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Abstract

In this note on coarse geometry we revisit coarse homotopy.We prove that coarse

homotopy indeed is an equivalence relation, and this in themost general context

of abstract coarse structures. We introduce (in a geometric way) coarse homo-

topy groups. The main result is that the coarse homotopy groups of a cone over

a compact simplicial complex coincide with the usual homotopy groups of the

underlying compact simplicial complex.

To prove this we develop geometric triangulation techniques for cones which

we expect to be of relevance also in different contexts.
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1 INTRODUCTION AND PRELIMINARIES

Our main results are the definition and computation of coarse homotopy and coarse homotopy groups, in the category of

generalized coarse spaces, as introduced in particular by John Roe [8].

In this note, we discuss in detail the concept of coarse homotopy (and coarse homotopy equivalence). In particular, we

check carefully that this is an equivalence relation, a result which seems not to be available in the literature. We use the

“correct” notion of coarse homotopy, differing from the original one which has been shown to be inappropriate by being

too flexible.

We then introduce a geometric version of coarse homotopy groups and show their basic properties (in particular that

they form groups in the first place). The main computation is then the calculation of the coarse homotopy groups of

cones on simplicial complexes: they are equal to the homotopy groups of the base of the cone. Preliminary results in this

direction are contained in the Göttingen doctoral thesis of Behnam Norouzizadeh [6].

Along the way, we discuss that there is a canonical coarse structure on the (euclidean) cone of a simplicial complex.

We also develop precise geometric triangulation techniques for cones of simplicial complexes which we expect to be of

relevance in other contexts.

Before we get to these results, we start with preliminaries, introducing the coarse category and then deriving some

gluing theorems for coarse maps, which are indispensable when working with geometric homotopy groups. We also work

out some basics of triangulations and subdivisions which we will need.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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2 MITCHENER et al.

1.1 The coarse category

Recall (compare e.g. [8]) that a (unital) coarse structure on a set𝑋 is a distinguished collection,  , of subsets of the product𝑋 × 𝑋 called entourages such that:

∙ Any finite union of entourages is an entourage. Any subset of an entourage is an entourage.∙ The union of all entourages is the entire space 𝑋 × 𝑋.∙ The inverse of an entourage𝑀:

𝑀−1 = {(𝑦, 𝑥) ∈ 𝑋 × 𝑋 | (𝑥, 𝑦) ∈ 𝑀}
is an entourage.∙ The composition of entourages𝑀1 and𝑀2:

𝑀1𝑀2 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑋 | (𝑥, 𝑦) ∈ 𝑀1, (𝑦, 𝑧) ∈ 𝑀2 for some 𝑦 ∈ 𝑋}
is an entourage.∙ The diagonal, Δ = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋} is an entourage.
A space 𝑋 equipped with a coarse structure is called a coarse space.

The above definition differs slightly from that of [4], but agrees with the definition of a unital coarse structure on a set

in [5, 9]. We call an entourage symmetric if it is equal to its inverse and we write 𝑆(𝑀) ∶= 𝑀 ∪ 𝑀−1 for the symmetric
entourage generated by the entourage𝑀.

If 𝑋 is a coarse space, and 𝑓, 𝑔 ∶ 𝑆 → 𝑋 are maps into 𝑋, the maps 𝑓 and 𝑔 are termed close or coarsely equivalent if the
set {(𝑓(𝑠), 𝑔(𝑠)) | 𝑠 ∈ 𝑆} is an entourage. We call a subset 𝐵 ⊆ 𝑋 bounded if the inclusion 𝐵 ↪ 𝑋 is close to a constant map.

The most important, and motivating, example of a coarse structure is the one of a proper metric space.

Example 1.1. Let 𝑋 be a proper metric space (i.e. the closures of sets of finite diameter are compact). The bounded

coarse structure on 𝑋 is by definition the unital coarse structure formed by defining the entourages to be subsets of𝑅-neighbourhoods of the diagonal:
𝐷𝑅 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | 𝑑(𝑥, 𝑦) < 𝑅}; 𝑅 ∈ ℝ.

The bounded sets are simply those which are bounded with respect to the metric.

Let 𝑋 and 𝑌 be coarse spaces. Then a map 𝑓 ∶ 𝑋 → 𝑌 is said to be controlled if for every entourage 𝑀 ⊆ 𝑋 × 𝑋, the
image

𝑓[𝑀] = {(𝑓(𝑥), 𝑓(𝑦)) | (𝑥, 𝑦) ∈ 𝑀}
is an entourage. A controlled map is called coarse if the inverse image of a bounded set is also bounded.

If 𝑋 and 𝑌 are metric spaces equipped with their bounded coarse structures, a map 𝑓 ∶ 𝑋 → 𝑌 is controlled if and only

if for all 𝑅 > 0 there exists 𝑆 > 0 such that if 𝑑(𝑥, 𝑦) < 𝑅 for 𝑥, 𝑦 ∈ 𝑋, then 𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝑆 in the space 𝑌.
We can form the category of all coarse spaces and coarsemaps.We call this category the coarse category. We call a coarse

map 𝑓 ∶ 𝑋 → 𝑌 a coarse equivalence if there is a coarse map 𝑔 ∶ 𝑌 → 𝑋 such that the composites 𝑔◦𝑓 and 𝑓◦𝑔 are close
to the identities 1𝑋 and 1𝑌 respectively.
Coarse spaces𝑋 and𝑌 are said to be coarsely equivalent if there is a coarse equivalence between them. There is a similar

notion of coarse equivalence between pairs of coarse spaces.

The following definition comes from [4].

Definition 1.2. Let 𝑋 be a Hausdorff space. A coarse structure on 𝑋 is said to be compatible with the topology if every

entourage is contained in an open entourage, and the closure of any bounded set is compact.
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Note that any coarse topological space is locally compact. In such a space, the bounded sets are precisely those which

are precompact. It also follows from the definition that any precompact subset of the product of the space with itself is an

entourage, and the closure of any entourage is an entourage.

Example 1.3. The bounded coarse structure on a proper metric space is compatible with the topology.

The purpose of this article is to develop some notions of homotopy theory in the coarse category. These homotopies

have to end eventually, but the end time will be allowed to depend on the given point in the coarse space (and to go to

infinity as one goes to infinity). This will be measured by coarse maps 𝑝 ∶ 𝑋 → ℝ+, which we call “basepoint projection”,
and which will be part of the structure for us.

Example 1.4. Let 𝑋 be a proper metric space. Endow ℝ+ with the bounded coarse structure coming from the metric.

Choose a point 𝑥0 ∈ 𝑋. Then we have a basepoint projection 𝑝𝑥0 ∶ 𝑋 → ℝ+ defined by the formula
𝑝𝑥0(𝑥) = 𝑑(𝑥, 𝑥0).

Observe that for any two points 𝑥0, 𝑦0 ∈ 𝑋 the maps 𝑝𝑥0 and 𝑝𝑦0 are close.
When proving results about coarse homotopies, the following lemma summarises many of the relevant properties of

the coarse space ℝ+. It is easy to check.
Lemma 1.5. Letℝ+ be the space [0,∞) equipped with the bounded coarse structure arising from the usual metric. Then the

following hold:

∙ Let𝑀,𝑁 ⊆ ℝ+ × ℝ+ be entourages. Then the sets
𝑀 + 𝑁 = {(𝑢 + 𝑥, 𝑣 + 𝑦) | (𝑢, 𝑣) ∈ 𝑀, (𝑥, 𝑦) ∈ 𝑁}

and

𝑀 − 𝑁 = {(𝑢 − 𝑥, 𝑣 − 𝑦) | (𝑢, 𝑣) ∈ 𝑀, (𝑥, 𝑦) ∈ 𝑁, 𝑢 ≥ 𝑥, 𝑣 ≥ 𝑦}
are entourages.∙ Let𝑀 ⊆ ℝ+ × ℝ+ be an entourage. Then the set

𝑍(𝑀) = {(𝑢, 𝑣) ∈ ℝ+ × ℝ+ | 𝑥 ≤ 𝑢 ≤ 𝑦, 𝑥 ≤ 𝑣 ≤ 𝑦, (𝑥, 𝑦) ∈ 𝑀}
is an entourage. Note that 𝑍(𝑍(𝑀)) = 𝑍(𝑀).∙ Let𝑀 ⊆ ℝ+ × ℝ+ be an entourage. Then the set{(𝑥 + 𝑎, 𝑦 + 𝑎) | 𝑎 ∈ ℝ+, (𝑥, 𝑦) ∈ 𝑀}
is an entourage.

Proposition 1.6. Let𝑋 be a coarse space, and let 𝑓, 𝑔 ∶ 𝑋 → ℝ+ be coarsemaps. Then the sum of 𝑓 and 𝑔 and themaximum
of 𝑓 and 𝑔 are coarse maps.
Proof. Let𝑀 ⊆ 𝑋 × 𝑋 be an entourage. The images 𝑓[𝑀] and 𝑔[𝑁] are entourages. Observe that

(𝑓 + 𝑔)[𝑀] = {(𝑓(𝑥) + 𝑔(𝑥), 𝑓(𝑦) + 𝑔(𝑦)) | (𝑥, 𝑦) ∈ 𝑀} ⊆ 𝑓[𝑀] + 𝑔[𝑁]
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and

max(𝑓, 𝑔)[𝑀] = {(max{𝑓(𝑥), 𝑔(𝑥)},max{𝑓(𝑦), 𝑔(𝑦)}), (𝑥, 𝑦) ∈ 𝑀}
⊆ 𝑓[𝑀] ∪ 𝑔[𝑀] ∪ 𝑆(𝑍(𝑆(𝑓(𝑀))) ∪ 𝑍(𝑆(𝑔(𝑀)))).

Hence by the above, the images (𝑓 + 𝑔)[𝑀] andmax(𝑓, 𝑔)[𝑀] are entourages.
Now, let 𝐵 ⊆ ℝ+ be bounded. Then we can choose 𝑎 > 0 such that 𝐵 ⊆ [0, 𝑎]. Hence

(𝑓 + 𝑔)−1[𝐵] ⊆ {𝑥 ∈ 𝑋 | 𝑓(𝑥) + 𝑔(𝑥) ≤ 𝑎} ⊆ {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≤ 𝑎} = 𝑓−1[0, 𝑎].
We see that the inverse image (𝑓 + 𝑔)−1[𝐵] is bounded. A similar argument tells us that the inverse imagemax(𝑓, 𝑔)−1[𝐵] is bounded.
So the maps 𝑓 + 𝑔 andmax(𝑓, 𝑔) are both coarse, and we are done. □

Definition 1.7. Let𝑋 and 𝑌 be coarse spaces. Then the set-theoretic product𝑋 × 𝑌 is equipped with the coarse structure

defined by taking the entourages to be subsets of sets of the form𝑀 × 𝑁, where𝑀 ⊆ 𝑋 × 𝑋 and𝑁 ⊆ 𝑌 × 𝑌 are entourages

for the spaces 𝑋 and 𝑌 respectively.

The product𝑋 × 𝑌 is not a product in the category-theoretic sense. The problem is that the projections𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑋
and 𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑋 are not in general coarse maps; the inverse images of bounded sets need not to be bounded.

1.2 Pasting together maps

Many of the constructions ofmaps we are going tomake are carried out in a piecewisemanner, andwe need criteria which

make sure that a map which has good properties on the pieces does have such good properties globally.

For the following, recall that for metric spaces 𝑋 and 𝑌 we call a map 𝑓 ∶ 𝑋 → 𝑌 Lipschitz if there is a constant 𝐶 > 0
such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐶𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Certainly, any Lipschitz map is continuous. We call 𝐶 the Lipschitz

constant of 𝑓; a Lipschitzmapwith Lipschitz constant𝐶 is called𝐶-Lipschitz. A bilipschitz homeomorphism is an invertible

Lipschitz map with Lipschitz inverse.

We will need the following properties of Lipschitz maps which are well known and easy to prove.

Lemma 1.8. A continuous and piecewise smooth Riemannianmap between smooth manifolds with a uniform bound on the

norm of the differential is Lipschitz.

A composition of Lipschitz maps is Lipschitz.

Lemma 1.9. Let 𝑋 be a geodesic metric space with a decomposition 𝑋 = 𝐴 ∪ 𝐵 for closed subsets𝐴 and 𝐵. Let 𝑌 be a metric

space, and let 𝑓 ∶ 𝑋 → 𝑌 be a map such that the restrictions 𝑓|𝐴 ∶ 𝐴 → 𝑌 and 𝑓|𝐵 ∶ 𝐵 → 𝑌 are both 𝐶-Lipschitz. Then also𝑓 ∶ 𝑋 → 𝑌 is 𝐶-Lipschitz.
More generally, if 𝑋 = ⋃𝑖∈𝐼 𝐴𝑖 is a union of closed subsets 𝐴𝑖 , which is such that every compact subset is contained in a

union of only finitelymany of the𝐴𝑖 , and the restriction𝑓|𝐴𝑖 ∶ 𝐴𝑖 → 𝑌 is𝐶-Lipschitz for every 𝑖 ∈ 𝐼, then themap𝑓 ∶ 𝑋 → 𝑌
is also 𝐶-Lipschitz.
Proof. Pick 𝑥, 𝑦 ∈ 𝑋. If 𝑥, 𝑦 ∈ 𝐴 or 𝑥, 𝑦 ∈ 𝐵, then 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐶𝑑(𝑥, 𝑦) by the Lipschitz condition on 𝑓|𝐴, and similar
if 𝑥, 𝑦 ∈ 𝐵. If 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 choose a geodesic 𝛾 ∶ [0, 𝑑(𝑥, 𝑦)] → 𝑋 from 𝑥 to 𝑦. Then, there is a point 𝑧 ∈ 𝐴 ∩ 𝐵 on that
geodesic. We obtain

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑(𝑓(𝑥), 𝑓(𝑦)) + 𝑑(𝑓(𝑦), 𝑓(𝑦)) ≤ 𝐶𝑑(𝑥, 𝑧) + 𝐶𝑑(𝑧, 𝑦) = 𝐶𝑑(𝑥, 𝑦).
Here, the first inequality is the triangle inequality, the second the Lipschitz property of 𝑓|𝐴 and 𝑓|𝐵 and the third the

geodesic property of 𝛾.
The same proof gives the general statement for 𝑋 = ⋃𝑖∈𝐼 𝐴𝑖 , using the fact that any geodesic has compact image and

therefore will involve only finitely many of the 𝐴𝑖 . □
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Proposition 1.10. Let 𝑋 be a proper metric space, considered as coarse space. Assume 𝑋 = 𝐴 ∪ 𝐵. Assume this decomposi-
tion is coarsely excisive, i.e. for each 𝑅 > 0 there is 𝑆 > 0 such that 𝑈𝑅(𝐴) ∩ 𝑈𝑅(𝐵) ⊂ 𝑈𝑆(𝐴 ∩ 𝐵), where 𝑈𝑅(𝑍) ∶= {𝑥 ∈ 𝑋 ∣𝑑(𝑥, 𝑍) ≤ 𝑅} for 𝑍 ⊂ 𝑋 is the 𝑅-neighborhood of 𝑍.
Assume 𝑓 ∶ 𝑋 → 𝑌 for a coarse space 𝑌 satisfies that 𝑓|𝐴 ∶ 𝐴 → 𝑌 and 𝑓|𝐵 ∶ 𝐵 → 𝑌 are coarse. Then also 𝑓 ∶ 𝑋 → 𝑌

is coarse.

Proof. Firstly, if 𝐾 ⊂ 𝑌 is bounded then 𝑓−1(𝑌) = (𝑓|𝐴)−1(𝐾) ∪ (𝑓|𝐵)−1(𝐾) is the union of two bounded sets and there-
fore bounded.

Secondly, given 𝑅 > 0 choose 𝑆 > 0 such that 𝑈𝑅(𝐴) ∩ 𝑈𝑅(𝐵) ⊂ 𝑈𝑆(𝐴 ∩ 𝐵). We have to show that the 𝑅-entourage{(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣ 𝑑(𝑥, 𝑦) ≤ 𝑅} in 𝑋 × 𝑋 is mapped to an entourage of 𝑌.
Let𝐴𝑅 = {(𝑥, 𝑦) ∈ 𝐴 × 𝐴 | 𝑑(𝑥, 𝑦) ≤ 𝑅} and 𝐵𝑅 = {(𝑥, 𝑦) ∈ 𝐵 × 𝐵 | 𝑑(𝑥, 𝑦) ≤ 𝑅}. Then the 𝑅-entourage {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣𝑑(𝑥, 𝑦) ≤ 𝑅} is the union of the sets 𝐴𝑅, 𝐵𝑅, and the set 𝐶 ∶= {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∪ 𝐵 × 𝐴 ∣ 𝑑(𝑥, 𝑦) ≤ 𝑅}. Hence, if (𝑥, 𝑦) ∈ 𝐶,

then 𝑥, 𝑦 ∈ 𝑈𝑅(𝐴) ∩ 𝑈𝑅(𝐵) ⊂ 𝑈𝑆(𝐴 ∩ 𝐵), i.e. the set 𝐶 is contained in the 𝑆-entourage of 𝐴 ∩ 𝐵 and therefore also in the𝑆-entourage of 𝐴.
As the restrictions 𝑓|𝐴 and 𝑓|𝐵 are coarse maps, the above considerations imply that the images of 𝐴𝑅, 𝐵𝑅, and 𝐶 are

each entourages. Consequently, the map 𝑓 is coarse. □
1.3 Simplicial complexes

The following lemma summarizes metric properties of simplicial maps between geometric simplices, known by elemen-

tary geometry.

Lemma 1.11. Let 𝜎 ∶= ⟨𝑣0, … , 𝑣𝑛⟩ ⊂ ℝ𝑁 be a geometric 𝑛-simplex in ℝ𝑁 spanned by (𝑛 + 1) vectors 𝑣0, … , 𝑣𝑛 in general
position. Let 𝑤0, … , 𝑤𝑛 be vertices of a geometric 𝑘-simplex 𝜏 ⊂ ℝ𝑀 .
Then there is a unique affine linear map 𝑓 ∶ 𝜎 → 𝜏 sending 𝑣𝑖 to 𝑤𝑖 . The Lipschitz constant of 𝑓 is bounded above by𝑐(𝑛, 𝑘, 𝑤)max{|𝑤𝑖 − 𝑤𝑗|} where 𝑐(𝑛, 𝑘, 𝑤) depends on the dimensions 𝑛 and 𝑘 of the simplices and in addition on a lower

bound 𝑤 on the width of 𝜎 defined to be the shortest distance from any vertex of 𝜎 to the opposite face.
We need specific, geometric, triangulations of 𝑐(𝑋) for a finite simplicial complex 𝑋 embedded simplicially into ℝ𝑛.

This can be achieved using standard subdivisions, as introduced by Whitney [11] and used by Dodziuk [2, Sect. 2].

Definition 1.12. A simplicial complex𝑋 is called locally ordered if there is a partial ordering on its vertices which restricts

to a total ordering on the vertices of each simplex of 𝑋.
Example 1.13. A total order on the vertices of a simplicial complex of course also is a partial order. A barycentric subdi-

vision has a canonical local order.

Definition 1.14. Let 𝜎 ∶= ⟨𝑣0, … , 𝑣𝑛⟩ ⊂ ℝ𝑁 be a simplex realized as convex hull of the 𝑛 + 1 affinely independent vertices𝑣0, … , 𝑣𝑛 ∈ ℝ𝑁 . We define its standard subdivision 𝑆(𝜎) as the simplicial complex with vertices 𝑣𝑖𝑗 ∶= (𝑣𝑖 + 𝑣𝑗)∕2 for0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.
On this set of vertices we define a partial order setting (𝑖, 𝑗) ≤ (𝑘, 𝑙) if and only if 𝑘 ≤ 𝑖 ≤ 𝑗 ≤ 𝑙. By definition, the sim-

plices of the standard subdivision are spanned by increasing sequences of vertices, making 𝑆(𝜎) locally ordered.
Given a locally ordered simplicial complex 𝑋 define a standard subdivision 𝑆(𝑋) by applying the standard decomposi-

tion to each simplex to obtain a simplicial decomposition of the whole simplicial complex. This is well defined due to the

compatibility of the local orders of the vertices of the different simplicies. Note that the vertices of the standard subdivision

inherit a partial order making it locally ordered which allows us to iterate the standard subdivision procedure.

Definition 1.15. Two geometric simplices 𝜎, 𝜏 ⊂ ℝ𝑁 are strongly similar if one can be obtained from the other by trans-

lation and multiplication by a positive constant.

The great advantage of the standard subdivision is [2, Lem. 2.5]:
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Lemma 1.16. Let𝑋 be a finite simplicial complex embedded intoℝ𝑁 , with a local order. There are only finitely many strong
similarity types of the simplices of iterated standard subdivisions of 𝑋.
We will also need several simplicial structures on 𝑋 × [0, 1] for a simplicial complex 𝑋.

Definition 1.17. Recall that, for a locally ordered simplicial complex𝑋 there is a canonical triangulation of𝑋 × [0, 1]with
the obvious simplicies in 𝑋 × {0} and 𝑋 × {1} coming from the triangulation of 𝑋 and where in addition for any ordered

simplex
(𝑣0, … , 𝑣𝑘) of 𝑋 and 0 ≤ 𝑗 ≤ 𝑘 we get a new simplex spanned by

(𝑣0, 0), … (𝑣𝑗 , 0), (𝑣𝑗 , 1), … , (𝑣𝑘, 1).
We nowdefine a “standard product subdivision”which restricts to the given triangulation on𝑋 × {0} but to the standard

subdivision 𝑆(𝑋) × {1} on the other end. The additional simplices here are the following:
Whenever 𝑢𝑙 ≤ 𝑢𝑙−1 ≤ …𝑢0 ≤ 𝑣0 < ⋯ < 𝑣𝑘 ≤ 𝑤0 ≤ …𝑤𝑙 are vertices of a simplex of 𝑋 such that

(𝑢0, 𝑤0) < (𝑢1, 𝑤1) <⋯ < (𝑢𝑙, 𝑤𝑙) in the standard subdivision we get a simplex of the “standard product subdivision” of 𝑋 × [0, 1] spanned by(𝑣0, 0), … , (𝑣𝑘, 0), ((𝑢0, 𝑤0), 1), … , ((𝑢𝑙, 𝑤𝑙), 1). It is a little combinatorial exercise that these simplices are indeed precisely
and in unique way unions of the simplices of the canonical triangulation of 𝑆(𝑋) × [0, 1] (which therefore further refines
our standard product subdivision): the convex hull of ⟨(𝑢0, 𝑤0), … , (𝑢𝑙, 𝑤𝑙)⟩ × {1} and ⟨𝑣0, … , 𝑣𝑘⟩ × {0} as above is precisely
the union of the convex hulls of ⟨(𝑢0, 𝑤0), … , (𝑢𝑙, 𝑤𝑙)⟩ × {1} and the simplices in the standard subdivision of ⟨𝑣0, … , 𝑣𝑘⟩
(times {0}), and this way we obtain precisely the simplices in the canonical triangulation of 𝑆(𝑋) × [0, 1].
Therefore the described standard product subdivision indeed giving a triangulation of 𝑋 × [0, 1].

2 COARSE HOMOTOPY

To develop the notion of homotopy for coarse spaces we first consider cylinders. Our definition is inspired by [3, Sect. 3].

Definition 2.1. Let 𝑋 be a coarse space, and let 𝑝 ∶ 𝑋 → ℝ+ be a coarse map. Then we define the 𝑝-cylinder
𝐼𝑝𝑋 = {(𝑥, 𝑡) ∈ 𝑋 × ℝ+ | 𝑡 ≤ 𝑝(𝑥) + 1}.

We have inclusions 𝑖0 ∶ 𝑋 → 𝐼𝑝𝑋 and 𝑖1 ∶ 𝑋 → 𝐼𝑝𝑋 defined by the formulas 𝑖0(𝑥) = (𝑥, 0) and 𝑖(𝑥) = (𝑥, 𝑝(𝑥) + 1),
respectively. The canonical projection 𝑞 ∶ 𝐼𝑝𝑋 → 𝑋 defined by the formula 𝑞(𝑥, 𝑡) = 𝑥 is a coarse map. The identities𝑞◦𝑖0 = 1𝑋 and 𝑞◦𝑖1 = 1𝑋 clearly hold.

Definition 2.2. Let 𝑋 and 𝑌 be coarse spaces. A coarse homotopy is a coarse map 𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 for some coarse map𝑝 ∶ 𝑋 → ℝ+.
We call coarse maps 𝑓0 ∶ 𝑋 → 𝑌 and 𝑓1 ∶ 𝑋 → 𝑌 coarsely homotopic if there is a coarse homotopy 𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 such

that 𝑓0 = 𝐻◦𝑖0 and 𝑓1 = 𝐻◦𝑖1.
This map𝐻 is termed a coarse homotopy between the maps 𝑓0 and 𝑓1.
Let 𝑓 ∶ 𝑋 → 𝑌 be a coarse map between coarse spaces. We call the map 𝑓 a coarse homotopy equivalence if there is a

coarse map 𝑔 ∶ 𝑌 → 𝑋 such that the composites 𝑔◦𝑓 and 𝑓◦𝑔 are coarsely homotopic to the identities 1𝑋 and 1𝑌 respec-

tively.

Example 2.3. Let 𝑋 and 𝑌 be coarse spaces. Let 𝑝 ∶ 𝑋 → ℝ+ be any coarse map. Let 𝑓0 ∶ 𝑋 → 𝑌 and 𝑓1 ∶ 𝑋 → 𝑌 be

close coarse maps. Then we can define a coarse homotopy𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 between the maps 𝑓0 and 𝑓1 by the formula

𝐻(𝑥, 𝑡) = { 𝑓0(𝑥), 𝑡 < 1,𝑓1(𝑥), 𝑡 ≥ 1.
Theorem 2.4. The notion of two coarse maps being coarsely homotopic is an equivalence relation.

Before proving this theorem we need a technical lemma.
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Lemma 2.5. Let 𝑞, 𝑝 ∶ 𝑋 → ℝ+ be coarse maps. Let us write 𝐼𝑝+𝑞𝑋 = 𝐴 ∪ 𝐵 where

𝐴 = {(𝑥, 𝑡) ∈ 𝐼𝑝+1𝑋 | 𝑡 ≤ 𝑝(𝑥)}; 𝐵 = {(𝑥, 𝑡) ∈ 𝐼𝑝+𝑞𝑋 | 𝑡 ≥ 𝑝(𝑥)}.
Suppose that 𝑓 ∶ 𝐼𝑝+𝑞𝑋 → 𝑌 is a map such that the restrictions 𝑓|𝐴 and 𝑓|𝐵 are coarse maps. Then the map 𝑓 is a

coarse map.

Proof. It is clear that the inverse image under the map 𝑓 of a bounded set is bounded, as the union of any two bounded

sets is bounded. Let𝑀 ⊆ (𝑋 × ℝ+) × (𝑋 × ℝ+) be an entourage. We need to show that the image 𝑓[𝑀] is an entourage.
Since the restrictions 𝑓|𝐴 and 𝑓|𝐵 are coarse, we know that the sets 𝑓[𝑀 ∩ (𝐴 × 𝐴)] and 𝑓[𝑀 ∩ (𝐵 × 𝐵)] are entourages.

We need to prove that the sets 𝑓[𝑀 ∩ (𝐴 × 𝐵)] and 𝑓[𝑀 ∩ (𝐵 × 𝐴)] are entourages. We will check only the first case; the
second case is similar.

Without loss of generality, suppose that 𝑀 = 𝑀1 × 𝑀2 ∩ 𝐼𝑝+𝑞𝑋 where 𝑀1 ⊆ 𝑋 × 𝑋 and 𝑀2 ⊆ ℝ+ × ℝ+ are symmet-

ric entourages containing the diagonal, and with 𝑀2 = 𝑍(𝑀2). We are here indulging in some mild abuse of notation
involving the order of various factors in products. Consider points (𝑥, 𝑠) ∈ 𝐴 and (𝑦, 𝑡) ∈ 𝐵 such that ((𝑥, 𝑠), (𝑦, 𝑡)) ∈ 𝑀.

The inequalities 𝑠 ≤ 𝑝(𝑥) and 𝑝(𝑦) ≤ 𝑡 hold. So either 𝑠 ≤ 𝑝(𝑦) ≤ 𝑡 or 𝑝(𝑦) ≤ 𝑠 ≤ 𝑝(𝑥). The former yields that(𝑝(𝑦), 𝑡), (𝑝(𝑦), 𝑠) ∈ 𝑍(𝑀2) = 𝑀2; the latter that (𝑝(𝑦), 𝑠) ∈ 𝑍(𝑝[𝑀1]). Since (𝑠, 𝑡) ∈ 𝑀2, in either case we have that(𝑝(𝑦), 𝑡), (𝑝(𝑦), 𝑠) ∈ 𝑍(𝑝[𝑀1])𝑀2. So if we let 𝑁 be the entourage 𝑀1 × 𝑍(𝑝[𝑀1])𝑀2 (which depends only on the

entourage𝑀 and the coarse map 𝑝), then ((𝑥, 𝑠), (𝑦, 𝑝(𝑦))) ∈ 𝑁 ∩ (𝐴 × 𝐴) and ((𝑦, 𝑝(𝑦)), (𝑦, 𝑡)) ∈ 𝑁 ∩ (𝐵 × 𝐵).
Therefore

(𝑓(𝑥, 𝑠), 𝑓(𝑦, 𝑡)) ∈ 𝑓[𝑁 ∩ (𝐴 × 𝐴)]𝑓[𝑁 ∩ (𝐵 × 𝐵)].
Hence the image 𝑓[𝑀 ∩ (𝐴 × 𝐵)] is contained in the entourage 𝑓[𝑁 ∩ (𝐴 × 𝐴)]𝑓[𝑁 ∩ (𝐵 × 𝐵)] and the map 𝑓 is

coarse. □
Proof of Theorem 2.4. The relation is reflexive by Example 2.3. Let 𝑝 ∶ 𝑋 → ℝ+ be a coarse map, and let𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 be

a coarse homotopy. Define a map𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 by the formula

𝐻(𝑥, 𝑡) = 𝐻(𝑥, 𝑝(𝑥) + 1 − 𝑡).
We claim that themap𝐻 is a coarse homotopy, thus proving that the relation of coarse homotopy is symmetric. To show

this fact, it suffices to show that the flip map 𝐹 ∶ 𝐼𝑝𝑋 → 𝐼𝑝𝑋 defined by the formula 𝐹(𝑥, 𝑡) = (𝑥, 𝑝(𝑥) + 1 − 𝑡) is coarse.
Let𝑀 ⊆ 𝑋 × 𝑋 and 𝑁 ⊆ ℝ+ × ℝ+ be entourages. Observe that

𝐹(𝑀 × 𝑁) ⊆ 𝑀 × (𝑝(𝑀) + 1 − 𝑁)
which is an entourage by Lemma 1.5 as 𝑝 is a coarse map.
Let 𝐴 ⊆ 𝑋 and 𝐵 ⊆ ℝ+ be bounded sets. Then

𝐹−1[𝐴 × 𝐵] ⊆ 𝐴 × (𝑝(𝐴) + 1 − 𝐵)
which is bounded since 𝑝 is coarse, and so takes bounded sets to bounded sets. We conclude that the map 𝐹 and hence

the map𝐻 are coarse.

We must now prove that the equivalence relation is transitive. Let 𝑝, 𝑝′ ∶ 𝑋 → ℝ+ be coarse maps. Then by Proposi-

tion 1.6, the sum 𝑝 + 𝑝′ + 1 ∶ 𝑋 → ℝ+ is also coarse.
Consider coarse homotopies𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 and𝐻′ ∶ 𝐼𝑝′𝑋 → 𝑌 such that𝐻(𝑥, 𝑝(𝑥) + 1) = 𝐻′(𝑥, 0) for all 𝑥 ∈ 𝑋. Define

a map 𝐻 + 𝐻′ ∶ 𝐼𝑝+𝑝′+1𝑋 → 𝑌 by the formula

(𝐻 + 𝐻′)(𝑥, 𝑡) = {𝐻(𝑥, 𝑡), 0 ≤ 𝑡 ≤ 𝑝(𝑥) + 1,𝐻′(𝑥, 𝑡 − (𝑝(𝑥) + 1)), 𝑝(𝑥) + 1 ≤ 𝑡 ≤ 𝑝(𝑥) + 𝑝′(𝑥) + 2.
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Then the map𝐻 + 𝐻′ is a coarse map by Lemma 2.5. Transitivity now follows. □
The above notion of coarse homotopy is not quite the one used in older literature for the coarse category. However, as

mentioned in [1], the conventional definition is not quite adequate for the purposes of coarse homology. Our definition is

the appropriate remedy.

The definition of coarse homotopy contains the choice of the basepoint projectionmap 𝑝 ∶ 𝑋 → ℝ+. It might seem that

we lose too much control here. However, for most spaces we are interested in we can normalize this:

Lemma 2.6. Let 𝑋 be a path-metric space, considered as coarse space. For 𝑥0 ∈ 𝑋, let 𝑝0 ∶ 𝑋 → ℝ+; 𝑥 ↦ 𝑑(𝑥, 𝑥0) be the
standard basepoint projection. Let 𝑞 ∶ 𝑋 → ℝ+ be any coarse map. Then any coarse homotopy 𝐻 ∶ 𝐼𝑞𝑋 → 𝑌 between 𝑓 ∶𝑋 → 𝑌 and 𝑔 ∶ 𝑋 → 𝑌 gives rise to a coarse homotopy �̄� ∶ 𝐼𝑝0𝑋 → 𝑌 between 𝑓 and 𝑔.
The statement generalizes in the obvious way to 𝑋 with finitely many path components.

Proof. As 𝑋 is a path metric space, it is well known that the coarse map 𝑞 is large scale Lipschitz, i.e. there is 𝐿 > 0 such
that |𝑞(𝑥) − 𝑞(𝑦)| ≤ 𝐿𝑑(𝑥, 𝑦) + 𝐿 for all 𝑥, 𝑦 ∈ 𝑋. In particular,

|𝑞(𝑥)| ≤ ||||𝑞(𝑥) − 𝑞(𝑥0)|||| + ||||𝑞(𝑥0)|||| ≤ 𝐿𝑝0(𝑥) + 𝐶
for 𝐶 = 𝐿 + ||||𝑞(𝑥0)|||| and for all 𝑥 ∈ 𝑋. Set 𝑞′(𝑥) ∶= 𝐶 + 𝐿𝑝0(𝑥). We just saw that 𝑞 ≤ 𝑞′. We can extend the homotopy 𝐻
to𝐻′ ∶ 𝐼𝑞′𝑋 → 𝑌 by extending “constantly” for the additional time, i.e.𝐻′(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) if (𝑥, 𝑡) ∈ 𝐼𝑞′𝑋 ⧵ 𝐼𝑞𝑋.
Finally, there is a canonical coarse equivalence Ψ ∶ 𝐼𝑝0𝑋 → 𝐼𝑞′𝑋, with

Ψ(𝑥, 𝑡) ∶= {(𝑥, (𝐶 + 1)𝑡), 0 ≤ 𝑡 ≤ 1,(𝑥, 𝐶 + 1 + 𝐿(𝑡 − 1)), 1 ≤ 𝑡 ≤ 𝑝0(𝑥) + 1,
and we define �̄� ∶= 𝐻′◦Ψ which has all the desired properties. □
The following example can be found in several places in the literature, for example following [7, Lem. 9.9]. We write

out the argument again here in order to establish that everything is in order when we use our notion of coarse homotopy.

Example 2.7. Let 𝑀 be a complete simply-connected Riemannian manifold of non-positive sectional curvature. The

metric turns the manifold𝑀 into a coarse space. The exponential map exp ∶ ℝ𝑛 → 𝑀 is a distance-increasing diffeomor-

phism. The inverse log ∶ 𝑀 → ℝ𝑛 is therefore a coarse map.
We claim that the map log is a coarse homotopy equivalence. The problem is that the inverse map exp is not coarse;

otherwise, the result would be trivial.

Let us call a map 𝑠 ∶ ℝ𝑛 → ℝ𝑛 a radial shrinking if it takes the form 𝑠(𝑟, 𝜃) = (𝑓(𝑟), 𝜃) in polar coordinates, where the
map 𝑓 ∶ ℝ+ → ℝ+ is a distance-decreasing differentiable map with positive derivative. Then it is clear that any radial

shrinking is coarsely homotopic to the identity map. Moreover, it is not hard to see that also exp ◦𝑠◦ log ∶ 𝑀 → 𝑀 is a

coarse map coarsely homotopic to the identity.

Now, we can find a radial shrinking 𝑠 such that the composite exp ◦𝑠 is a coarse map. By the above remark, the com-
posites log ◦ exp ◦𝑠 and exp ◦𝑠◦ log are coarsely -homotopic to identity maps, and so the map log is a coarse homotopy
equivalence as claimed.

In particular, Euclidean space ℝ𝑛 and hyperbolic space ℍ𝑛 are coarsely homotopy equivalent.

3 METRIC CONES

In this section we collect some basic properties of metric cones. In particular, we show that for a finite simplicial com-

plex there is a canonical (euclidean) coarse structure (even metric structure up to bilipschitz equivalence) on the infinite

cone.
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Moreover, we prove a regularity result similar to the simplicial approximation theorem (and based on it): in our context

every coarse map is coarsely equivalent to a Lipschitz map.

Definition 3.1. Let 𝑋 be a subset of the unit sphere of some real Hilbert space 𝐻. Then we define the metric cone with
spherical base (with the induced metric)

𝐶(𝑋) = {𝑡𝑥 | 𝑡 ≥ 0, 𝑥 ∈ 𝑋}.
If 𝑌 is a subset of some real Hilbert space𝐻 we define themetric cone with flat base (with the induced metric)

𝑐(𝑌) ∶= {(ℎ𝑥, ℎ) ∣ ℎ ≥ 0, 𝑥 ∈ 𝑌} ⊂ 𝐻 × ℝ.
For 𝑅 ≥ 0 we set 𝑐𝑅(𝑌) ∶= 𝑐(𝑌) ∩ 𝐻 × [𝑅,∞), that is to say 𝑐𝑅(𝑌) is the part of the cone of height at least 𝑅. If 𝑌 is

compact then the inclusion 𝑐𝑅(𝑌) ↪ 𝑐(𝑌) is a coarse equivalence. Therefore, for us it usually is sufficient to consider only
the part 𝑐𝑅(𝑌), which is sometimes technically more convenient.
Example 3.2. Let 𝑌 = 𝑆𝑛 be the whole unit sphere. Then 𝐶(𝑆𝑛) = ℝ𝑛+1.
This definition is further reaching than it first appears. For example, every finite 𝐶𝑊-complex is homeomophic to a

subset of the unit sphere of aHilbert space, even of a finite dimensional one.However, it is not completely clearwhether the

resulting coarse space is uniquely defined, up to coarse equivalence, by the homeomorphism type of𝑋. It is true, however,
that a finite simplicial complex gives rise to a preferred coarse type of the metric cone (determined by the simplicial

structure), what we discuss next.

Lemma 3.3. Let 𝑋 be a connected finite simplicial complex. Let 𝑓 ∶ 𝑋 → ℝ𝑛 and 𝑔 ∶ 𝑋 → 𝑆𝑚 be PL-embeddings.

Form the cones 𝑐(𝑓(𝑋)) and 𝐶(𝑔(𝑋)). We have a canonical homeomorphism
Ψ ∶ 𝑐(𝑓(𝑋)) → 𝐶(𝑔(𝑋)); (ℎ𝑓(𝑥), ℎ) ↦ ℎ𝑔(𝑥) for 𝑥 ∈ 𝑋, ℎ ≥ 0.

If we equip each cone with either the subspace metric obtained as restriction of the metric on ℝ𝑛+1 or ℝ𝑚+1, or with the
induced pathmetric, then the homeomorphsimΨ and the identitymaps 𝑖𝑑𝑐(𝑓(𝑋)) and 𝑖𝑑𝐶(𝑔(𝑋)) applied when changingmetrics
are bilipschitz homeomorphisms.

In particular, the bilipschitz class does not depend on the chosen PL-embedding, on the question whether we use a spher-

ical base as in 𝐶(𝑔(𝑋)) or a euclidean base as in 𝑐(𝑓(𝑋)), nor on the question whether we use the induced metric from the

embedding or the induced path metric.

The same result applies to 𝑐𝑅(𝑓(𝑋)) for fixed 𝑅 > 0.
Proof. It is well known that for the PL-embeddings 𝑓 and 𝑔 the subspace metric and the path metric on the image are
bilipschitz equivalent. Moreover, because the maps are piecewise linear and 𝑋 is compact, any two PL-embeddings either

into ℝ𝑛 or into 𝑆𝑚 induce equivalent metrics on 𝑋.
Consider now the compact cones (the parts of the full cones with height between 0 and 1) 𝑐𝑓(1) and 𝐶𝑔(1), where for𝑅 > 0

𝑐𝑓(𝑅) ∶= {(ℎ𝑥, ℎ) ∈ 𝑐(𝑓(𝑋)) ∣ 0 ≤ ℎ ≤ 𝑅} ⊂ ℝ𝑛 × [0, 𝑅],
𝐶𝑔(𝑅) ∶= {𝑡𝑥 ∈ 𝐶(𝑔(𝑋)) ∣ 0 ≤ 𝑡 ≤ 𝑅} ⊂ 𝐵𝑅(0) ⊂ ℝ𝑚+1.

These are again PL-embedded simplicial complexes with the resulting induced metrics from the embeddings, so that

the identity map and the restriction of Ψ are bilipschitz homeomorphisms for the restricted metrics and the induced

path metrics.

Next, observe that for arbitrary 𝑅 > 0, but fixed 𝑓, 𝑔 the parts 𝑐𝑓(𝑅) of the cones 𝑐𝑓(𝑋) and 𝐶𝑔(𝑅) of 𝐶𝑔(𝑋) are just scaled
versions of 𝑐𝑓(1) and 𝐶𝑔(1). In particular, the identity maps (for the path metric versus the restricted metric) and the map
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Ψ (restricted to 𝑐𝑓(𝑅)) are just a scaling of the corresponding maps on 𝑐𝑓(1) and 𝐶𝑔(1), respectively. This implies directly
that these maps remain bilipschitz homeomorphisms with the same bilipschitz constant as the maps for 𝑅 = 1.
This, in turn, implies that also the maps defined on the full cones are bilipschitz with the same bilipschitz constant, by

the very definition of the Lipschitz property. □
Of course the spaces 𝑐(𝑓(𝑋)) and 𝐶(𝑔(𝑋)) are geodesic when equipped with path metrics.
Note that the space 𝑐𝑅(𝑓(𝑋)) is not bilipschitz equivalent to the full cone 𝑐𝑓(𝑋).

Definition 3.4. Let 𝑋 ⊂ ℝ𝑁 be a finite simplicial complex simplically embedded.

Write 𝑐(𝑋) ⊂ ℝ𝑁 × [0,∞) as the union of the convex hull of 0 and 𝑋 × {1}, the compact cone on 𝑋 with the obvious

simplicial structure and the infinitely many copies of 𝑋 × [0, 1] given as
𝑍𝑋(𝑛) ∶= {(ℎ𝑥, ℎ) ∣ 𝑥 ∈ 𝑋, ℎ ∈ [𝑛, 𝑛 + 1]} for 𝑛 = 1, 2, … .

We now define a simplicial structure on 𝑐(𝑋) as follows: we use the 𝑛-th standard subdivision of 𝑋 on 𝑘𝑋 × {𝑘} for𝑘 ∈ ℕ with 2𝑛 ≤ 𝑘 < 2𝑛+1 and the product simiplicial structure of Definition 1.17 on 𝑍𝑋(𝑘) compatible with the so given
simplicial structure on the top and the bottom.

Lemma 3.5. There are only finitely many strong similarity types in the simplicial structure of 𝑐(𝑋) given in Definition 3.4.
Moreover, the lengths of the edges are contained in a compact interval [𝑎, 𝑏] with 0 < 𝑎 < 𝑏 < ∞. In particular, there is a

positive lower bound on the width of the simplices and an upper bound on the diameter.

Proof. Scaling does not change the strong similarity type, therefore by Lemma 1.16 there are only finitely many strong

similarity types among the simplices of the cross sections 𝑘𝑥 × {𝑘} for 𝑘 ∈ ℕ. The remaining simplices are obtained from
these by two procedures to obtain triangulations of𝑋 × [0, 1] subdividing𝜎 × [0, 1] for a simplex𝜎, which results in finitely
many new strong similarity types for each similarity type of 𝜎, which are then also further scaled to obtain the simplices
of 𝑐(𝑋). Furthermore, there are finitely many more simplices at the tip of the cone.
The lengths of the edges in our triangulation are bounded above because we perform a further standard subdivision

of the cross-section (which halfs each original edge) as soon as the complex is scaled by 2 in 𝑘𝑋 × {𝑘}. The standard sub-
division procedure does only produce edges whose length is at least half the length of an edge of the original simplicial

complex. Therefore, in the cross sections 𝑘𝑋 × {𝑘} the edges are never shorter than the shortest edge of the original trian-
gulation of 𝑋. The statement about the lower and upper bound on the geometry of the simplices of the triangulation now
follows immediately. □
The following proposition is needed for the technical heart of our construction to prove the main result, contained

in Section 5. It says in a very precise way that concepts of coarse maps and coarse homotopies between cones of finite

simplicial complexes can be reduced to proper Lipschitz maps and coarse Lipschitz homotopies.

Proposition 3.6. Let𝑋,𝑌 ⊂ ℝ𝑁 be finite geometric simplicial complexes with subcomplexes𝑋0 ⊂ 𝑋,𝑌0 ⊂ 𝑌 and with cones𝑐(𝑋), 𝑐(𝑌) respectively. Then every coarse map of pairs 𝜙 ∶ (𝑐(𝑌), 𝑐(𝑌0)) → (𝑐(𝑋), 𝑐(𝑋0)) is close (i.e. coarsely equivalent) to
a proper Lipschitz map of pairs 𝑓 ∶ (𝑐𝐿(𝑌), 𝑐𝐿(𝑌0)) → (𝑐(𝑋), 𝑐(𝑋0)) where we restrict the domain to the coarsely equivalent𝑐𝐿(𝑋) for a suitable 𝐿 > 0. The map 𝑓 can be chosen to be simplicial for triangulations of the cones as in Definition 3.4.
Moreover, if the map 𝜙 is already Lipschitz when restricted to 𝑐(𝑌1) for a further subcomplex 𝑌1 of 𝑌, then the maps 𝜙 and

the 𝑓 constructed in the process and restricted to 𝑐𝐿(𝑌1) are Lipschitz homotopic as maps of pairs (𝑐𝐿(𝑌1), 𝑐𝐿(𝑌1 ∩ 𝑌0)) →(𝑐(𝑋), 𝑐(𝑋0)). Even better, the above map 𝑓 can be replaced by a coarsely equivalent Lipschitz map 𝑓, which coincides with 𝜙
on 𝑐(𝑌1).
Finally, suppose the maps 𝜙, 𝜓 ∶ (𝑐(𝑌), 𝑐(𝑌0)) → (𝑐(𝑋), 𝑐(𝑋0)) are equivalent by a coarse homotopy that is proper

Lipschitz when restricted to 𝑐(𝑌1). Let 𝑓 and 𝑔 be proper Lipschitz maps constructed above, coarsely equivalent to 𝜙 or 𝜓,
respectively, with 𝑓|𝑐(𝑌1) = 𝜙|𝑐(𝑌1) and 𝑔|𝑐(𝑌1) = 𝜓|𝑐(𝑌1). Then there is a proper Lipschitz homotopy of pairs between 𝑓 and 𝑔
which coincides with the original homotopy on 𝑐(𝑌1).



MITCHENER et al. 11

Proof. The strategy is to replace our map by a simplicial map for suitable and regular enough triangulations. The

Lipschitz property will then follow from Lemma 1.11.

We choose the triangulation of 𝑐(𝑋) as in Definition 3.4.
To obtain the desired simplicial map we follow the method of proof of the classical simplicial approximation theorem

[10, Sect. 3.4] and [12].

For this, choose 𝑅 > 0 such that diam(𝜙(Sk(𝑥))) ≤ 𝑅 for every vertex 𝑥 in 𝑐(𝑌), where Sk(𝑥) is the closed star of the
vertex 𝑥. This is possible due to Lemma 3.5 (which gives a uniform upper bound on the diameters of all such stars) and

the fact that 𝜙 is a coarse map between metric spaces.
Next, consider the triangulation ofDefinition 3.4 on 𝑐1(𝑋). By Lemma3.5, the simplices of this triangulation are obtained

from finitely many congruence types, scaled by elements in [𝑎, 𝑏] for a compact subset of (0,∞). This implies that there is𝑟 > 0 such that every 𝑟-ball is contained in the open star of a vertex (the covering by open stars of simplices has Lebesgue
number ≥ 𝑟). Dually, by just scaling we obtain: there is 𝐿′ > 0 such that for the 𝐶-scaled triangulation of Definition 3.4 on𝑐𝐿′(𝑋) every 𝑅-ball is contained in the open star of a simplex.
Use now the properness of themap 𝜙 to choose a natural number 𝐿 > 0 such that 𝜙(𝑐𝐿(𝑌)) ⊂ 𝑐𝐿′(𝑋). Now, the standard

conditions for the proof of the simplicial approximation theorem of [10, Sect. 3.4] are satisfied: given any vertex 𝑣 of our
triangulation of 𝑐𝐿(𝑌), the images of the collection of all vertices connected to 𝑣 by an edge is contained in an open star of
a vertex 𝑤𝑣 of the chosen triangulation of 𝑐𝐿′(𝑋). Consequently, we can now define a simplicial map 𝑓 ∶ 𝑐𝐿(𝑌) → 𝑐𝐿′(𝑋)
defined by sending each vertex 𝑣 to an appropriate vertex 𝑤𝑣. Automatically, as in [10, Cor. 3.4.4] the subcomplex 𝑌0 will
be mapped to the subcomplex 𝑋0 by this construction. Moreover, 𝑓 and 𝜙 have distance at most 𝐷, where 𝐷 is an upper

bound on the diameters of the simplices of our scaled triangulation of 𝑐(𝑋). Upto scaling, there are only finitely many
isometry types of simplices. By Lemma 1.11 and Lemma 1.9, the map 𝑓 is globally Lipschitz.
The standard construction of simplicial approximation provides a well defined “straight line” homotopy of pairs𝐻 ∶ 𝑐𝐿(𝑌) × [0, 1] → 𝑐𝐿′(𝑋) between 𝜙 and 𝑓, with𝐻(𝑥, 𝑡) = (1 − 𝑡)𝜙(𝑥) + 𝑡𝑓(𝑥)where our construction makes sure that

this is indeed making sense and given by a path inside a simplex of 𝑐𝐿′(𝑋). In particular, throughout this homotopy 𝑋0
is mapped to 𝑌0. Of course, if 𝜙 is not continuous also 𝐻 is not. However, if 𝜙 is Lipschitz then the triangle inequality

implies that 𝐻 is also Lipschitz, with Lipschitz constant determined by the maximum 𝐾 of the Lipschitz constants of 𝑓
and 𝜙 and by 𝐷. Concretely, if 𝑥, 𝑦 lie in the same simplex of 𝑌 (which suffices to consider) and 0 ≤ 𝑠, 𝑡 ≤ 1 then

|𝐻(𝑥, 𝑡) − 𝐻(𝑦, 𝑠)| = |(1 − 𝑡)𝜙(𝑥) + 𝑡𝑓(𝑥) − (1 − 𝑠)𝜙(𝑦) − 𝑠𝑓(𝑦)|
≤ (1 − 𝑡)|𝜙(𝑥) − 𝜙(𝑦)| + 𝑡|𝑓(𝑥) − 𝑓(𝑦)| + |𝑡 − 𝑠| ⋅ |𝜙(𝑦) − 𝑓(𝑦)|
≤ 𝐾𝑑(𝑥, 𝑦) + |𝑡 − 𝑠| ⋅ 𝐷

which implies the claim. The same argument applies when we restrict everything to a subcomplex 𝑐𝐿(𝑌1) on which 𝜙
is Lipschitz.

We now use this Lipschitz homotopy 𝐻 to change 𝑓 to coincide with 𝜙 on the subcomplex 𝑐𝐿(𝑌1). For this, we use a
geometric topological implementation of the fact that the inclusion of 𝑐𝐿(𝑌1) into 𝑐𝐿(𝑌) is a cofibration. More specifically,
consider the space 𝑍 ∶= 𝑐𝐿(𝑌1) × [0, 1] ∪𝑐𝐿(𝑌1) 𝑐𝐿(𝑌) where we use the embedding 𝑐𝐿(𝑌1) → 𝑐𝐿(𝑌1) × [0, 1]; 𝑦 ↦ (𝑦, 1)
to glue.

We now construct a map 𝑅 ∶ 𝑐𝐿(𝑌) → 𝑍 whichmaps 𝑐𝐿(𝑌1) to 𝑐𝐿(𝑌1) × {0} in the obvious way andwhich is the identity
on all simplices of 𝑐𝐿(𝑌) not touching 𝑐𝐿(𝑌1).
Such a map is constructed by “stretching out” a simplex 𝑐𝜎 of 𝑐𝐿(𝑌) with a face 𝜏 ∶= 𝜎 ∩ 𝑐𝐿(𝑌1) not equal to 𝜎 to𝜏 × [0, 1] ∪𝜏×{1} 𝜎, i.e. by choosing (compatible with face restrictions) suitable maps

𝑅𝜎 ∶ 𝜎 → 𝜏 × [0, 1] ∪𝜏×{1} 𝜎
sending the face 𝜏 identically to 𝜏 × {0} and the complementary face 𝜏⟂ (spanned by all simplices of 𝜎 ⧵ 𝜏) identically to𝜏⟂. It is an elementary observation that this can be done, and that this can be done such that restricted to each simplex
the map is Lipschitz (albeit not affine linear). But now, because up to scaling we have only finitely many configurations

due to Lemma 3.5, it suffices to use finitely maps 𝑅𝜎 up to scaling to construct the map 𝑅. This implies that 𝑅 is globally

Lipschitz.



12 MITCHENER et al.

The map 𝑓 is now defined as the composition of 𝑅 with the union of 𝑓 on 𝑐𝐿(𝑌) ⊂ 𝑍 and the homotopy 𝐻 on𝑐𝐿(𝑌1) × [0, 1] ⊂𝑍which as a composition of unions of Lipschitzmaps is still Lipschitz and also clearly coarsely equivalent
to 𝑓.
The statement about homotopies follows from the general (relative) statement applied to the coarse homotopy which

by Lemma 2.6 we can assume to be defined on 𝐼𝑝𝑐(𝑌) for 𝑝 ∶ 𝑐(𝑌) → ℝ+; (ℎ𝑦, ℎ) ↦ 𝑦 the standard height projection. But,
then 𝐼𝑝𝑐(𝑌) = 𝑐(𝑌 × [0, 1]), so that indeed we are in the situation already discussed. □
Definition 3.7. For 𝑋,𝑌 ⊂ ℝ𝑛 we form the cones 𝑐(𝑋) ⊂ 𝑋 × [0,∞) and 𝑐(𝑌) ⊂ 𝑌 × [0,∞). A map 𝑓 ∶ 𝑋 → 𝑌 induces

a radialmap 𝑐(𝑓) ∶ 𝑐(𝑋) → 𝑓(𝑌); (ℎ𝑥, ℎ) ↦ (ℎ𝑓(𝑥), ℎ).
Remark 3.8. Similarly, for cones with spherical base one defines the radial map 𝑓𝐶 induced by a map 𝑓 between the

bases of the cones. Unfortunately, the maps 𝑓𝐶 and 𝑐(𝑓) are not in general coarse. They are, however, if the initial map
is Lipschitz.

Proposition 3.9. Let 𝑋 and 𝑌 be bounded subsets of Hilbert spaces (with diameter bounded by 𝐷). Let 𝑓 ∶ 𝑋 → 𝑌 be a

proper Lipschitz map. Then the induced map 𝑐(𝑓) is a proper Lipschitz map. In particular, the map 𝑐(𝑓) is coarse.
Proof. If 𝐵 ⊆ 𝑐(𝑌) is compact, then the inverse image 𝑐(𝑓)−1[𝐵] ⊆ 𝑐(𝑋) is also compact by the properness of 𝑓.
Let 𝐿 be the Lipschitz constant of 𝑓. Let 𝑅 > 0, 𝑠, 𝑡 ∈ ℝ+ and 𝑥, 𝑦 ∈ 𝑋, and suppose that ‖(𝑠𝑥, 𝑠) − (𝑡𝑦, 𝑡)‖ < 𝑅. Then it

follows that |𝑠 − 𝑡| < 𝑅 and by the triangle inequality

𝑠‖𝑥 − 𝑦‖ ≤ ‖𝑠𝑥 − 𝑡𝑦‖ + |𝑠 − 𝑡|‖𝑦‖ ≤ 𝑅 + 𝑅𝐷.
Now

‖𝑐(𝑓)(𝑠𝑥, 𝑥) − 𝑐(𝑓)(𝑡𝑦, 𝑡)‖ = ‖(𝑠𝑓(𝑥) − 𝑡𝑓(𝑦), 𝑠 − 𝑡)‖
≤ 2(𝑠‖𝑓(𝑥) − 𝑓(𝑦)‖ + |𝑠 − 𝑡|‖𝑓(𝑦)‖ + |𝑠 − 𝑡|)
≤ 2(𝐿𝑠‖𝑥 − 𝑦‖ + (𝐷 + 1)|𝑠 − 𝑡|).
≤ 2(𝐿 + 1)(𝐷 + 1) ⋅ 𝑅

so the map 𝑐(𝑓) is Lipschitz with Lipschitz constant ≤ 2(𝐿 + 1)(𝐷 + 1). □
Furthermore, the condition that the map 𝑓 ∶ 𝑋 → 𝑌 is Lipschitz is not a severe one up to homotopy, as the next result

shows.

Lemma 3.10. Let
(𝑋, 𝑋0) and (𝑌, 𝑌0) be pairs of finite simplicial complexes, equipped with simplicial metrics. Let𝑓 ∶ (𝑋,𝑋0) → (𝑌,𝑌0) be a continuous map. Then 𝑓 is homotopic to a Lipschitz map.

Further, if 𝑓0, 𝑓1 ∶ 𝑋 → 𝑌 are homotopic maps, and 𝑔0, 𝑔1 ∶ 𝑋 → 𝑌 are Lipschitz maps homotopic to 𝑓0 and 𝑓1 respec-
tively, then we have a Lipschitz map𝐻 ∶ 𝑋 × [0, 1] → 𝑌 such that𝐻(−, 0) = 𝑔0 and𝐻(−, 1) = 𝑔1.
If the map 𝑓 or the homotopy 𝐻 is already simplicial (and hence Lipschitz) when restricted to a subcomplex 𝐴 ⊂ 𝑋 then

we can choose the Lipschitz map and Lipschitz homotopy relative to𝐴 (i.e. restricted to𝐴 all maps and homotopies coincides

with the given ones).

Proof. By the relative simplicial apprixomation theorem [12], after a suitable subdivision of the simplicial structure of 𝑋
the map 𝑓 has a simplicial approximation 𝑔, which is homotopic to 𝑓, kept unchanged on the subcomplex 𝐴 where it

already was simplicial and still maps 𝑋0 to 𝑌0.
Restricted to each simplex with any chosen simplicial metric, the map 𝑔 is Lipschitz, being affine linear between this

simplex and a simplex of 𝑌. The associated path metric is geodesic (by compactness of 𝑋). Because there are only finitely
many simplices involved, the map 𝑔 is globally Lipschitz by Lemma 1.9.
Any two metrics we obtain by subdivision and the compatible choice of a simplicial metric on each simplex are bilip-

schitz equivalent.
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The homotopy statement follows in the same way applying the relative simplicial approximation theorem to𝑋 × [0, 1]. □
4 COARSE HOMOTOPY GROUPS

In order to define coarse homotopy groups, we need a coarse analogue of a basepoint in topology.

Definition 4.1. Let 𝑋 be a coarse space. An ℝ+-basepoint for 𝑋 is a coarse map 𝑖0 ∶ ℝ+ → 𝑋.
If 𝑌 is another coarse space with ℝ+-basepoint 𝑗0, then a coarse map 𝑓 ∶ 𝑋 → 𝑌 is termed ℝ+-pointed if 𝑗0 = 𝑓◦𝑖0.
The above definition immediately suggests the following.

Definition 4.2. Let 𝑋 be a coarse space. Then we define the 0-th coarse homotopy set, 𝜋coarse0 (𝑋), to be the set of coarse
homotopy classes of maps from ℝ+ to 𝑋.
For convenience, we write [𝑖] ∈ 𝜋coarse0 (𝑋) to denote the coarse ℝ+-homotopy class of a map 𝑖 ∶ ℝ+ → 𝑋.

Example 4.3. Let 𝐵 be a bounded coarse space. Then there are no coarse maps ℝ+ → 𝐵, and so 𝜋coarse0 (𝐵) = ∅.
Remark 4.4. Computing this coarse homotopy set is more difficult than it might seem at first glance. The idea is of course

that one counts the “components at infinity”.

In particular, one would expect 𝜋coarse0 (ℝ𝑛) to have two elements if 𝑛 = 1 and exactly one element if 𝑛 ≥ 2.
However, we can define many coarse maps ℝ+ → ℝ2, for example an embedding as a ray (a radial map, and it is easy

to see that these are all coarsely homotopic to each other), but also an embedding which slowly spirals around the origin

and (to be a proper map) out to infinity. It is far from obvious how to homotop such a map to the radial inclusion.

It is a consequence of the main result, Theorem 5.6, of this paper that the above statements are true.

A coarse pair is a pair of coarse space (𝑋,𝐴) along with a coarse map 𝑘𝐴 ∶ 𝐴 → 𝑋.
Definition 4.5. Let (𝑋,𝐴) and (𝑌, 𝐵) be coarse pairs. A coarse map 𝑓 ∶ (𝑋,𝐴) → (𝑌, 𝐵) is a commutative diagram

Definition 4.6. Let 𝑓, 𝑔 ∶ (𝑋,𝐴) → (𝑌, 𝐵) be coarse maps such that 𝑓|𝐴 = 𝑔|𝐴. A relative coarse homotopy between 𝑓
and 𝑔 is a coarse homotopy 𝐻 ∶ 𝐼𝑝𝑋 → 𝑌 between the maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 such that 𝐻(𝑎, 𝑡) = 𝑓(𝑎) for all 𝑎 ∈ 𝐴 and𝑡 ≤ 𝑝(𝑎) + 1.
We call a coarse map of pairs 𝑓 ∶ (𝑋,𝐴) → (𝑌, 𝐵) a relative coarse homotopy equivalence if there is a coarse map of

pairs 𝑔 ∶ (𝑌, 𝐵) → (𝑋,𝐴) such that the composites 𝑔◦𝑓 and 𝑓◦𝑔 are relatively coarsely homotopic to the identities 1𝑋 and1𝑌 , respectively.
The following definition is directly inspired by the classical definition of homotopy groups.

Definition 4.7. Let 𝑋 be a coarse space with ℝ+-basepoint 𝑖0 ∶ ℝ+ → 𝑋. For 𝑛 ≥ 1 define the 𝑛-th coarse homotopy
group 𝜋𝑐𝑜𝑎𝑟𝑠𝑒𝑛 (𝑋, 𝑖0) to be the set of relative ℝ+-pointed coarse homotopy classes of maps

𝐹 ∶ (𝑐([0, 1]𝑛), 𝑐(𝜕[0, 1]𝑛)) → (𝑋, 𝑖0[ℝ+])
such that 𝐹|𝑐(𝜕[0,1]𝑛) = 𝑖0◦𝑝.
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Here 𝑝 ∶ 𝑐([0, 1]𝑛) → ℝ+; (𝑥, ℎ) ↦ ℎ just denotes the height variable of the cone. A homotopy is ℝ+-pointed if it pre-
serves the ℝ+-basepoint throughout.
More generally, for a coarse pair 𝑘𝐴 ∶ 𝐴 → 𝑋 withℝ+-basepoint 𝑖0 ∶ ℝ+ → 𝐴we define the relative 𝑛-th coarse homo-

topy “group” 𝜋coarse𝑛 (𝑋,𝐴, 𝑖0) to be the set of relative ℝ+-pointed coarse homotopy classes of maps
𝐹 ∶ (𝑐([0, 1]𝑛), 𝑐(𝜕[0, 1]𝑛), 𝑐(𝜕+[0, 1]𝑛)) → (𝑋,𝐴, 𝑖0[ℝ+])

such that 𝐹|𝑐(𝜕+[0,1]𝑛) = 𝑖0◦𝑝.
Here 𝜕+[0, 1]𝑛 ∶= {(𝑥1, … , 𝑥𝑛) ∈ 𝜕[0, 1]𝑛 ∣ 𝑥𝑛 > 0}.
The following result is routine to check; the computations almost identically resemble those needed to check the cor-

responding in topology. For details, see for example [10, Sect. 7.2]. The main points to care about are the following:

∙ The piecewise defined coarse maps indeed are globally coarse maps, this follows immediately from Proposition 1.10.∙ The usual homotopies can be used to define coarse homotopies on appropriate cylinders. This again works nicely and

automatically, with cylinder 𝐼𝑝𝑐([0, 1]𝑛) where 𝑝 ∶ 𝑐([0, 1]𝑛) → ℝ+ is again the height projection.
Proposition 4.8. Let 𝑛 ≥ 1. Let 𝐹,𝐺 ∶ (𝑐([0, 1]𝑛), 𝑐(𝜕[0, 1]𝑛)) → (𝑋, 𝑖0[ℝ+]) be such that 𝐹|𝑐(𝜕[0,1]𝑛) = 𝐺|𝑐(𝜕[0,1]𝑛) = 𝑖0◦𝑝.
Define there product

𝐹 ∗ 𝐺 ∶ (𝑐([0, 1]𝑛), 𝑐(𝜕[0, 1]𝑛)) → (𝑋, 𝑖0[ℝ+])
by the formula

𝐹 ∗ 𝐺(𝑥1, 𝑥2 … , 𝑥𝑛, ℎ) = {𝐹(2𝑥1, 𝑥2, … , 𝑥𝑛, ℎ), 𝑥1 ≤ ℎ∕2,𝐺(2𝑥1 − ℎ, 𝑥2, … , 𝑥𝑛, ℎ), ℎ∕2 ≤ 𝑥1 ≤ ℎ.
Then the operation [𝐹] ⋅ [𝐺] = [𝐹 ∗ 𝐺] turns the set 𝜋coarse𝑛 (𝑋, 𝑖0) into a group. Further, 𝜋coarse𝑛 (𝑋, 𝑖0) is abelian if 𝑛 ≥ 2.

The unit is represented by the map 𝑖0◦𝑝 ∶ 𝑐([0, 1]𝑛) → 𝑋.
For 𝑛 ≥ 2, the same formula makes sense for the relative homotopy groups and defines a group structure on them, abelian

if 𝑛 ≥ 3.
We call the groups 𝜋coarse𝑛 (𝑋,𝐴, 𝑖0) the coarse homotopy groups of (𝑋,𝐴). The following result is also straightforward to

prove, and resembles its classical analogue.

Proposition 4.9. Let (𝑋,𝐴) and (𝑌, 𝐵) beℝ+-pointed coarse pairs and 𝑓 ∶ (𝑋,𝐴) → (𝑌, 𝐵) be anℝ+-pointed coarse map.
Then there is a functorially induced homomorphism

𝑓∗ ∶ 𝜋coarse𝑛 (𝑋,𝐴, 𝑖0) → 𝜋coarse𝑛 (𝑌, 𝐵, 𝑗0)
defined by the formula 𝑓∗([𝐹]) = [𝑓◦𝐹].
Further, if ℝ+-pointed coarse maps 𝑓, 𝑔 ∶ (𝑋,𝐴, 𝑖0) → (𝑌, 𝐵, 𝑗0) are ℝ+-pointed relatively coarsely homotopic, then the

homomorphisms 𝑓∗ and 𝑔∗ are equal.
Proposition 4.10. If

(𝑋,𝐴, 𝑖0) is aℝ+-pointed coarse pair with map 𝑘 ∶ 𝐴 → 𝑋, the analogue of the usual construction in
topology defines a long exact sequence of coarse homotopy groups or pointed sets

→ 𝜋coarse2 (𝐴, 𝑖0) 𝑘∗��→ 𝜋coarse2 (𝑋, 𝑖0) → 𝜋coarse2 (𝑋,𝐴, 𝑖0) 𝜕�→ 𝜋coarse1 (𝐴, 𝑖0)
𝑘∗��→ 𝜋coarse1 (𝑋, 𝑖0) → 𝜋coarse1 (𝑋,𝐴, 𝑖0) → 𝜋coarse0 (𝐴, 𝑖0) → 𝜋coarse0 (𝑋, 𝑖0)

Here, the boundary map is (as usual) obtained by restricting to the subset of 𝑐[0, 1]𝑛 with 𝑥𝑛 = 0.
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Proof. The proof just follows the standard pattern of the corresponding statement for ordinary homotopy groups, com-

pare [10, Sect. 7.2]. There is one subtlety though: One has to convert certain homotopies 𝐻 ∶ 𝐼𝑝𝑐[0, 1]𝑛 → 𝑋 to maps�̄� ∶ 𝑐[0, 1]𝑛+1 → 𝑋.
Usually, this is done by interpreting the homotopy parameter 𝑡 of (ℎ𝑥, ℎ, 𝑡) as the extra variable ℎ𝑥𝑛+1. This is permitted

here, as well, as we can normalized the domain of the homotopies defined on 𝑐[0, 1]𝑛 to be defined on 𝐼𝑝𝑐([0, 1]𝑛) due to
Lemma 2.6 where 𝑝(ℎ𝑥, ℎ) = ℎ is the standard height projection.
We leave the details to the reader. □

Remark 4.11. In classical topology, probably themost important application of the long exact sequence of homotopy groups

of a pair is to a fibration 𝐹 → 𝐸 → 𝐵, where one proceeds to identify the (in general mysterious) relative homotopy groups
of (𝐸, 𝐹) with those of the base 𝐵.
A question for the future is whether there is a version of a coarse fibration which is as frequent as the fibrations in

classical topology, and for which a corresponding statement holds for coarse homotopy groups.

5 HOMOTOPY GROUPS OF CONES

For 𝑋 ⊂ ℝ𝑛 with basepoint 𝑥0 ∈ 𝑋 we have the corresponding ℝ+-basepoint 𝑖0 ∶ ℝ+ → 𝑐(𝑋), the ray through 𝑥0. The
main result of this section is that for a wide class of spaces, 𝑋, the coarse homotopy group, 𝜋coarse𝑛 (𝑐(𝑋), 𝑖0) is isomorphic
to the ordinary homotopy group 𝜋𝑛(𝑋, 𝑥0). In particular, we have isomorphisms

𝜋coarse𝑛 (ℝ𝑘+1, 𝑖0) ≅ 𝜋coarse𝑛 (𝑐(𝑆𝑘), 𝑖0) ≅ 𝜋𝑛(𝑆𝑘, 𝑥0).
At first glance this result seems expected. At second glance, however, one realizes that this is not such a triviality, as

already discussed in Remark 4.4 concerning 𝜋coarse0 (ℝ𝑛) which of course persists to higher degrees.
If𝑋 is a finite simplicial complex there is a canonical bilipschitz class ofmetric cones 𝑐(𝑋) coming from a PL-embedding

of 𝑋 into Euclidean space, as discussed in Section 3. If 𝑥0 ∈ 𝑋 is a basepoint, then the cone 𝑐(𝑋) has an induced ℝ+-
basepoint 𝑖0 ∶ ℝ+ → 𝑐(𝑋) defined by the formula 𝑖0(𝑡) = (𝑡𝑥0, 𝑡).
Definition 5.1. We define the homomorphism

Ψ ∶ 𝜋𝑛(𝑋, 𝑥0) → 𝜋coarse𝑛 (𝑐(𝑋), 𝑖0)
by setting Ψ([𝑓]) = [𝑐(𝑓)] where 𝑓 ∶ ([0, 1]𝑛, 𝜕[0, 1]𝑛) → (𝑋, 𝑥0) is a Lipschitz map. The equivalence class on the left is
that of relative Lipschitz homotopy, and that on the right is relative coarse ℝ+-homotopy.
Note that it follows from Lemma 3.10 that the set of continuous homotopy classes of continuous maps here is the same

as the set of Lipschitz homotopy classes of Lipschitz maps, so that the map Ψ is well defined. By the construction of the

group structures, it is a group homomorphism.

The main result in this article is that the map Ψ is an isomorphism. We prove this by constructing an inverse.

The following result is the technical heart of our construction. It says that we can homotop to radial Lipschitz maps. In

the statement of the result and the proof, we will write points in 𝑐𝐿(𝑋) as pairs (ℎ𝑥, ℎ) with 𝑥 ∈ 𝑋, ℎ ≥ 𝐿.
Proposition 5.2. Let 𝑋 and 𝑌 be finite simplicial complexes PL-embedded intoℝ𝑛 with subcomplexes 𝑋0 ⊂ 𝑋 and 𝑌0 ⊂ 𝑌,
respectively. Let 𝑓 ∶ (𝑐(𝑋), 𝑐(𝑋0)) → (𝑐(𝑌), 𝑐(𝑌0)) be a coarse map. Then, if we restrict the map 𝑓 to 𝑐𝐿(𝑋) for some suitable𝐿 > 0, it is coarsely homotopic, as a map of pairs, to a radial proper Lipschitz map 𝑔.
Suppose𝑋1 ⊂ 𝑋 is a subcomplex such that the restriction of 𝑓 to 𝑐(𝑋1) is already a radial Lipschitzmap. Thenwe can chose𝑔 such that 𝑔|𝑐(𝑋1) = 𝑔|𝑐(𝑋1), and the coarse homotopy between 𝑓 and 𝑔 can be chosen such that its restriction to 𝑐(𝑋1) is the

concatenation of a homotopy of the form (ℎ𝑥, ℎ, 𝑡) ↦ 𝜌(ℎ, 𝑡)𝑓(𝑥, 𝐿) with its inverse, where 0 ≤ 𝑡 ≤ ℎ.
Proof. By Proposition 3.6, we can assume that 𝑓 is a proper Lipschitzmap on 𝑐𝐿(𝑋)with values in 𝑐𝐿′(𝑌) for some 𝐿, 𝐿′ ≥ 1.
To simplify notation, we assume 𝐿 = 𝐿′ = 1, the general case is just a technical modification.
We construct our homotopy in several steps.
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First, define

𝑔(ℎ𝑥, ℎ) ∶= 𝑓(√ℎ𝑥,√ℎ ).
We define a proper Lipschitz homotopy 𝐹 between 𝑔 and 𝑓 by the formula

𝐹(ℎ𝑥, ℎ, 𝑡) ∶= 𝑓((ℎ − 𝑡)𝑥, ℎ − 𝑡); 0 ≤ 𝑡 ≤ ℎ − √ℎ.
Secondly, define

𝑢(ℎ𝑥, ℎ) ∶= √ℎ𝑓(𝑥, 1).
We define a proper Lipschitz homotopy between 𝑢 and 𝑔 by

𝐺(ℎ𝑥, ℎ, 𝑡) ∶= ⎛⎜⎜⎝
√ℎ𝑡√ℎ + 1

⎞⎟⎟⎠
𝑓(( 𝑡√ℎ + 1)𝑥, 𝑡√ℎ + 1); 0 ≤ 𝑡 ≤ ℎ − √ℎ.

Finally, let

𝑣(ℎ𝑥, ℎ) ∶= ℎ𝑓(𝑥, 1).
Then 𝑣 is a radial proper Lipschitz map on 𝑐1(𝑋). We define the proper Lipschitz homotopy 𝐻 between 𝑢 and 𝑣 by

𝐻(ℎ𝑥, ℎ, 𝑡) ∶= (𝑡 + √ℎ )𝑓(𝑥, 1); 0 ≤ 𝑡 ≤ ℎ − √ℎ.
Wehave given explicit formulas for themaps and the homotopies. Substituting 𝑡 = 0 or 𝑡 = ℎ − √ℎ into the homotopies,

it is immediate to see that they are homotopies between the maps as claimed. We have to justify the following facts:

1. The maps are proper.

2. The maps are globally Lipschitz.

3. The homotopies are indeed coarse homotopies, i.e. the domains are permitted.

4. All maps send 𝑐(𝑋0) to 𝑐(𝑌0).
5. The restriction of the maps and homotopies to 𝑐(𝑋1), when the original map 𝑓 is radial, have the required form.
The domain of the homotopies is contained in 𝐼𝑝′𝑐1(𝑋) with 𝑝′ ∶ 𝑐1(𝑋) → ℝ+ ∶ (ℎ𝑥, ℎ) ↦ ℎ − √ℎ which is a proper

Lipschitz map and therefore a coarse map.

By construction, all maps constructed send 𝑐(𝑋0) to 𝑐(𝑌0). If 𝑓 is radial, i.e. 𝑓(ℎ𝑥, ℎ) = ℎ𝑓(𝑥, 1) then the first homo-
topy 𝐹 reduces to 𝐹(ℎ𝑥, ℎ𝑡, 𝑡) = (ℎ − 𝑡)𝑓(𝑥, 1) (for 0 ≤ 𝑡 ≤ ℎ − √ℎ ), the second homotopy 𝐺 is constant, and the third

homotopy𝐻 becomes𝐻(ℎ𝑥, ℎ, 𝑡) = (𝑡 + √ℎ )𝑓(𝑥, 1) for 0 ≤ 𝑡 ≤ ℎ − √ℎ which indeed is precisely the inverse of 𝐹.
It remains to check that all maps defined are proper and Lipschitz, using that 𝑓 itself is proper and Lipschitz.
The homotopy 𝐹 is the composition of 𝑓 and a map 𝛼 ∶ 𝐼𝑝′𝑐1(𝑋) → 𝑐1(𝑋) for which it is elementary to check that it is

proper and Lipschitz.

To check that𝐺 and𝐻 are globally Lipschitz is slightlymore tedious, but again an elementary exercise, using Lemma 5.3

and Lemma 5.4. Their properness follows from the fact that the norm of the values tends to infinity as ℎ → ∞.
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Let us give some of the details of the proof of the Lipschitz property of 𝐺, the most tedious to write down. Considerℎ(𝑥, 1) ∈ 𝑐1(𝑋) and 𝑡 < 𝑠 ≤ ℎ − √ℎ. Then
|𝐺(ℎ𝑥, ℎ, 𝑡) − 𝐺(ℎ𝑥, ℎ, 𝑠)| ≤

||||||||||||
√ℎ𝑡√ℎ + 1 − √ℎ𝑠√ℎ + 1

||||||||||||
𝑓(( 𝑡√ℎ + 1)(𝑥, 1))

+ √ℎ𝑠√ℎ + 1
|||||||||𝑓((

𝑡√ℎ + 1)(𝑥, 1)) − 𝑓(( 𝑠√ℎ + 1)(𝑥, 1))|||||||||
≤ℎ|||||||||

1
𝑡 + √ℎ − 1

𝑠 + √ℎ
|||||||||(𝐿(

𝑡√ℎ + 1)𝐿) + ℎ
𝑠 + √ℎ𝐿|𝑡 − 𝑠| 𝐿√ℎ

≤ℎ 1(𝑡 + √ℎ)2 |𝑡 − 𝑠|( 𝐿√ℎ
(𝑡 + √ℎ )𝐿) + √ℎ

𝑠 + √ℎ𝐿2|𝑡 − 𝑠|
≤ 2𝐿2|𝑡 − 𝑠| = 2𝐿2|(ℎ𝑥, ℎ, 𝑡) − (ℎ𝑥, ℎ, 𝑠)|.

The first inequality is just the triangle inequality. For the second, we use the Lipschitz property of 𝑓 (with Lipschitz

constant 𝐿) which implies in particular also that |𝑓(𝑥)| ≤ 𝐿|𝑥| for all |𝑥| ≥ 1 by comparing to 𝑓(0) and making 𝐿 bigger
depending on 𝑓(0), if necessary. We also use that by the compactness of 𝑋 we can choose 𝐿 such that |(𝑥, 1)| ≤ 𝐿 for all𝑥 ∈ 𝑋.
For the third inequality we use that the derivative 𝑦 ↦ −(𝑦 + √ℎ )−2

of 𝑦 ↦ (𝑦 + √ℎ )−1
is monotonically increasing

in absolute value and use the mean value theorem.

For the last inequality, we just use that 𝑠, 𝑡 ≥ 0.
By Lemma 5.3, the Lipschitz property of 𝐺 follows now if we establish a similar uniform inequality for𝐺(ℎ𝑥, ℎ, 𝑡) −𝐺(𝑟𝑦, 𝑟, 𝑡) for 𝑥, 𝑦 ∈ 𝑋, 1 ≤ ℎ < 𝑟, and 𝑡 ≤ ℎ − √ℎ which can be obtain by similar elementary computations,

using also Lemma 5.4. Details are left to the reader. □
We used the following Lipschitz criterion for coarse homotopies.

Lemma 5.3. Let 𝑋,𝑌 be metric space, let 𝑝𝑜 ∶ 𝑋 → [0,∞); 𝑥 ↦ 𝑑(𝑥, 𝑥0) be a basepoint projection for 𝑥0 ∈ 𝑋. Let𝐻 ∶ 𝐼𝑝0𝑋 → 𝑌 be a map.

If there is 𝐶 > 0 such that for each 𝑡0 ∈ [0,∞) and each 𝑧 ∈ 𝑋 the restrictions to the 𝑡0-time slice 𝑆𝑡𝑜 ∶= 𝑋 × {𝑡0} ∩ 𝐼𝑝0𝑋
and the 𝑧-slice

𝐻𝑆𝑡0 ∶ 𝑆𝑡0 → 𝑌; 𝐻{𝑧}×[0,∞)∩𝐼𝑝𝑜𝑋 ∶ {𝑧} × [0,∞) ∩ 𝐼𝑝0𝑋 → 𝑌
are 𝐶-Lipschitz, then𝐻 is globally 2𝐶-Lipschitz.
Proof. This uses the fact that there are enough points in 𝐼𝑝0𝑋 to interpolate; specifically, let (𝑥, 𝑡) and (𝑧, 𝑠) ∈ 𝐼𝑝0𝑋 with𝑝0(𝑥) ≥ 𝑝0(𝑧). By definition of 𝐼𝑝0𝑋 then 𝑠 ≤ 𝑝0(𝑧) ≤ 𝑝0(𝑥) and therefore also (𝑥, 𝑠) ∈ 𝐼𝑝0𝑋. Consequently, by the triangle
inequality,

𝑑(𝑓(𝑥, 𝑡), 𝑓(𝑦, 𝑠)) ≤ 𝑑(𝑓(𝑥, 𝑡), 𝑓(𝑥, 𝑠)) + 𝑑(𝑓(𝑥, 𝑠), 𝑓(𝑦, 𝑠))
≤ 𝐶𝑑((𝑥, 𝑡), (𝑥, 𝑠)) + 𝐶𝑑((𝑥, 𝑠), (𝑦, 𝑠)) = 𝐶|𝑡 − 𝑠| + 𝐶𝑑(𝑥, 𝑦)
≤ 2𝐶𝑑((𝑥, 𝑡), (𝑦, 𝑠)).

□
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Lemma5.4. Assume that𝑋 ⊂ ℝ𝑁 is bounded, i.e. there is𝐶 > 0 such that |𝑥| ≤ 𝐶 for all𝑥 ∈ 𝑋. For (ℎ𝑥, ℎ), (𝑟𝑦, 𝑟) ∈ 𝑐(𝑋) ⊂ℝ𝑁 × [0,∞) and 𝑡 ≤ min{ℎ, 𝑟} we then have
𝑑((𝑡𝑥, 𝑡), (𝑡𝑦, 𝑡)) ≤ (1 + (𝐶 + 1))𝑑((ℎ𝑥, 𝑦), (𝑟𝑦, 𝑟)).

Proof. Observe:

𝑑((𝑡𝑥, 𝑡), (𝑡𝑦, 𝑡)) = 𝑡𝑑(𝑥, 𝑦) ≤ 𝑑((ℎ𝑥, ℎ), (ℎ𝑦, ℎ))
≤ 𝑑((ℎ𝑥, ℎ), (𝑟𝑦, 𝑟)) + 𝑑((𝑟𝑦, 𝑟), (ℎ𝑦, ℎ))
= 𝑑((ℎ𝑥, ℎ), (𝑟𝑦, 𝑟)) + |𝑟 − ℎ| ⋅ |||(𝑦, 𝑡)|||
≤ (1 + (𝐶 + 1))𝑑((ℎ𝑥, 𝑦), (𝑟𝑦, 𝑟)).

□
Proposition 5.2 is not quite good enough for our purposes because the homotopy constructed there would, for example,

not preserve an ℝ+-basepoint. However, we have enough control such that we can perform a “padding” construction in

our specific situation, where the domain is 𝑐([0, 1]𝑛) and where the map is radial on one of the faces.
Lemma 5.5. Let 𝑓 ∶ (𝑐([0, 1]𝑛), 𝑐(𝜕[0, 1]𝑛)) → (𝑐(𝑌), 𝑐(𝑌0)) be a coarse map of coarse pairs. Set 𝐷 ∶= [0, 1]𝑛−1 × {1} and
assume that 𝑓|𝑐(𝐷) = 𝑐(𝑢) is radial for a PL-map 𝑢.
Then we can find a coarse homotopy of pairs from 𝑓 to a radial map such that the restriction to 𝑐(𝐷) is equal to 𝑓|𝑐(𝐷)

throughout the coarse homotopy.

Proof. Let

𝑖 ∶ [0, 1]𝑛−1 × [0, 1∕2] → [0, 1]𝑛; (𝑥1, … , 𝑥𝑛) → (𝑥1, … , 𝑥𝑛−1, 2𝑥𝑛) and

𝑝 ∶ [0, 1]𝑛−1 × [1∕2, 1] → 𝐷; (𝑥1, … , 𝑥𝑛) ↦ (𝑥1, … , 𝑥𝑛−1, 1).
Define a map 𝑓 ∶ 𝑐([0, 1]𝑛) → 𝑌 by 𝑓|𝑐([0,1]𝑛−1×[0,1∕2]) ∶= 𝑓◦𝑐(𝑖) and 𝑓|𝑐([0,1]𝑛−1×[1∕2,1]) ∶= 𝑓◦𝑐(𝑝), i.e. we squeeze 𝑓 into

the lower half of 𝑐([0, 1]𝑛) and then extend constantly in the 𝑥𝑛-coordinate.
There is an obvious coarse homotopy between 𝑓 and 𝑓 whose restriction to 𝑐(𝐷) is 𝑓|𝑐(𝐷) throughout the homotopy.
Now we construct the required coarse homotopy from 𝑓 to a radial map whose restriction to 𝑐(𝐷) remains constant.

For this, we use the homotopy𝐻 provided by Proposition 5.2 on 𝐼𝑝𝑐([0, 1]𝑛−1 × [0, 1∕2]). On the top part of the domain of
this homotopy, where the initial map was radial, i.e. of the form 𝑐(𝑢) for a map 𝑢 ∶ [0, 1]𝑛−1 × {1∕2} → 𝑌, we know that𝐻(ℎ(𝑥, 𝑡)) = 𝜌(ℎ, 𝑡) ⋅ (𝑢(𝑥), 1)with a real valued function𝜌with𝜌(ℎ, 𝑡) = 𝜌(ℎ, 1 − 𝑡).We then simply extend the homotopy
to 𝐼𝑝𝑐([0, 1]𝑛−1 × [1∕2, 1]) by setting

𝐻(ℎ(𝑥1, … , 𝑥𝑛), 1, 𝑡) ∶= {𝜌(ℎ, 𝑡(1 − 2𝑥𝑛))(𝑢(𝑥1, … , 𝑥𝑛−1, 1∕2), 1), 0 ≤ 𝑡 ≤ 1∕2,𝜌(ℎ, (1 − 𝑡)(1 − 2𝑥𝑛))(𝑢(𝑥1, … , 𝑥𝑛−1, 1∕2), 1), 1∕2 ≤ 𝑡 ≤ 1.
It is clear that this procedure does the job. □
We now formulate and prove the main result of this paper.

Theorem 5.6. Let 𝑋 be a finite simplical complex with subcomplex 𝑋0 and base vertex 𝑥0 ∈ 𝑋0. Choose a PL-embedding
into ℝ𝑛 and identify 𝑋 with its image and let 𝑖0 ∶ [0,∞) → 𝑐(𝑋); 𝑡 ↦ (𝑡𝑥0, 𝑡) be associated to 𝑥0. Then the homomorphismΨ ∶ 𝜋𝑛(𝑋, 𝑋0, 𝑥0) → 𝜋coarse𝑛 (𝑐(𝑋), 𝑐(𝑋0), 𝑖0) of Definition 5.1 is an isomorphism.
Proof. Wewant to construct an inverseΦ toΨ. For this, let 𝑓 ∶ 𝑐([0, 1]𝑛) → 𝑐(𝑋) be a coarse map representing an element[𝑓] ∈ 𝜋coarse𝑛 (𝑐(𝑋), 𝑐(𝑋0), 𝑖0).
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Observe that there is a PL-homeomorphism [0, 1]𝑛 → [0, 1]𝑛 mapping 𝜕+[0, 1]𝑛 to the set 𝐷 of Lemma 5.5. We can

therefore apply Lemma 5.5 and get a coarse homotopy which is constant on 𝑐(𝜕+([0, 1]𝑛)) (meaning it is an ℝ+-pointed
coarse homotopy) to a radial map 𝑐(𝑢) for a PL-map 𝑢 ∶ ([0, 1]𝑛, 𝜕[0, 1]𝑛, 𝜕+[0, 1]𝑛) → (𝑋,𝑋0, 𝑥0).
Of course, we want to set Φ([𝑓]) ∶= [𝑢]. It is then obvious that Φ◦Ψ = id and Ψ◦Φ = id.
But we have to show that the map Φ is really well defined.

For this, we could replace 𝑓 by 𝑔, coarsely homotopies through a coarse homotopy 𝐻1. Moreover, we have to chose
a coarse homotopy 𝐻0 from a radial map 𝑐(𝑢) to 𝑓 and 𝐻2 from 𝑔 to a radial map 𝑐(𝑣). All homotopies are ℝ+-pointed
and map the boundary of [0, 1]𝑛 to 𝑐(𝑋0). We can concatenate𝐻0, 𝐻1, 𝐻2 and reinterpret the domain of the homotopy as𝑐([0, 1]𝑛+1). Being ℝ+-pointed, this concatenation is radial when restricted to 𝑐(𝜕+[0, 𝑙]𝑛 × [0, 1]).
Proposition 5.2 almost allows us to replace 𝑓 by a coarsely equivalent radial map based on some 𝑢 ∶ [0, 1]𝑛 → 𝑋 such

that [𝑓] = [𝑐(𝑢)] ∈ 𝜋coarse𝑛 (𝑐(𝑋), 𝑐(𝑋0), 𝑖0) such that [𝑢] ∈ 𝜋𝑛(𝑋, 𝑋0, 𝑥0) would be a candidate for Φ([𝑓]).
The problem is that the construction of Proposition 5.2 does not preserve the coarse basepoint 𝑖0. Fortunately, Proposi-

tion 5.2 provides enough control on the part of the domain where the map is already radial, in particular in our case on𝑐(𝜕+[0, 1]𝑛). Moreover, it is radial on 𝑐([0, 1]𝑛 × {0, 1}) because the beginning and end of the concatenated coarse homo-
topies are radial.

Now, by Lemma 5.5 there is a coarse homotopy to a radial map, and that new map coincides with the old one where it

is already radial. We can reinterpret that map as (the cone of) a homotopy between 𝑢 and 𝑣 which is pointed. This shows
that indeed the map Φ is well defined. □
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