapshah, 2017).  143 

 144 

2.3 Species distribution models 145 

We modelled the distributions of 77 butterfly species across Borneo using R (R Core Team, 146 

2017) with the biomod2 package (Thuiller, Georges, Engler, Georges, & Thuiller, 2016). We 147 

used an ensemble modelling approach to create a consensus of the predictions across three 148 

algorithms (see Cheng & Bonebrake, 2017; Marshall et al., 2017; Singh, McClean, Büker, 149 

Hartley, & Hill, 2017; Thuiller, Lafourcade, Engler, & Araújo, 2009), comprising: (1) a 150 

generalized linear model (GLM), with linear effects and stepwise selection based on Akaike 151 

information criteria (AIC); (2) a random forest (RF) model, using the default settings (no. trees = 152 

501; node size = 5); and (3) maximum entropy modelling (MAXENT), including only linear and 153 

quadratic features (e.g. see Marshall et al., 2017). Maximum entropy modelling can perform well 154 

with few locality records (Phillips, Anderson, & Schapire, 2006; Platts et al., 2014; Wisz et al., 155 

2008), whilst GLM and RF algorithms have also been used successfully in other insect studies 156 

(e.g. see Cheng & Bonebrake, 2017; Marshall et al., 2017).  157 

 We determined ‘absences’ in our GLMs and RF models as locations (post 1950) where 158 

other butterfly species had been recorded but the focal species had not. Whilst we assumed for 159 
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our analyses that butterfly surveys were complete at any given sampling locality (e.g. see 160 

McPherson, Jetz, & Rogers, 2004; Platts, McClean, Lovett, & Marchant, 2008), some locality 161 

records will have been from opportunistic encounters rather than from full site surveys (i.e. in 162 

localities where few or single species were recorded; Figure S2 in Appendix S1). In MAXENT, 163 

we specified that the background (‘absence’) data could only be calculated from the areas that 164 

we had specified as absences (Marshall et al., 2017; Thibaud, Petitpierre, Broennimann, Davison, 165 

& Guisan, 2014, but see Guillera-Arroita, Lahoz-Monfort, & Elith, 2014). We used equal 166 

weightings for both the presence (P) and absence (A) data points by weighting the absence data 167 

by a factor of P/A (<1 for all species) and standardizing the prevalence to 0.5; this tilts the 168 

balance of errors from false negatives towards false positives (e.g. see Platts et al., 2008). All 169 

SDMs were trained on 75% of the occurrence data and tested on the remaining 25% (Franklin, 170 

2010), and this was repeated 10 times per model (Marshall et al., 2017; Platts et al., 2014). We 171 

assessed model performances based on AUC (area under curve) values from the ROC (receiver 172 

operating characteristic) curve (Marzban, 2004; Singh et al., 2017). Only models with AUC 173 

values greater than 0.6 were included in the ensemble model analysis to generate maps of species 174 

occurrence (probability of occurrence maps for GLMs and RF models and relative suitability 175 

maps for MAXENT models) (Cheng & Bonebrake, 2017). The ensemble model outputs reported 176 

the mean butterfly occurrence (i.e. averaged across the three algorithms) for all 1 km grid-cells 177 

on Borneo, which for some analyses we subsequently transformed into binary data of 178 

presence/absence using the default settings in biomod2 (see Thuiller et al., 2016). In this way, we 179 

ran 30 models per species, corresponding to 2310 models in total (77 species × 3 algorithms × 10 180 

repeat model runs), and then cropped the SDM outputs to include only forested areas in mainland 181 

Sabah (i.e. excluding offshore islands).  182 
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 183 

2.4 Climate variables related to butterfly distributions 184 

To examine the importance of the five environmental variables included in our SDMs for 185 

determining species’ distributions across Borneo (Aim 1), we recorded the number of species for 186 

which each predictor climate variable was most important, based on biomod2 outputs for all 187 

models with AUC values greater than 0.6. We also used Spearman’s rank correlations to 188 

determine the direction of any relationships (i.e. positive or negative) between environmental 189 

variables and species occurrence (i.e. grid-cells representing the probability of occurrence or 190 

relative suitability summed across all 77 study species and for just the 15 endemic species). 191 

 192 

2.5 Species’ ranges and areas of high species richness 193 

Species’ ranges in Sabah were defined as climatically-suitable forested areas from 194 

presence/absence SDM output maps. We calculated the proportion of each species’ range that 195 

fell within each 200 m elevation band, and the proportion of each species’ range that was 196 

protected in each elevation band. We summed distribution maps for all 77 species, to produce a 197 

combined layer of species richness, and used Spearman’s rank correlations to examine the 198 

relationship between species richness, elevation and aboveground carbon (Aim 2). To examine 199 

the effectiveness of the TPA network for conserving richness (Aim 3), we compared species 200 

richness of forested grid-cells within and outside the TPA network using a Mann-Whitney U test. 201 

In order to determine areas of high species richness that did not fall within the existing TPA 202 

network, we also calculated the number of grid-cells with at least 50% of species (i.e. N > 38 203 

species, or 77/2) that did not fall within the TPA network.  204 

 205 
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2.6 Prioritization of remaining forest 206 

We used the systematic conservation prioritization package prioritizr (Hanson et al., 2018) in R 207 

(R Core Team, 2017) to prioritize areas for protection in Sabah. This approach identifies areas 208 

that cover input features (in our case, the continuous species occurrence maps from the 77 study 209 

species), based on specification of the conservation problem, targets, budget and an objective 210 

function. We used the ‘maximize features’ objective, which aims to cover a target proportion of 211 

as many input features as possible (i.e. to optimize species richness and complementarity), 212 

without surpassing a specified land area budget (i.e. the area of TPAs in Sabah). Our area 213 

available for selection consisted of 1 km2 planning units (formatted as raster grid-cells) covering 214 

the forested area of mainland Sabah (40,259 km2). Using the species occurrence outputs allowed 215 

us to harness the range of variation in each raster (i.e. as opposed to using presence/absence 216 

data), thus providing increased parameter space to find optimal overlap across input features. 217 

The total land area that was available to select for protection corresponded to the amount of land 218 

area covered by the existing TPA network (18,622 km2; Fig 1b). We also included a penalty in 219 

half of our prioritization scenarios, in the form of a boundary length modifier (BLM), which 220 

promoted spatial clustering of the prioritized area to mirror the same number of clusters as the 221 

existing TPA network (see Appendix S1 for additional BLM details). We calculated the extent of 222 

the prioritized area that fell within and outside the TPA network, and determined the number of 223 

TPAs in Sabah that did not contain any prioritized grid-cells (Aim 3). Finally, we re-ran our 224 

prioritization analyses for only the 15 endemic species, but as results were similar to those for all 225 

species, results for endemic species are only presented in the supporting information (Table S2 in 226 

Appendix S2; Figure S5 in Appendix S2). All analyses were carried out in R version 3.4.0 or 227 

newer (R Core Team, 2017). 228 



12 

 

 229 

3 RESULTS 230 

3.1 Climate variables related to butterfly distributions 231 

We modelled 77 range-restricted species using the SDM ensemble approach, and model outputs 232 

for all species comprised at least two ‘useful’ models (where AUC >0.6, based on 30 SDMs per 233 

species; range = 2-28 ‘useful’ models per species). These model outputs were used to create the 234 

final distribution maps for each species, and represented mean occurrence across all ‘useful’ 235 

models. Across all 77 butterfly species, mean diurnal range in temperature and precipitation of 236 

the wettest quarter of the year were the most important climate variables in predicting butterfly 237 

distributions across Borneo (Table 1). The summed occurrences of all 77 study species (Figure 238 

1a) increased with increasing mean diurnal range in temperature (rs = 0.51, N = 745,076, P < 239 

0.0001) and decreased with precipitation of the wettest quarter of the year (rs = -0.42, N = 240 

745,076, P < 0.0001). Hence, in general, our study species were more likely to occur in locations 241 

with greater daily fluctuations in temperature (i.e. at high elevation; Figures S1 and S3 in 242 

Appendix S1; Table S1 in Appendix S1) and in areas that were relatively dry during the wettest 243 

part of the year (Figure S1 in Appendix S1). For Borneo endemics (N = 15 species), not only 244 

was there a strong positive correlation between mean diurnal range in temperature and species 245 

occurrence (rs = 0.73, N = 745,076, P < 0.0001), but occurrence also increased with decreasing 246 

annual mean temperature (rs = -0.52, N = 745,076, P < 0.0001) (Table 1), hence endemic species 247 

were also more likely to be found in high elevation areas (Figures S1 and S3 in Appendix S1; 248 

Table S1 in Appendix S1).  249 

  250 

3.2 Areas of high species richness 251 
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About 56% of Sabah is currently forested (Figure 1b; Figure S3 in Appendix S1), and even 252 

though about half of the land area in Sabah occurs under 200 m asl (Figure 2a), high elevation 253 

areas are more likely to be forested and protected. Across all species, TPAs were effective at 254 

conserving between 30.3-72.3% of species’ ranges (mean = 42.8%; SE ± 0.89) (Figure 1b). Our 255 

species’ ranges were more likely to fall within TPAs at higher elevation, and in the highest 256 

elevation band (>2000 m asl) 99% of projected species’ ranges (mean across 77 species) fell 257 

within the TPA network (Figure 2b). Species richness increased with elevation (Spearman 258 

correlation: rs = 0.813, N = 40,184, P < 0.0001) and to a lesser extent with aboveground carbon 259 

(Spearman correlation: rs = 0.376, N = 40,259, P < 0.0001) (Figure 1b; Figure S3 in Appendix 260 

S1). Species richness was higher in TPA grid-cells (N = 16,595) than in non-TPA grid-cells (N = 261 

23,664) (Mann-Whitney U test: W = 201,400,000; P < 0.0001) (Figure 1b), although the mean 262 

difference was small (mean species richness per TPA and non-TPA grid-cells = 29.6 and 28.9 263 

species, respectively). Areas of high richness (defined as grid-cells with at least 39 study species; 264 

i.e. 50% of species) covered 11,217 km2 (Figure 1b), of which 41.5% (4652 grid-cells) fell 265 

within the TPA network. Hence, 58.5% of areas with high species richness of range-restricted 266 

butterflies are not currently protected, corresponding to a land area of 6565 km2.  267 

 268 

3.3 Prioritization of remaining forest 269 

We identified an area the size of the current Sabah TPA network (i.e. 18,622 km2), from a total 270 

forested area of 40,259 km2, as priority areas for butterfly conservation, comprising ~46% of the 271 

total forested area on mainland Sabah. For all study species (N = 77), 32.7% (6091/18,622 grid-272 

cells) of highly prioritized areas overlapped with the TPA network in the no-BLM scenario. 273 

When the BLM was included, slightly more (40.1%; 7470/18,622 grid-cells) of the TPA network 274 
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was prioritized (Figure 3; Table S2 in Appendix S2; Figure S5 in Appendix S2). Hence, between 275 

59.9-67.3% of prioritized grid-cells did not fall within the TPA network (11,152 and 12,531 km2, 276 

respectively, for the BLM and no-BLM scenarios). Locations of the prioritized grid-cells 277 

corresponded with areas of high richness (Figures 1b and 3; Figures S4 and S5 in Appendix S2), 278 

particularly in the Southwest of Sabah close to the Kalimantan boarder (Figure 1b). Across the 279 

whole TPA network in Sabah, 84 (34%; 84/248) and 80 (32%; 80/248) TPAs contained at least 280 

one highly prioritized grid-cell for the no-BLM and BLM prioritization scenarios, respectively, 281 

whereas 164 (66%; 164/248) and 168 (68%; 168/248) TPAs contained no prioritized grid-cells 282 

for these two scenarios (Figure 3).  283 

 284 

4 DISCUSSION 285 

 286 

4.1 Climate variables relating to butterfly distributions 287 

Mean diurnal range in temperature and precipitation of the wettest quarter of the year were the 288 

most important climate variables predicting range-restricted butterfly distributions across 289 

Borneo. Mean diurnal range in temperature increased strongly with elevation (Table S1 in 290 

Appendix S1), and so species occurrence also increased with elevation (below ~2000 m asl; 291 

Figure S7 in Appendix S2). Temperature is a major determinant of species’ distributions and 292 

range boundaries (Freeman, Lee-Yaw, Sunday, & Hargreaves, 2018) and cool tropical mountains 293 

harbour many ecological specialists, often with narrow altitudinal ranges (Chen et al., 2011; 294 

Laurance et al., 2011; Merckx et al., 2015; Rodríguez-Castañeda et al., 2010). We focused our 295 

analyses on range-restricted butterflies, which primarily occur at mid-high elevation (Otsuka, 296 
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1988, 2001), and this likely drove the strong relationship we found between the mean diurnal 297 

range in temperature and species occurrence.  298 

Precipitation is an important predictor of species’ distributions (Bush & Hooghiemstra, 299 

2005), but relationships can be complex (Condit, Engelbrecht, Pino, Pérez, & Turner, 2013; 300 

Lewis, Malhi, & Phillips, 2005). We included precipitation of the wettest quarter of the year in 301 

our SDMs, which was strongly collinear with annual precipitation (Table S1 in Appendix S1). 302 

Precipitation commonly increases with elevation (McCain & Grytnes, 2010), although on 303 

Borneo this relationship was fairly weak when considering precipitation of the wettest quarter of 304 

the year (Table S1 in Appendix S1), indicating that elevational precipitation trends may be 305 

influenced by other factors such as monsoons or proximity to the ocean (Corlett, 2014). We 306 

found that butterflies were most likely to occur in areas that were driest during the wettest part of 307 

the year (i.e. most of Sabah and Eastern Borneo; Figure 1; Figure S1 in Appendix S1), and hence 308 

receive low annual rainfall, indicating that our study species may be directly or indirectly (i.e. 309 

through larval host plant quality and food availability) affected by periods of very high rainfall 310 

during the wet season. Rainfall patterns can also alter net primary productivity (Schuur, 2003), 311 

and a reduction in rainfall has been shown to affect larval host plants and butterfly abundance in 312 

rainforests during El Niño-Southern Oscillation (ENSO) drought events (Hill, 1999; Srygley, 313 

Dudley, Oliveira, & Riveros, 2013). However, some tropical butterflies have been found to 314 

decline during very severe droughts (Hill, 1999), whilst heavy rainfall may also be detrimental 315 

for some other forest taxa (e.g. see Ryan et al., 2015). Few studies have examined the 316 

distributions of tropical insects in relation to climate across Southeast Asia (e.g. see Cheng & 317 

Bonebrake, 2017; Klorvuttimontara et al., 2011), and so more research is needed to determine 318 
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the causes and patterns in abiotic range limits across different insect taxa. Such information is 319 

vital for understanding the responses of insect species to climate change. 320 

 321 

4.2 Areas of high species richness 322 

Species richness of range-restricted butterflies in Sabah increased with elevation and to a lesser 323 

extent aboveground carbon in forested areas. In Sabah, higher elevation areas contain more 324 

aboveground carbon (Asner et al., 2018), likely due to less human disturbance in these remote 325 

areas (Miettinen et al., 2011). Whilst data for aboveground carbon is currently limited to Sabah, 326 

this pattern is likely found across the rest of Borneo due to similar topography (e.g. see Miettinen 327 

et al., 2011; Scriven, Hodgson, McClean, & Hill, 2015). There is little empirical research 328 

surrounding relationships between insect diversity and aboveground carbon density in tropical 329 

regions, but disturbance-sensitive mammal diversity has been shown to be related to forest 330 

carbon stocks (Deere et al., 2018, but see Beaudrot, Kroetz, & Alvarez-Loayza, 2016). However, 331 

undisturbed (primary) forests across Southeast Asia contain higher levels of aboveground carbon 332 

than logged forests or agroforests (Ziegler et al., 2012) and can support more range-restricted 333 

insects than disturbed forests (e.g. butterflies: Cleary & Mooers, 2006; dungbeetles: Edwards et 334 

al., 2011), which may account for the relationship we observed between aboveground carbon and 335 

butterfly species richness. Nevertheless, many rainforest butterflies are sensitive to forest 336 

disturbance, and so changes in canopy cover and light penetration may directly impact butterfly 337 

distributions through microclimate effects on survival (of adults or larvae), or on larval food 338 

plants (Hill, 1999). Hence, disturbed forest habitats that contain lower levels of aboveground 339 

carbon (e.g. due to the removal of large trees) may support fewer insect species of conservation 340 

concern. However, more research is needed to explicitly test the relationship between insect 341 
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richness and aboveground carbon in remaining forested areas, to determine whether any 342 

relationship is likely to be causative.  343 

 344 

4.3 Efficiency of the TPA network 345 

The TPA network was reasonably effective at conserving areas with high species richness. 346 

Nonetheless, a considerable amount of area (~60%; 6565 km2) with high species richness 347 

occurred outside the existing TPA network. Similarly, only 33-40% of high priority areas fell 348 

within the TPA network. Our results are similar to those of Cheng and Bonebrake (2017), who 349 

found that ~60% of butterfly distributions in Hong Kong fell outside fully protected areas. 350 

Equally, Fajardo, Lessmann, Bonaccorso, Devenish, & Muñoz (2014) showed that 43% of 351 

butterfly species occurred within the current PA network of continental Peru, although this was 352 

considerably lower for mammals and birds (20% and 22% protected, respectively). Thus, whilst 353 

the current TPA network in Sabah may conserve the distributions of some range-restricted 354 

species, in line with findings from other tropical regions, our results are worrying because many 355 

areas of high species richness and high priority are not currently protected. Our results are also 356 

likely to be relevant across the rest of Borneo, whereby large areas of remaining forest currently 357 

persist outside of PAs and hence are under threat from continued agricultural expansion (Runting 358 

et al., 2015). Given the projected growth in palm oil demand (Carrasco, Larrosa, Milner-Gulland, 359 

& Edwards, 2014), as well as the negative impact of oil palm agriculture on tropical insects 360 

(Brühl & Eltz, 2010; Scriven et al., 2017), these unprotected forest areas should be a priority for 361 

future legislative protection. In Sabah, there are still large expanses of intact, high-carbon forest 362 

that are unprotected (Figure S3 in Appendix S1), and our results highlight areas in Southwest 363 
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Sabah as being particularly important for range-restricted species that are not well protected by 364 

the existing TPA network. 365 

  Over half of all TPAs (164 and 168 for the no-BLM and BLM prioritization scenarios, 366 

respectively) in Sabah did not contain any high priority areas important for our study species and 367 

these were primarily, small, low-lying TPAs close to the coast (Figure 3). These TPAs often 368 

contain little high quality forest cover (Scriven et al., 2015), and so many degraded areas within 369 

these lowland reserves will not have been classified as ‘forest’ based on our 40 Mg C ha-1 370 

threshold for delimiting forest areas. These degraded areas may include very young, regenerating 371 

forests or areas of scrubland (Rosoman et al., 2017). Many lowland forests in Southeast Asia do 372 

contain high species richness (Ashton, 2010; Curran et al., 2004; Lambert & Collar, 2002; 373 

MacKinnon, Hatta, Halim, & Mangalik, 1996), but our range-restricted butterflies generally 374 

occur at high elevation, and so will not be protected by low-lying TPAs. Mount Kinabalu, for 375 

example, supports the highest concentration of butterfly species across Borneo, where more than 376 

~70% (625 species) of the Bornean butterfly fauna have been recorded, including many endemic 377 

species (Häuser, Schulze, & Fiedler, 1997; Otsuka, 1988).  378 

 Tropical insects may be sensitive to changes in climate and are expected to shift their 379 

distributions in response to climate change (Chen et al., 2009; Colwell, Brehm, Cardelús, 380 

Gilman, & Longino, 2008). Despite limited data for the tropics, several studies predict that 381 

insects will shift uphill in response to rising temperatures (e.g. moths: Chen et al., 2009; 382 

butterflies: Molina-Martínez et al., 2016; dung bettles: Moret, Aráuz, Gobbi, & Barragán, 2016), 383 

and this may lead to a decline in the effectiveness of current PAs if species’ ranges shift out of 384 

reserve networks (i.e. because these locations become too hot or too dry) (Cheng & Bonebrake, 385 

2017; Klorvuttimontara et al., 2011). We did not examine the efficiency of the TPA network to 386 
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conserve species under future climate change, but our results indicate that the distributions of 387 

range-restricted butterflies on Borneo are limited by abiotic factors such as temperature and 388 

rainfall, and thus are likely to shift to track climate. Whilst future rainfall projections are 389 

uncertain (IPCC, 2014), in order to protect species from rising temperatures, increased protection 390 

of forest areas at high elevation should be a conservation priority, to conserve species shifting 391 

uphill from lower elevation. However, PAs are often not well connected, and so conserving 392 

forest connections that link up PAs along elevational gradients may facilitate range shifting for 393 

low and mid-elevation species (Feeley & Silman, 2016; Scriven et al., 2015). Montane species, 394 

such as many of the species modelled in this study, which are already restricted to high elevation 395 

areas, may have little opportunity to shift to cooler locations as climates warm (Colwell et al., 396 

2008). Thus, without specific conservation measures, these species may face climate-driven 397 

extinctions.  398 

 399 

4.4 Sampling localities and biases 400 

In our study, we used a large butterfly dataset comprising museum records and published data 401 

that provides reasonable spatial and temporal coverage across Sabah (Figure 1). However, as 402 

with many species distribution modelling studies that rely on museum data (e.g. see Anderson, 403 

2012), some of our sampling points are clustered around specific locations (e.g. Mount Kinabalu 404 

National Park). Hence, our presence/absence data may reflect site-specific environmental 405 

conditions and our projections of species richness may be more robust in these well-sampled 406 

areas. Nonetheless, despite some clustering of sample sites, sampling localities were generally 407 

well spread across the range of values in our five climate surfaces for Borneo (Figure S6 in 408 

Appendix S2). Moreover, some areas in the lowlands with a high density of sampling localities 409 
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were predicted to have low species occurrence (e.g. coastal Brunei; Figure 1), and this indicates 410 

that it is unlikely that uneven sampling effort had a large impact on our SDM outputs. It is 411 

possible to account for geographical sampling biases in SDM studies (e.g. by incorporating 412 

observer effort: see Beale, Brewer, & Lennon, 2014; Hill, 2012), and such strategies warrant 413 

further research for capitalising on the types of data we used for examining tropical biodiversity. 414 

We did not consider temporal bias in our dataset or biases from different sampling 415 

regimes. If records had been collected during a particular part of the year (i.e. during drier 416 

months due to ease of sampling) species that peak in abundance during the wet season (i.e. due 417 

to new foliage; Novotny & Basset, 1998) may be less well represented. However, butterfly 418 

diversity has been shown to peak in the dry season within primary forest (Hamer et al., 2005), 419 

and so it is unlikely that temporal bias will have greatly influenced the reliability of our results. 420 

In addition, for many of our sampling localities (i.e. museum records) there was no information 421 

on the sampling strategy used and so some butterfly species, particularly those in the canopy, 422 

may have been under-represented at certain sites. Hence, if our localities had low sampling 423 

effort, were sampled at the wrong time of year, or if only one sampling method was used (such 424 

as fruit-baited trapping), these biases may have resulted in false absence records for certain 425 

species. In our models, we standardized the prevalence to 0.5, so that absences were weighted 426 

equally to presences (resulting in false positives being more likely than false negatives) and this 427 

shift was desirable because an absence record could be a consequence of limited sampling effort 428 

(e.g. see Platts et al., 2008).  429 

 430 

4.5 Conservation implications 431 
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Overall, we found that the TPA network was reasonably effective, and may protect at least 40% 432 

of areas with high richness of range-restricted butterflies in Sabah. This number is reasonable, 433 

considering that this reserve network was not designated primarily to conserve range-restricted 434 

insects. However, more than half of all areas with high species richness and almost two thirds of 435 

high priority areas fell outside TPAs, and so the current distribution of reserves may not provide 436 

sufficient protection for many range-restricted species under threat from forest loss, assuming 437 

our results for butterflies are similar to those for other insects. Butterfly distributions correlate 438 

well with observed patterns in other taxonomic groups (e.g. see Gardner et al., 2008; Schulze et 439 

al., 2004), and so many other insect species may also occur outside TPAs and will be at threat 440 

from further deforestation and forest degradation. Conversely, butterfly distributions may not be 441 

representative of some taxa such as large vertebrates, which may have much larger home ranges 442 

and hence require more forest habitat for survival. Diverse insect communities are integral for 443 

the functioning of rainforests, and their abundance and diversity can contribute to the resilience 444 

of these habitats; loss of insects from rainforest ecosystems can also disrupt ecosystem processes 445 

at other trophic levels (Ewers et al., 2015). Thus, insects need to be conserved in order to 446 

preserve ecosystem functioning, provide stability to ecosystem processes and maintain resilience 447 

of tropical rainforest habitats. The Sabah Forestry Department plans to extend TPA coverage 448 

from ~25% in 2016 to ~30% in 2020 (i.e. an increase of ~3050 km2) (Sabah Forest Policy 2018; 449 

see http://www.forest.sabah.gov.my/discover/policies/sabah-forestry-department-policy), and our 450 

study emphasizes the need for creating additional TPAs, to complement the existing network, in 451 

areas that contain high numbers of range-restricted and endemic species. 452 
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TABLE 1. Importance of environmental predictor variables across Borneo for (1) all butterfly species (N = 77) and (2) only endemic 778 

species (N = 15), and for all species distribution models with AUC values greater than 0.6.  779 

Environmental variable  No. of species for which predictor 
variable was most important 

 
Total mean scorea 

 
Spearman’s Rho (rs)b 

 
All  

(N = 77) 

Endemic 

(N = 15) 

All 

(N = 77) 

Endemic 

(N = 15) 

All  

(N = 77) 

Endemic 

(N = 15) 

Annual mean temperature (°C) 12 4 

 

13.56 

 

2.76 -0.34 

 

-0.52 

Mean diurnal temperature range (°C) 24 5 

 

19.64 3.64 0.51 0.73 

Temperature seasonality (°C) 10 2 

 

13.81 2.73 -0.39 0.10 

Precipitation of driest month (mm)  11 2 

 

13.23 1.71 -0.04 0.13 

Precipitation of wettest quarter (mm) 19 2 17.83 3.02 -0.42 -0.26 

 780 

a Calculated from variable importance values for each variable involved in each model run where AUC >0.6; the higher value, the more influence 781 

the variable has on the model (i.e. a value of 0 assumes no influence of that variable on the model).  782 

b Calculated by correlating each environmental variable with the overall maps of species occurrence for Borneo (i.e. the probability of occurrence 783 

or relative suitability summed across all species).784 
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FIGURE LEGENDS 785 

FIGURE 1. (a) Map of Borneo showing summed occurrences of all 77 range-restricted butterfly 786 

species from species distribution model (SDM) outputs. Black circles represent locality records 787 

for all species records used in the analyses, and comprised a total of 398 sampling locations; this 788 

included non Sundaland-restricted species that were used as absences. There were 2277 locality 789 

records at 289 different sampling locations for all range-restricted species (N = 77) modelled in 790 

the analyses. (b) Inset map of Sabah showing species richness (i.e. the 77 summed species’ 791 

ranges calculated from binary presence/absence maps and projected onto current areas of forest). 792 

The outline of the existing totally protected area (TPA) network is overlaid.  793 

 794 

FIGURE 2. (a) Land area in different elevation bands (m asl) in Sabah, expressed as a 795 

percentage of total land area (black bars), percentage of land in each elevation band that is 796 

protected (grey bars), and percentage of land in each elevation band that is forested (white bars). 797 

(b) Percentage area of range-restricted butterfly distributions (species’ ranges were calculated 798 

from binary presence/absence maps and projected onto current areas of forest) in different 799 

elevation bands (m asl) in Sabah (grey bars), and percentage area of species’ ranges in each 800 

elevation band that is protected (white bars). Bars represent means across all 77 study species 801 

and error bars represent standard errors. 802 

 803 

FIGURE 3. Maps of Sabah showing the final prioritized area (18,622 km2; blue shading) for all 804 

species (N = 77) with: (a) no boundary length modifier (BLM) included (no-BLM scenario), and 805 

(b) with the inclusion of a BLM (BLM scenario), which was used to aggregate the output grid-806 

cells (Appendix S1). The total area available for selection by the prioritization analyses 807 
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represents the forested area on mainland Sabah (40,259 km2; grey and blue shading combined). 808 

The outline of the existing totally protected area (TPA) network is overlaid. 809 
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FIGURE 1 810 

   811 



41 

 

 FIGURE 2  812 

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t 

a
re

a
 

Elevation band (m asl)

(a) 

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t 

a
re

a
 o

f 
ra

n
g
e

Elevation band (m asl)

(b) 



42 

 

FIGURE 3   813 


