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Abstract

The behaviours of insonated bubble clusters are regulated by the secondary Bjerknes force between bubble pairs.

While the force has been investigated extensively for two-bubble systems, the modulation of the force by nearby

bubbles remains unclear. This problem is investigated in this paper by theoretical analyses and numerical simulations

of a three bubble system. For weak oscillations, the third bubble is found to have strong effects when its radius is

close to the resonant radius. The equilibrium distance between the bubble pair is reduced when the radius of the third

bubble is smaller than the resonant threshold, and increased when it is larger. For strong oscillations of bubbles with

radii of a few microns, the third bubble reduces the magnitude of the force, hence increasing the equilibrium distance.

The modulation effects depend strongly on the relative sizes of the bubbles. Stronger effects can be produced when

the third bubble is placed closer to the smaller bubble in the bubble pair. The findings highlight the need for a more

accurate parametrization of the secondary Bjerknes force in the simulation and manipulation of bubble clusters.

Keywords: Bubble clusters, secondary Bjerknes force, linear analysis, numerical simulations

1. Introduction

When two bubbles are oscillating in a acoustically

driven fluid, they experience an inter-bubble force, the

secondary Bjerknes force [20, 5]. Bjerknes [4] shows

that the force is attractive (repulsive) when the two bub-

bles oscillate in (out of) phase (see also [8]). This the-

ory, however, does not account for the change of the

force with the distance between the bubbles. Linear

theories [32] predict that the force may become repul-

sive when the distance is small even if the force is ini-

tially attractive, thus suggest a possible stable distance

between the two bubbles. This prediction provide a pos-

sible explanation for the formation of stable bubble clus-

ters [20, 5, 24, 22, 19]. The sign change has been ob-

served experimentally in, e.g., [31]. The detailed be-

haviours of the force can be modified by other physical

processes, such as the multiple scattering effect, nonlin-

ear resonance, shape oscillations, the coupling with the

translation of the bubbles, and multi-frequency driving

[28, 29, 12, 23, 2, 14, 27, 31, 16, 33].

Bubble clusters or bubble clouds are observed in

biomedicine, metallurgical industries, food processing,

∗To whom correspondence should be addressed.

Email address: yili@sheffield.ac.uk. (Yi Li)

and other applications (see, e.g., [6, 3, 30, 13]). There

is a strong interest in the modelling and simulations of

bubble clusters. The evolution of bubble clusters is reg-

ulated by the secondary Bjerknes force between the bub-

bles. Simplified models for the force have been adopted

in the simulations of bubble clusters [24, 26, 22] us-

ing the particle method. The particle method is simple

and versatile in that it can handle clusters with a wide

range of different bubbles. It has been combined with

continuum models in recent research (see, e.g., [21]).

In this method, the individual bubbles are described by

the equation of motion, of which the secondary Bjerknes

force is an important component. In previous research

[26, 24], the parameters calculated from isolated two-

bubble systems have been used to model the force. The

modulation of the force by surrounding bubbles has been

ignored. In other applications, the secondary Bjerknes

force has been used to manipulate bubbles as carriers of

micro-devices [15, 18, 1]. When the manipulation is car-

ried out for multiple bubbles, the modulation effects of

additional bubbles will again need to be considered. To

address this question, a coupled three-bubble system is

analyzed theoretically and numerically. The dependence

of the secondary Bjerknes force between two bubbles is

calculated for different parameters. The equilibrium dis-

tance between the two bubbles, as a characteristic of the
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Figure 1: The illustration of the three bubble system. L is the distance

from the third bubble to the mid-point of the line joining the centers of

bubble 1 and 2. The radii of the bubbles in the figure do not correspond

to those used in the calculation.

force, are documented. The results show that the be-

haviour of the secondary Bjerknes force can be altered

significantly in a non-trivial way, which call for addi-

tional efforts in the modelling of the secondary Bjerknes

force in bubble clusters.

The paper is organized as follows: the dynamical

equations for the bubbles are explained in Section 2. Nu-

merical simulations and a linear analysis of weak oscil-

lations are presented in Section 3. Simulations of strong

oscillations are discussed in Section 4. The conclusions

are summarized in Section 5.

2. The governing equations

A system of N = 3 bubbles is considered in this inves-

tigation, which is illustrated in Fig. 1. Di j ≡ D ji is the

distance between bubble i and j. We also use L and θ as

defined in the figure. The radius of bubble i is denoted

by Ri(t) and its equilibrium radius is REi. Although the

system appears to be highly simplified, the analysis of

the system can be easily generalize to systems contain-

ing bubble clusters, by incorporating the cluster models

in, e.g., [25].

It is assumed that the three bubbles are oscillating in a

fluid with density ρ, surface tension σ and kinematic vis-

cosity ν. The bubbles are driven by a harmonic uniform

pressure with angular frequency ω:

pI(t) = p0 − pa sin(ωt) (1)

where p0 is the ambient pressure and pa is the ampli-

tude of the ultrasonic pressure. Thus, we implicitly as-

sume that, either the distances between the bubbles are

small compared with the wave length of the pressure

wave, or the bubbles reside on a plane of constant phase.

The radii of the bubbles can be described by the Keller-

Miksis model [17, 5] with additional pressure coupling

terms between the bubbles. If the time-delay effects due

to the finite propagation speed of the pressure wave are

neglected, the coupling pressure between bubbles i and

j, denoted as pi j, is given by [23]

pi j(t) =
ρ

Di j

dR2
j
Ṙ j

dt
, (2)

which is valid when the radii Ri and R j are much smaller

than Di j. With pi j included, the equation for Ri(t) be-

comes [23]:

2ρ(1 − c−1Ṙi)RiR̈i + ρ(3 − c−1Ṙi)Ṙ
2
i

=2(1 + c−1Ṙi)(pwi − pI) + 2c−1Ri( ṗwi − ṗI)

− 2ρ

N′
∑

j=1

D−1
i j (2R jṘ

2
j + R2

j R̈ j), (3)

where

pwi =

(

p0 +
2σ

REi

) (

REi

Ri

)3k

−
2σ

Ri

−
4ρνṘi

Ri

, (4)

is the pressure on the outer interface of bubble i, k is

the polytropic exponent, and the summation
∑N′

j=1 im-

plies summing from j = 1 to j = N excluding the j = i

term.

The pressure wave travels with a finite speed c, so the

time for the pressure to propagate from bubble i to j is

Di j/c. If this time-delay effect is taken into account in the

pressure coupling term, [7] shows that Eq. (3) becomes

RiR̈i +
3

2
Ṙ2

i +

N′
∑

j=1

1

Di j

dR2
j
Ṙ j

dt

=
pwi − pI

ρ
+

1

2c

N
∑

j=1

dR jṘ
2
j

dt

+
1

ρc

N
∑

j=1

d(pw j − pI)R j

dt
. (5)

Note that the two summations on the right hand side in-

clude every term from j = 1 to N. Eq. (5) was given in a

slightly different form in [7]. Eq. (5) is the model for the

three bubble system we will be using in this paper. For

the modelling of the time delay effect, see also [11].

Let Fi j denote the secondary Bjerknes force on bubble

i induced by bubble j (i , j) [4, 8, 23]. By definition,

Fi j is the time-averaged pressure force on bubble i gen-

erated by the oscillations of bubble j. As is explained in

[7], the time-delay effect introduces an additional force

on each bubble, but the forces do not contribute to the

relative motion of the two bubbles. Therefore the time-

delay effect on Fi j can be neglected. As a consequence,

Fi j can be written as (see, e.g., [8]):

Fi j =

〈

Vi

∂p j

∂r

∣

∣

∣

∣

∣

∣

Di j

〉

= −
ρ

D2
i j

〈

Vi

dR2
j
Ṙ j

dt

〉

=
ρ〈V̇iV̇ j〉

4πD2
i j

, (6)
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where Vi is the volume of bubble i and r is the radial dis-

tance from the center of bubble j. The pointed brackets

represent averaging over a period of the driving pressure.

Fi j is positive when it is attractive. It is obvious that Fi j

is symmetric, i.e., Fi j = F ji.

In a multiple-bubble system, Fi j is expected to depend

not only on bubbles i and j but also the other bubbles.

Nevertheless, in some previous bubble cluster simula-

tions [24, 26], the calculation of Fi j has been simplified,

where the factor 〈V̇iV̇ j〉 is calculated from 2-bubble sys-

tems neglecting the contributions from other bubbles.

In terms of Fi j, the secondary Bjerknes force factor fi j

(see, e.g., [23]) is defined as

fi j ≡ ρ
〈V̇iV̇ j〉

4π
≡ D2

i jFi j. (7)

In this paper, the focus is on the effects of bubble 3 on

F12 and f12.

3. The analysis of weak oscillations

The modulation effects are first investigated analyti-

cally for small spherical oscillations to depict the possi-

ble scenarios. In this case, the compressibility and time-

delay effects may be neglected. Let Ri(t) = REi + xi(t)

where REi is the equilibrium radius of bubble i and

xi(t) ≪ REi is the amplitude of the oscillations of bub-

ble i. The linearized equation for xi is thus

ẍi +
4ν

R2
Ei

ẋi + ω
2
i x +

N′
∑

j=1

RE j

Di j

ẍ j =
pa

ρREi

sinωt, (8)

where

ωi ≡

[

3kp0

ρ
+

(3k − 1)2σ

ρREi

]1/2
1

REi

, (9)

is the Minnaert frequency of bubble i [5].

We consider the inviscid case in what follows. It is suf-

ficient to illustrate the calculation without cumbersome

algebra. Assuming that there is no resonance (ωi , ω),

the stationary solution for xi(t) can be written as xi =

ℜ(Aie
iωt), where Ai is the complex amplitude andℜ de-

notes taking the real part. Let pa sin(ωt) = ρℜ(Apeiωt),

one finds from Eq. (8) that

M





















A1

A2

A3





















=





















Ap

Ap

Ap





















, (10)

where the coefficient matrix M is given by




























































(ω2
1 − ω

2)RE1 −
ω2R2

E2

D12

−
ω2R2

E3

D13

−
ω2R2

E1

D21

(ω2
2 − ω

2)RE2 −
ω2R2

E3

D23

−
ω2R2

E1

D31

−
ω2R2

E2

D32

(ω2
3 − ω

2)RE3





























































. (11)

From Eq. (10), one finds that

A1 =
Ap

RE1∆

{

(1 + α1)ω2
2 + g1ω

2
}

, (12)

A2 =
Ap

RE2∆

{

(1 + α2)ω2
1 + g2ω

2
}

, (13)

where

∆ =(ω2
1 − ω

2 − α1β1ω
2)(ω2

2 − ω
2 − α2β2ω

2)

− ω4(ξ1 + α2β1)(ξ2 + α1β2), (14)

gi = ξ3−i(1 + α3−i) − (1 + αi) + (αi − α3−i)β3−i, (15)

and

ξi =
REi

D21

, αi =
ω2RE3

(ω2
3
− ω2)D3i

, βi =
REi

D3i

, (16)

for i = 1, 2. Constants ξi and βi are small quantities.

In term of the complex amplitudes, the secondary

Bjerknes force between bubble 1 and 2, i.e., F12, is given

by (see, e.g., [10])

F12 = 2πρω2
R2

E1
R2

E2

D2
12

ℜ(A∗1A2). (17)

When α1 = α2 = 0, the system describes the interaction

between two bubbles without the interference from the

third bubble, since α1 = α2 = 0 implies the third bubble

is infinitely far away from the other two bubbles. The

expression for F12 in this case is denoted by F
[2]

12
. Using

Eqs. (12) and (13), the well-known expression for F
[2]

12
is

recovered (see, e.g., [32] and [10]):

F
[2]

12
= H[2]

(

ω2 −
1

1 − ξ1
ω2

1

) (

ω2 −
1

1 − ξ2
ω2

2

)

, (18)

with the pre-factor H[2] given by

H[2] =
2πρω2ξ1ξ2|Ap|

2

∆2
(1 − ξ2)(1 − ξ1). (19)

Without loss of generality, we assume ω1 ≤ ω2. The

main conclusions drawn from Eq. (18) are as follows:

1. F12 is a function of D12. When ω1 . ω2 . ω, a

distance D12 ≡ DE exists where F12 = 0 and F12 is

an increasing function of D12 at the neighborhood

of DE . At DE , the two bubbles are in a stable equi-

librium. The expression for DE is

D
[2]
E
= max













RE1ω
2

ω2 − ω2
1

,
RE2ω

2

ω2 − ω2
2













. (20)

The two expressions on the right hand side of Eq.

(20) are the roots of the last two factors in Eq. (18),

respectively.
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2. Such an equilibrium distance does not exist when

ω1 . ω . ω2 or ω . ω1 . ω2.

As mentioned in Section 1, the existence of D
[2]
E

qualita-

tively explains why stable bubble clusters may exist.

In the presence of the third bubble, αi (i = 1, 2) are no

longer zero. The force is given by

F
[3]

12
= H[3]

(

ω2 − f1ω
2
1

) (

ω2 − f2ω
2
2

)

, (21)

with H[3] given by

H[3] =
2πρω2ξ1ξ2|Ap|

2(1 + α1)(1 + α2)

∆2 f1 f2
, (22)

where

fi =
1 + α3−i

(1 + α3−i)(1 − ξi) + (αi − α3−i)βi

. (23)

Setting the last two factors on the right hand side of Eq.

(21) to zero, we may find two values for D12,

D
[3]

E1
=

RE1ω
2(1 + α1)

ω2[1 + α2 + (α1 − α2)β1] − (1 + α2)ω2
1

. (24)

and

D
[3]

E2
=

RE2ω
2(1 + α2)

ω2[1 + α1 + (α2 − α1)β2] − (1 + α1)ω2
2

, (25)

D
[3]
Ei

(i = 1, 2) represent the distances where F
[3]

12
= 0 (as

long as they are positive). However, due to the complex-

ity of Eq. (21), it is not trivial to ascertain analytically

if F
[3]

12
is increasing with D12 at these values. In what

follows, we numerically evaluate Eq. (21), Eq. (24)

and Eq. (25) to find D
[3]
E

. Note that, for a three bub-

ble system, there are secondary Bjerknes forces between

the third bubble and the other two, individually. When

D12 = D
[3]
E

, F
[3]

12
is zero but in general the other two sec-

ondary Bjerknes forces are not. Therefore the total force

on bubble 1 and 2 are not necessarily zero and the two

bubbles are not actually in equilibrium. Nevertheless,

D
[3]
E

is still a useful quantity to characterize the effects of

the third bubble on F12.

Eqs. (24) and (25) show that D
[3]
E
= D

[2]
E

when

α1 = α2, which happens when D32 = D31, i.e., when the

third bubble is on the mid-plane between the two bub-

bles. In general, however, D
[3]
E

is different from D
[2]
E

.

D
[3]
E

will be calculated from Eqs. (21), (24) and (25), and

compared with D
[2]
E

given in Eq. (20). In the first case

to be considered, the bubbles are arranged in a line in

the order of 1 − 2 − 3, so that D13 = D12 + D23. The

other parameters used in the calculation are given in Ta-

ble 1. The computed DE is unphysical if it is too small

since one of the premises of the model is that D12 should

be much larger than the radii of the bubbles. Therefore,

Parameter Value

ρ 998 kg m−3

σ 0.0725 Nm−1

c 1500m s−1

ν 1.002 × 10−6 m2s−1

f 20 × 103Hz

ω 2π f

p0 1.013 × 105Pa

Table 1: Parameters used in the simulations. ρ: density; σ: surface

tension; c: sound speed; ν: kinematic viscosity; f : driving frequency;

ω: driving angular frequency; p0: ambient pressure.

1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.018 1.02
0

100

200

300

400

500

600

Figure 2: D
[2]
E

and D
[3]
E

as functions of RE2 for different parameters.

Rs = 164.9µm is the resonant radius corresponding to the driving fre-

quencyω (c.f., Eq. (9)). The bubbles are colinear, in the order of bubble

1, 2, and 3 from left to right, with D23 fixed.

1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.018 1.02
0

100

200

300

400

500

600

Figure 3: Same as Fig. 2 but the bubbles are aligned in the order of

bubble 2, 1, and 3 from left to right, with D13 fixed.
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400

500

600

Figure 4: Same as Fig. 2 but for RE3/Rs approaching 1 from below.

10(RE1 + RE2) has been chosen as the minimum value of

D12 for which the model remains physical. The results

will be non-dimensionalized by the resonant radius Rs,

which is defined implicitly by the following equation:

ω ≡

[

3kp0

ρ
+

(3k − 1)2σ

ρRs

]1/2
1

Rs

. (26)

The first set of results are shown in Fig. 2. The main

observation is that D
[3]
E

is reduced by the third bubble

when RE3 < Rs, and increased when RE3 > Rs. The

difference between D
[3]
E

and D
[2]
E

are amplified when RE3

approaches Rs (from either side of Rs). We also observe

that the change in DE is already negligible when RE3 =

10Rs although the curve is not shown.

Fig. 3 plots D
[3]
E

for three colinear bubbles aligned in

the order of bubbles 2, 1 and 3, so that bubble 3 is fur-

ther away from bubble 2. Although the same parameters

as in Fig. 2 are used, only weak effects are produced in

this case. Compared with D
[2]
E

, D
[3]
E

is smaller (larger)

for RE3 < Rs (RE3 > Rs), opposite to Fig. 2. On the

other hand, although the effects are much weaker, we

do observe that the modulation effects are stronger when

RE3/Rs is closer to 1, a behavior also observed in Fig. 2.

A particular consequence of having the third bubble is

that DE may exist for ω2 > ω, i.e., for RE2 < Rs, whereas

this scenario is not possible for linearly oscillating two

bubble systems. This behaviour is illustrated in Fig. 4,

which shows that D
[3]
E

exists for a small range of values

for RE2/Rs < 1 when RE3 is very close to Rs. However,

given that the range is small, the observation that these

values exist is less important than the observation that

D
[3]
E

is very sensitive to the values of RE2 and RE3 in this

range.

The linear analysis is valid for infinitesimal oscilla-

tions and has neglected viscous dissipation. We collab-

orate the linear analysis with the numerical solutions of

Eq. (5), with viscosity included. Small pressure ampli-

tude pa = 0.01patm is chosen since we want to investigate

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

100

200

300

400

500

600

Figure 5: DE/Rs versus RE2/Rs from the numerical solutions of Eq.

(5) for pa = 0.01patm.

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

100

200

300

400

500

600

Figure 6: D
[3]
E
/Rs versus RE2/Rs from the numerical solutions of Eq.

(5) for pa = 0.01patm, with different RE1 and RE3 and D23 = 10(RE3 +

RE2).

weak oscillations. Only the case where the bubbles are

colinearly aligned in the 1−2−3 configuration is consid-

ered. The results are given in Fig. 5. The case with only

two bubbles is plotted with the thick solid line, whereas

thin lines with symbols are results for three bubble sys-

tems with different RE3. For a given RE2, both D
[2]
E

and

D
[3]
E

obtained here are smaller than those in Fig. 2, in

such a way that the curves appear to have shifted to the

left. However, the curves are qualitatively the same on

two aspects. Firstly, D
[3]
E

is larger (smaller) than D
[2]
E

for

RE3 > Rs (RE3 < Rs). Secondly, the difference between

D
[2]
E

and D
[3]
E

is larger when RE3/Rs is closer to 1. There-

fore, the numerical solution validates the linear analysis.

Fig. 6 plots the numerical solution for D
[3]
E

for two

different RE3 and RE1. D
[3]
E

sensitively depends on RE1

when RE3 > Rs, and it is increased when RE1 approaches

Rs. However, it barely changes with RE1 when RE3 < Rs.

The difference between D
[3]
E

and D
[2]
E

is a consequence

of changes in the oscillatory behaviours of bubbles 1 and

2 induced by the third bubble. Ri(t) (i = 1, 2, 3) is plotted

5



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.8

0.9

1

1.1
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1.4

Figure 7: Ri(t) for two different RE3, with RE1 = 1.25Rs, RE2 = Rs,

D23 = 10(RE2 + RE3), and pa = 0.01patm. D12 = 100Rs.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
-10

-8

-6

-4

-2

0

2

4
10-13

Figure 8: f12 as a function of RE2 for different L and RE3, with D12 =

20Rs (Rs = 164.9µm), θ = 90◦, and pa = 0.01patm.

in Fig. 7 for two RE3 values with D12 = 100Rs. R2(t)

and R3(t) oscillate in phase when RE3 = 0.9Rs. As a

result, bubble 3 increases the apparent stiffness of flow

field and reduces the amplitude of R2(t). The amplitude

of R1(t) is slightly enhanced although it is not visible on

the curve because the oscillation of R1(t) is much weaker.

The effects increase the secondary Bjerknes force f12 be-

tween the two bubbles at this distance D12, and lead to

decreased D
[3]
E

. The situation for RE3 = 1.2Rs, however,

is the exact opposite because R2(t) and R3(t) oscillate out

of phase in this case, and as a result D
[3]
E

is increased.

We have only considered the colinear configurations

in the above discussion. The calculation can be easily

conducted for non-colinear bubbles. The results are not

shown here, but qualitatively speaking, they fall between

those for the two extreme colinear configurations. This

point is also observed in the results for strongly nonlinear

oscillations to be discussed in the next section.

Finally, we look into the magnitude of the secondary

Bjerknes force f12. The result is shown in Fig. 8 for sev-

eral distances L and RE3 (see Fig. 1 for the definitions
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Figure 9: Ri(t) for RE2 = 0.97Rs. The other parameters as the same as

in Fig. 8. The two curves for R1(t)/Rs fall on each other.
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Figure 10: Same as Fig. 8 except for RE1 = 0.8Rs.

for L and θ). In all cases, RE1 = 1.2Rs. The time se-

quences Ri(t) for RE2 = 0.97Rs are given in Fig. 9 to

complement Fig. 8. For these given parameters, Fig. 8

shows that f12 is negative (or positive) for RE2/Rs . 1.05

(or RE2/Rs & 1.05). These happen when RE2 and RE1

are out of phase and in phase, respectively. Fig. 9 de-

mostrates this for RE2 = 0.97Rs. The effects of RE3 (i.e.,

the third bubble) is the strongest when f12 < 0 (with

RE2 ≈ 0.97Rs). The curves with different L show that,

as expected, the effects of RE3 are stronger when L is

smaller (so that the third bubble is closer to the other two

bubbles). For RE3 = 1.2Rs, the magnitude of f12 is re-

duced with smaller L, and increased for RE3 = 0.9Rs.

Fig. 9 shows that these effects mainly come from the

changes in R2(t)/Rs induced by RE3, since R1(t) is al-

most the same for the two RE3’s. R2(t) is reduced when

RE3 = 1.2Rs, leading to a f12 with a smaller magnitude.

The opposite happens when RE3 = 0.9Rs.

Fig. 10 is the same as Fig. 8 except for RE1 = 0.8Rs

(instead of 1.2Rs). As RE1 is now smaller than Rs, f12 is

now positive when RE2/Rs . 1.05. Fig. 11 shows that

the amplitude of R2(t) again is suppressed when RE3 =

6
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Figure 11: Ri(t) for RE2 = 0.97Rs. The other parameters are the same

as in Fig. 10.

1.2Rs. This effect leads to reduced f12 as is shown in Fig.

10. Again, the opposite is observed for RE3 = 0.9Rs.

4. The analysis of strongly nonlinear oscillations

For large driving pressure amplitude pa, transient cav-

itation occurs and the oscillations of the bubbles are

highly anharmonic. The features of the secondary Bjerk-

nes force in this case are investigated numerically and

are presented in this subsection. The parameter values in

Table 1 are used. pa = 1.32patm is chosen because it is

known that this value induces transient cavitation for the

given parameters. At high pa, the response curve (see

e.g. [19]) shows that transient cavitation is the strongest

for small bubbles with radii just slightly above the dy-

namic Blake threshold. Therefore, bubbles with radii of

the order of a few microns have been considered. For

strong oscillations, the resonant radius Rs is not the rel-

evant characteristic radius. For this reason, the results

have not been non-dimensionalized, which is also the tra-

dition in the literature. The unit of the lengths is always

µm unless stated otherwise. L and θ, as defined in Fig. 1,

are used to define the relative locations of the bubbles.

Fig. 12 shows the general feature of f12 as a function

of RE2 for a given RE1 and several RE3. The peaks of the

curves are found around RE2 ≈ RE1. The magnitude of

f12 is reduced when L is decreased, i.e., when the third

bubble is moved closer to the bubble pair. Presumably,

the reduction is caused by the third bubble increasing the

apparent stiffness for the two bubbles, since the bubbles

mostly oscillate in phase during the transient expansion

stage. Comparing Fig. 12 with Figs. 8 and 10, one ob-

serves that f12 appears to be smaller in the strong nonlin-

ear oscillation regime. However, we note that the radii of

the bubbles in Figs. 8 and 10 are much larger, at the order

of 100µm. Therefore the secondary Bjerknes force is ac-

tually much stronger in the nonlinear oscillation regime
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Figure 12: f12 as a function of RE2 for L = 100µm (filled triangles),

200µm (empty triangles), and∞ (circles) with RE1 = 3µm, RE3 = 5µm,

D = 100µm, θ = 90◦, pa = 1.32patm, and f = 20kHz.
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Figure 13: f12[Nm2] as a function of L and θ for (RE1,RE2) = (3, 5)µm

with D = 100µm, RE3 = 5µm, pa = 1.32patm, and f = 20kHz. The

radii of the circles shown with dashed lines increase from 200µm to

1000µm with an increment equal 200µm.

when the radii of the bubbles and other parameters are

similar.

Figs. 13 to 15 plot f12 as a function of θ and L for

three different RE2 values. The figures show that the

force increases with L and that the effect of the third

bubble is weaker when L is larger, consistent with Fig.

12. In addition, the values at different angles show that

f12 is reduced more when the third bubble is place on

the side of the smaller bubble in the bubble pair. This

observation is confirmed by Fig. 16, which extracts the

f12 values at L = 200µm from Fig. 13 to 15 and plots

them against θ. The magnitude of f12 is the largest when

RE2 = 3µm, which has been shown in Fig. 12. For

(RE1,RE2) = (3µm, 5µm), stronger reduction is found at

θ = 180◦, while for (RE1,RE2) = (3µm, 2.5µm), stronger

reduction is found at θ = 0◦. That is, stronger reduc-

tion is found when the third bubble is on the side of the
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Figure 14: Same as Fig. 13 except that RE2 = 3µm.
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Figure 15: Same as Fig. 13 except that RE2 = 2.5µm.
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Figure 16: f12 as a function of θ for RE2 = 2.5µm (filled triangles),

5µm (squares) , and 3µm (circles) with RE1 = 3µm, RE3 = 5µm, D =

100µm, L = 200µm, pa = 1.32patm, and f = 20kHz.
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Figure 17: f12[Nm2] as a function of L and θ for (RE1,RE2) =

(3.5µm, 2.1µm) with D = 100µm, RE3 = 5µm, pa = 1.32patm, and

f = 20kHz. The radii of the circles shown with dashed lines increase

from 350µm to 650µm with an increment of 50µm. The thick red line

shows the distances L where f12 = 0.
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Figure 18: Equilibrium distance LE as a function of θwith (RE1,RE2) =

(3.3µm, 2.1µm) (triangles), (3.4µm, 2.1µm) (squares), (3.5µm, 2.1µm)

(circles). D = 100µm, RE3 = 5µm, pa = 1.32patm, and f = 20kHz.

smaller bubble.

The cases where f12 = 0 is of special interests be-

cause it is related to the balance between the two bubbles.

Some of these cases are documented in Figs. 17 and 18.

Fig. 17 plots the contours of f12 as a function of θ and

L for (RE1,RE2) = (3.5µm, 2.1µm). Note that the top

and bottom halves of the contours are symmetrical. For

a fixed L, f12 increases with θ for 0◦ ≤ θ ≤ 180◦. In other

words, the effects of the third bubble are weaker when it

is further way from the smaller bubble (bubble 2 in this

case). Due to the third bubble, f12 becomes negative for

a range of L values. The L values where f12 = 0, referred

to as LE , are marked by the red solid line. The minimum

LE ≈ 400µm is found at θ = 180◦, whereas the maximum

LE ≈ 600µm is found at θ = 0◦. Therefore, significant

effects of the third bubble can be observed even for L as

large as 100RE3.
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Figure 19: Equilibrium distance LE as a function of RE2 with RE1 =

2.1µm (filled circles), 2.2µm (empty circles), 2.3µm (filled triangles),

and 2.4µm (empty triangles). D = 100µm, RE3 = 5µm, θ = 90◦,

pa = 1.32patm, and f = 20kHz.
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Figure 20: Equilibrium distance DE as a function of RE2 with L =

100µm (filled circles) and L = ∞ (empty circles) for RE1 = 1.9µm

(top), 2.0µm (middle), and 2.1µm (bottom). RE3 = 5µm, θ = 90◦,

pa = 1.32patm and f = 20kHz.

LE as a function of θ for several RE1 values and RE2 =

2.1µm is given in Fig. 18. As expected, the figure shows

that LE decreases with θ for 0◦ ≤ θ ≤ 180◦. In addi-

tion, LE increases with RE1 for the RE1 values used in

the figure. LE is plotted as a function of RE2 in Fig. 19

for several RE1 values which are rather close. For a fixed

RE1, LE increases with RE2. The behaviours in both fig-

ures are explained by the fact that f12 decreases when the

difference between RE1 and RE2 increases.

The equilibrium distance DE for D12 is plotted in Fig.

20 as a function of RE2 for different RE1, L = 100µm and

θ = 90◦. The figure shows that DE is increased signifi-

cantly by the third bubble. This behavior is in contrast to

what is observed for weak oscillations, where Eqs. (24)

and (25) show that DE is not changed by the third bub-

ble when θ = 90◦. Meanwhile, the dependence on RE2

is the same with or without the third bubble, where DE
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Figure 21: The contour plot of f12[Nm2] as a function of θ and D12

for L = 100µm, RE1 = 1.9µm, RE2 = 3µm, and RE3 = 4µm. Thick

contour in white corresponds to f12 = 0.
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Figure 22: Same as Fig. 21 except that RE3 = 6µm.
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Figure 23: Equilibrium distance DE as a function of θ for RE1 = 1.9µm

and RE2 = 3µm (filled circles), 3.3µm (empty circles), and 3.5µm (solid

line), with L = 100µm, RE3 = 5µm, pa = 1.32patm, and f = 20kHz.
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increases with RE2 gently for the given parameters.

The dependence of DE on θ, RE3 and RE2 is examined

in the next a few figures. Figs. 21 and 22 plot the con-

tours of f12 as a function of θ and D12 for RE3 = 4µm and

6µm, respectively. The contour for f12 = 0, which delin-

eates DE as a function of θ, is highlighted with a thick

white line. A general feature of the figures is that f12

is negative for small D12 and increases with D12. Small

‘islands’ of closed contours are observed, which corre-

spond to sharp peaks in the distribution of f12. These

peaks are organized in bands, which protrude into areas

where f12 is otherwise negative. This interesting obser-

vation suggests that a resonance-like behavior happens

at certain parameter values. Nevertheless, apart from the

interruption by these bands, the zero contour shows that

DE increases with θ, i.e., when bubble 3 is positioned rel-

atively closer to the smaller bubble (bubble 1). The com-

parison between Fig. 21 and 22 shows that f12 is smaller

for RE3 = 6µm and correspondingly DE is larger. This

behavior again may be explained by the observation that

f12 generally is smaller when the differences between the

radii are increased.

Fig. 23 presents DE as a function of θ at RE3 = 5µm

for several RE2. These curves are of the same nature as

the zero contours in Fig. 21 and 22, but we have ignored

the interruption by the peaks to highlight the general fea-

tures. For a given θ, DE increases with RE2 as the latter

increases from 3 to 3.5µm. Larger RE2’s are closer to RE3

but further away from RE1. The combined effect is to in-

crease DE in this case. DE is again larger for larger θ, a

trend that has been observed in Fig. 21 and 22.

5. Conclusions

The modulation of the secondary Bjerknes force be-

tween a pair of bubbles by a third bubble has been in-

vestigated theoretically and numerically. In the linear or

weakly nonlinear regime, the characteristic length scale

is the resonant radius. Significant modulation effects can

be observed when at least one of the two bubbles is ap-

proximately in resonance. The third bubble can suppress

or increase the secondary Bjerknes force between the

bubble pair depending on the Minnaert frequencies of the

bubbles. When the third bubble oscillates in (or out of)

phase with the nearby bubble, the equilibrium distance is

decreased (or increased).

In the strongly nonlinear regime where transient cav-

itation occurs, small bubbles with radii at the order of a

few microns are investigated. The behavior of the mod-

ulation can largely be explained by the observation that

the secondary Bjerknes force is stronger when the radii

of the two bubbles are close. The third bubble reduces

the secondary Bjerknes force between the bubble pair

and increases the equilibrium distance. Strong effects

are observed for a wide range of distances. The effects

of the third bubble are stronger when it is placed closer

to the smaller one in the pair. Interesting resonance-like

behaviours are observed for specific combinations of pa-

rameter values.

This investigation has several limitations. In addition

to those mentioned in the main text, the bubbles are as-

sumed to be spherical so that the analysis is valid only

for small bubbles or weak oscillations. Also, the cou-

pling between bubble translation and oscillation has not

been considered. Nevertheless, it demonstrates that the

inter-bubble interactions can be significantly modulated

by the surrounding bubbles. An implication is that, to

model bubble clusters using particle methods, an im-

proved parametrization of the secondary Bjerknes force

might be required. A realistic parametrization may need

to include as parameters the pressure amplitude, the driv-

ing frequency, the relative distances between the bubbles,

and the sizes/locations of the bubbles. This question is

under investigation and the results will be reported in the

future.
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