
This is a repository copy of Bone-targeted therapies in cancer-induced bone disease.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152892/

Version: Accepted Version

Article:

Sousa, S. and Clézardin, P. (2018) Bone-targeted therapies in cancer-induced bone 
disease. Calcified Tissue International, 102 (2). pp. 227-250. ISSN 0171-967X 

https://doi.org/10.1007/s00223-017-0353-5

This is a post-peer-review, pre-copyedit version of an article published in Calcified Tissue 
International. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/s00223-017-0353-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Title: Bone targeted therapies in cancer-induced bone disease 
Authors: Sofia Sousa1,2 *, Philippe Clézardin1,2,3 # 
Affiliation/ address 1

 National Institute of Health and Medical Research (INSERM), UMR 
1033, Lyon 69372, France  
2
 Faculty of Medicine Laennec, University of Lyon-1, Villeurbanne 69372, France 

3 European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and 
Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK 
 
* sofia.sousa@inserm.fr , +33(0)4 78 77 87 73, ORCID: 0000-0002-4368-4866 
# philippe.clezardin@inserm.fr , +33(0)4 78 78 57 37 
 

  



2 

 

Bone targeted therapies in cancer-induced bone disease 

Abstract 
Cancer-induced bone-disease is a major source of morbidity and mortality in cancer patients. 
Thus, effective bone targeted therapies are essential to improve disease-free, overall survival 
and quality of life of cancer patients with bone metastases. Depending of the cancer-type, 
bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by 
tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its 
underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone 
metastasis, it is essential to target not only bone metastatic features in the tumour cells, but 
also tumour nurturing bone-microenvironment properties. The currently available bone 
targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, 
denosumab). Some agents targeting osteoblasts begin to emerge (e.g. romosozumab), 
activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts 
are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. 
proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for 
the treatment of cancer-induced bone-disease, summarizing preclinical and clinical findings 
obtained with anti-resorptive and bone anabolic therapies.  
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Introduction 
Bone metastases are frequent complications of solid tumours [1,2]. For example, the 
incidence of bone metastases is 65-75% in breast cancer [1], 65-90% in prostate cancer [2], 
20-25% in renal cell carcinoma [3], 14-45% in melanoma [4], 65% in thyroid cancer [4], 17-
64% in lung cancer[4], 40% in bladder cancer[4], 10% in colorectal cancer and the incidence 
of cancer-induced bone disease in cases of multiple myeloma is 70-95% [4]. Moreover, 
osteosarcoma, a primary bone cancer accounts for 2% of childhood cancers, and the average 
5-year survival rate for patients with localized disease is 60-80%, and for metastatic patients 
15-30%[5]. Therefore, providing appropriate relief and/or preventing the appearance of bone 
metastases or cancer-induced bone disease in high-risk cancer patients is a major challenge in 
the field. Adding to the deleterious effects of bone metastases (e.g. bone pain, fractures, spinal 
cord compression, hypercalcemia), certain anti-cancer therapeutic regimens also worsen bone 
health (e.g. treatment induced bone loss [6]). Thus, bone targeted agents are also needed in 
such cases to preserve bone quality. 
The multifactorial, multi-step nature of bone metastasis has unveiled different cellular and 
molecular targets in the metastatic cascade such as osteoclasts, osteoblasts, osteocytes, 
endothelial cells, and other bone microenvironment elements (e.g. immune cells, extracellular 
matrix). This bone tropism of solid tumours, such as breast and prostate cancers, has been 
explained by several concepts: 1- the “seed and soil” theory; 2- the osteomimicry of tumour 
cells; and 3- the establishment of a vicious cycle between tumour and bone cells. Bone 
marrow acts as a fertile soil for the seeding of circulating tumour cells (CTCs), expressing 
anchoring receptors and providing growth factors for the establishment and subsequent 
growth of metastatic foci. Recent developments in the cancer research field highlighted the 
concept of pre-metastatic niches in which primary tumour cells secrete factors or activate 
immune cells, that prime distant sites, rendering them more nurturing to CTCs [7-9]. Several 
lines of evidence have shown that breast and prostate cancer cells, under the selective pressure 
of the bone microenvironment, acquire an osteoblast-like phenotype by overexpressing bone-
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related genes, which ultimately facilitate tumour cells to thrive and subsequently cause overt 
bone metastases [10,11]. In bone, tumour cells activate osteoclast differentiation and bone 
resorbing activity leading to the release of growth factors previously embedded in the bone 
matrix, stimulating tumour growth, inhibiting osteoblast activity and thereby perpetuating a 
cycle of osteoclast activation and tumour growth, ultimately leading to bone destruction [12]. 
Because bone destruction is the main skeletal-related event associated with bone metastasis 
bone targeted therapies have been essentially aimed at inhibiting the bone resorptive activity 
of osteoclasts. Anti-resorptive drugs used in the treatment of bone metastasis in preclinical 
and clinical settings include bisphosphonates, the anti-RANKL antibody denosumab, 
cathepsin K inhibitors, mTOR inhibitors and Src inhibitors. However, with the growing 
evidence of the involvement of other cell types, particularly in the early steps of the bone 
metastatic cascade, new targets arose in osteoblasts, osteocytes, endothelial cells, immune 
cells, etc. Moreover, some osteoclast-targeted agents were also found to affect osteoblasts, 
macrophages and other cells directly or indirectly [13,14].  
This review will cover currently approved bone targeted therapies in cancer-induced bone-
disease, bone targeted therapies currently in the clinical trial pipeline, as well as emerging 
therapies in the discovery/preclinical phases.  
 

Approved bone targeting therapies 
Molecular targeted therapies 

Bisphosphonates 

Bisphosphonates (BPs) have a high affinity for hydroxyapatite crystals and mainly target 
bone-resorbing osteoclasts. Depending of their structure the bone mineral affinity, potency 
and mechanisms of action of BPs are different [15]. Non-nitrogen containing BPs (non N-
BPs) are metabolised to AppCp-type ATP analogues, which are cytotoxic via inhibition of the 
mitochondrial adenine nucleotide translocase (ANT), thereby inducing apoptosis. Nitrogen 
containing BPs (N-BPs) inhibit the mevalonate pathway enzyme farnesyl pyrophosphate 
synthase (FPPS) leading to inhibition of protein prenylation and accumulation of isopentenyl 
pyrophosphate (IPP) and triphosphoric acid 1-adenosin-5′-yl ester 3-(3-methylbut-3-enyl) 
ester (ApppI) [16]. ApppI evokes apoptosis similarly to the ATP analogues formed from non-
nitrogen containing BPs. Table 1 provides a list of the different bisphosphonates and their 
anti-tumour and/or bone preserving activity. 
 

Table 1 Bisphosphonate classes and their anti-tumour and/or bone preserving activity 

 
In the past 2-3 decades, novel cellular targets for BPs emerged both in vitro and in vivo. 
Among such targets figure tumour associated macrophages [26], neutrophils [27], γδ-T cells 

BP class BP Anti-tumour or bone preserving activity 

 
non N-BPs 

 
Clodronate 

 
 In experimental breast cancer bone metastasis, daily regimens decrease 
skeletal tumour growth[17]  

 
N-BPs 

 
Alendronate 

 

Pamidronate Decrease breast cancer cell adhesion to bone matrices[18]  
Olpadronate 
 

Ibandronate 

 
 

Decreases breast cancer cell adhesion to bone matrices and bone metastasis 
via induction of osteoclast and breast cancer cell apoptosis [18,19]  
 

Zoledronate 
 

Induces breast, prostate, lung, colon, osteosarcoma and myeloma cancer cell 
apoptosis [20-22] and decreases osteolytic lesions and bone tumour burden, 
preserving bone structure in breast cancer bone metastasis models[23-25] 
  

Abbreviations: BP, bisphosphonates; Non N-BPs, non-nitrogen containing BPs; N-BPs, nitrogen containing BPs 
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[28-31], endothelial cells [24] and osteoblasts [32]. The direct anti-tumour effects of N-BPs 
relied on frequent low doses of the drugs, which lead to high concentrations within tumours 
[33]. 
Preclinical evidence demonstrated the benefit of bisphosphonates in the management of 
established bone metastases of solid tumour and multiple myeloma. This has prompted 
several clinical trials in the late 90s early 2000s, leading to the EMEA (2001) and FDA (2002) 
approval of bisphosphonates, particularly zoledronic acid (ZOL) for the prevention of skeletal 
related events (SRE) in patients with advanced malignancies involving bone and treatment of 
tumour-induced hypercalcaemia. 
Further preclinical [34] and clinical studies (Table 2) showed that bisphosphonates prevent 
bone metastasis as well as have extra-skeletal benefits in defined microenvironmental 
contexts, such as oestrogen deprivation. 
A recent meta-analysis of individual patient data from randomised trials of adjuvant BP use in 
early breast cancer has further proved a reduction in the risk of bone and other metastases and 
breast cancer mortality only in older or oestrogen-deprived patients [35]. 
Two prospective clinical studies [36,37] explored the anti-tumour potential of ZOL in the 
neoadjuvant setting. The first study by Winter and colleagues [36] showed a synergistic effect 
of ZOL treatment followed by chemotherapy possibly due to an increased apoptosis and 
reduced proliferation and a reduction of the VEGF levels. The second study [37], enrolling 
fifty-three breast cancer patients (thirty-three with locally advanced and twenty with a first 
bone-only relapse) demonstrated that a single 4mg dose of ZOL 14 days prior to any further 
treatment increased the number of apoptotic CTCs and primary tumour cells, reduced tumour 
and endothelial cell proliferation. ZOL antiangiogenic effects in a neoadjuvant setting were 
also suggested, in prostate cancer patients, where ZOL treatment decreased the number of 
circulating endothelial and endothelial precursor cells, both markers of ongoing pathological 
neoangiogenesis [38]. 
Additionally, a meta-analysis of randomized trials of ZOL plus neoadjuvant chemotherapy in 
breast cancer patients revealed benefits in terms of pathological complete response in the 
breast only for postmenopausal women [39]. 
 

Table 2 Effects of bisphosphonates in adjuvant and neoadjuvant settings of breast and prostate cancer clinical 

trials  

Clinical trial Patient population BP (dose, treatment 

duration) 

 

Results 

Breast cancer 

 
Oral CLO in 
adjuvant 
treatment [40] 

Operable breast cancer 
patients 

CLO (1600mg/day po, 3 
yrs) 

↑recurrence-free, bone 
metastasis-free and non-bone 
metastasis-free intervals in 
women >50 yrs  

    
Z/ZO-FAST 
[41,42] 

Postmenopausal early 
breast cancer patients  

Immediate or delayed 
ZOL (4mg iv q 6 mo, 5 

yrs) 

Preserved BMD and ↑DFS 

    
AZURE [43] Early breast cancer 

patients 
ZOL (4mg iv q 3-4 weeks 

x 6, 4mg iv q 3 mo x 8, 
4mg iv q 6 mo, 5 yrs) 

↑IDFS and ↓extra-skeletal 
metastases in postmenopausal 
women 
↓ bone metastases in the whole 
population 

    
ABCSG-12 [44] Premenopausal early 

breast cancer patients 
ZOL (4mg iv q 6 mo, 3 

yrs)  
↑DFS in oestrogen deprived 
women 
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Overall, the use of BPs (mainly oral CLO and intravenous ZOL) in the adjuvant and 
neoadjuvant settings of large phase-III, prospective clinical trials in early breast cancer shows 
that these agents exhibits anticancer activity in patients with hormone-responsive breast 
cancer who had low levels of reproductive hormones at study entry, achieved either through 
natural menopause or ovarian suppression therapy (Table 1). The mechanisms behind the 
improved overall survival of these patients in a low oestrogen environment who received a BP 
are unknown. In stark contrast, the use of ZOL in the adjuvant treatment of patients with high-

risk, castration-sensitive prostate cancer, regardless whether these men received or not 

androgen-deprivation therapy, does not provide a benefit on disease-free survival (Table 2). 

The reasons for these marked differences in the clinical outcome of breast and prostate cancer 

patients receiving an adjuvant BP treatment are unclear. 
Despite being the gold standard in bone-targeted therapy, bisphosphonates have side effects, 
which may limit their use in certain patient groups. The most common adverse effects are 
fatigue, fever, nausea/vomiting, anaemia, bone/joint pain, osteonecrosis of the jaw and 
atypical femur fractures. Osteonecrosis of the jaw and atypical femur are rare but 
preoccupying side effects that are associated with bisphosphonate long-term use [50].  
Due to their high affinity to hydroxyapatite, bisphosphonates are also exploited as bone-
targeting moieties, for decades as radiotracers, and more recently to deliver chemotherapy and 
other toxic cargo to bone resident tumour cells. So far, the latter approach remains in the 
preclinical realm [51]. However, future studies may change this scenario. 
 
Anti-RANKL antibody (Denosumab) 

The triad receptor activator of nuclear factor-Κβ (RANK), RANK ligand (RANKL) and 
osteoprotegerin (OPG, RANKL decoy receptor) has been shown to regulate osteoclast 
maturation, differentiation and survival. RANK is expressed by osteoclasts and osteoclast 
precursors, whereas RANKL is produced by osteoblasts and osteocytes [52]. The generation 

of the RANK- and RANKL-knockout mice revealed that, other than osteopetrosis, the other 

ZOL ↑efficacy of tamoxifen 
 

Prostate cancer 

 

Adjuvant Effect 
of IV CLO [45] 
 

Castration-sensitive 
prostate cancer patients 

CLO (1500mg iv q 3mo 
for 50 to 124 mo) 

Delayed time to first bone 
metastasis 

MRC PR04, PR05 
studies [46] 

Castration-sensitive 
prostate cancer patients 

CLO (2080mg/day po, 5 
yrs) 

No prevention of bone metastasis 

    
RADAR [47] Castration-sensitive 

prostate cancer patients 
ZOL (4mg iv q 3 mo, 

18mo) 
ZOL treatment 
prevented the sustained BMD 
loss caused by 18 months of 
ADT 
 

ZEUS study [48] High-risk, castration-
sensitive prostate cancer 
patients 
 

ZOL (4mg iv q 3 mo, 4 
yrs) 

Ineffective in the prevention bone 
metastasis  

STAMPEDE 
study [49] 

High-risk, castration-
sensitive prostate cancer 
patients 
 

ZOL (4mg iv q 3 weeks x 
6, 4mg iv q 4 weeks, 2 

yrs) 

ZOL shows no evidence of 
survival improvement  
 

Abbreviations: BP, bisphosphonate; CLO, clodronate; q, every; po, per os; iv, intravenously; ZOL, zoledronic acid; BMD, 
bone mineral density; DFS, disease-free survival; IDFS, invasive disease-free survival; OS, overall survival; SRE, skeletal-
related events; mo, months; yrs, years; ADT, androgen deprivation treatment 
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tissue compartments that exhibited functional defects were the peripheral lymphatic tissue and 

the development of the mammary gland during pregnancy [53]. These findings are in line 

with the observation that activated T cells and mammary epithelial cells express 

RANK/RANKL [54]. Additionally, RANK and RANKL mRNAs are expressed in other 
tissues, including skeletal muscle, thymus, liver, heart, brain and adrenal glands [54]. 
RANKL binding to RANK activates osteoclastogenesis and promotes osteoclast survival and 
activity, leading to increased bone resorption, a feature of osteoporosis and breast cancer-
induced bone-disease. 1,25-diihydroxyvitamin D3, parathyroid hormone related protein 
(PTHrP), interleukins 1 and 6 (IL-1, IL-6), tumour necrosis factor (TNF), prolactin, 
corticosteroids and prostaglandin E2 increase RANKL expression. Oestrogens, calcitonin, 
transforming growth factor β (TGFβ), platelet-derived growth factor (PDGF) and calcium-
induced OPG decrease RANKL/RANK binding thus preventing excessive bone resorption 
[54]. Upon RANK/RANKL interaction osteoblasts secrete further RANKL, which initiates a 
cancer cell osteoblast osteoclast vicious cycle and promotes osteoclastogenesis and osteoclast 
activity. Increased osteoclast-mediated bone resorption further fuels the vicious cycle by the 
release of growth factors from the resorbed bone, which stimulate tumour growth (Fig.2). 
Originally, due to the osteoclast activating role of RANK/RANKL, and the known part played 
by osteoclasts in mediating osteolytic bone metastasis, OPG a decoy receptor for RANKL 
was used in preclinical breast cancer bone metastatic models [55]. Due to the ubiquitous 
expression of RANK in a variety of tissues, targeting the circulating and local levels of 
RANKL seems a safer therapeutic approach than directly inhibiting the receptor. OPG-Fc was 
the first of such attempts, but the induction of an immune response against OPG was a 
potential safety risk. Its development was therefore discontinued in favour of anti-RANKL 
human monoclonal antibodies with better pharmacokinetic profiles and higher anti-RANKL 
affinity/specificity e.g. denosumab. The fully human anti-RANKL IgG2 antibody, 
denosumab, binds RANKL as the endogenous decoy receptor OPG, blocking RANKL-RANK 
interaction and thus inhibiting osteoclastogenesis and osteoclast activity, which in turn 
reduces bone resorption. 
As the murine RANKL is not recognized by human monoclonal antibodies against RANKL, 
the preclinical development of such therapeutic agents relied on the use of primates 
(cynomolgus monkey) [56,57] or humanized mice [58,59]. Most of the preclinical evidence of 
blocking RANKL in oncology derived from OPG-Fc and RANK-Fc treatments [60,61] and 
only recently made use of the humanized mouse model suitable for denosumab treatments 
[62]. A strong inhibition of osteoclast differentiation and activity with these experimental 
treatments has prompted the use of denosumab in several oncology phase III clinical trials. 
These trials focused on the prevention of SRE by denosumab in comparison with ZOL in 
patients with advanced cancer and bone metastasis, including multiple myeloma [63-66], 
breast [63,66-69], prostate [70-73] and other metastatic cancers [64,74]. Denosumab was 

found to be superior to ZOL in delaying the onset of the first SRE in breast and prostate 

cancer. In other metastatic solid tumours (excluding breast and prostate cancer) and multiple 

myeloma, denosumab was non-inferior to ZOL [69]. Denosumab has also shown positive 

results in the treatment of patients in which bone loss is prevalent, including women with 

breast cancer receiving aromatase inhibitor therapy and men with prostate cancer undergoing 

androgen deprivation therapy (Table 3). In these placebo-controlled randomized phase-III 

trials denosumab increases bone mineral density (BMD) and decreases bone resorption (Table 

3). Denosumab also increases bone-metastasis-free survival and delays time to first bone 

metastasis compared with placebo in men with non-metastatic castration-resistant prostate 

cancer at high risk of bone metastasis (prostate-specific antigen [PSA] ≥8·0 μg/L or PSA 

doubling time ≤10·0 months, or both) (Table 3). 
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Table 3 Effects of denosumab in adjuvant settings in breast and prostate cancer clinical trials 

 
An ongoing clinical trial (D-CARE, NCT01077154) is testing denosumab in high-risk early 
breast cancer patients receiving neoadjuvant or adjuvant therapy (Table 3). Its estimated 
primary completion date is August 2017 and its estimated study completion date August 
2022. 
Cumulative in vitro, in vivo and retrospective clinical data link RANK overexpression by 
breast cells with stem cell properties, epithelial to mesenchymal transition [79], malignant 
transformation and ultimately with disease progression, particularly in progesterone driven 
breast cancers [53] and BRCA mutants [80]. Therefore, certain experts suggest the use of 
denosumab for breast cancer chemoprevention in high-risk women (BRCA1, BRCA2 
mutation carriers) as an alternative to radical prophylactic mastectomy. An ongoing 
prospective clinical trial has started to address the efficacy of such a strategy (BRCA-D trial, 
ACTRN12614000694617).  
In oncology denosumab is currently FDA approved for (1) treatment of adults and skeletally 
mature adolescents with giant cell tumour of bone that is unresectable or where surgical 
resection is likely to result in severe morbidity,(2) prevention of SREs (pathological fracture, 
radiation to bone, spinal cord compression or surgery to bone) in adults with bone metastases 
from solid tumours and (3) increasing bone mass in patients at high risk for fracture due to 
ADT for non-metastatic prostate cancer or AI therapy for breast cancer. Similar indications 
have been approved by EMEA, except for its use in unresectable giant cell tumour of bone 
and breast cancer patients receiving AI. 
The most common adverse effects of denosumab are similar to those of BPs: nausea, 
diarrhoea, fatigue and osteonecrosis of the jaw, the latter being equally rare [81]. 
 
Mammalian target of rapamycin (mTOR) inhibitors 

Clinical trial 

 

Patient population Dose Results 

Breast cancer  

HALT, NCT00089661 
[75,76] 

Hormone receptor 
positive non-metastatic 
breast cancer patients 

Denosumab (60mg sc q 6 mo) 
vs placebo plus AI 

↑BMD and ↓bone 
remodelling markers 

    
ABCSG-18 [77] Postmenopausal breast 

cancer patients 
Denosumab (60mg sc q 6 mo)   
vs placebo plus AI 

↓AI-induced fractures 

    
Prostate cancer   

NCT00089674[78] Non metastatic CRPC 
patients 

Denosumab (60mg sc q 6 mo) 
plus androgen deprivation 
therapy 

Rapid and sustained 
decrease of bone 
turnover markers by 
denosumab 
 

Smith et al [72] Non metastatic CRPC 
patients at high risk of 
bone metastasis 
 

Denosumab (120mg sc q 
4weeks) vs placebo, plus ADT 
 

Increase bone 
metastasis-free 
survival 

D-CARE 
NCT01077154 

High-risk early breast 
cancer patients 

Denosumab (120mg sc q 4 
weeks, 6 mo, then 120mg sc q 
3 mo, 18 mo) vs placebo, plus 
neoadjuvant or adjuvant 
therapy  

August 2017 

    
Abbreviations: mo, months; sc, subcutaneously; q, every; AI, aromatase inhibitors; ADT, androgen deprivation therapy; 
BMD, bone mineral density; CRPC, castration resistant prostate cancer 
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The dysregulation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/mTOR 
pathway is a common feature of cancer [82]. Additionally, it has been implicated in normal 
and pathological osteoclastogenesis [83]. Indeed, mTOR is an antiapoptotic downstream 
target of M-CSF, RANKL and TNF-a, which is essential for osteoclast differentiation, 
survival, and activity [84,85]. mTOR inhibition leads to increased OPG expression, osteoclast 
apoptosis and might also promote osteoblastogenesis [86,87]. 
Rapamycin and its analogues (e.g. sirolimus, temsirolimus, everolimus, deforolimus) are 
mTOR inhibitors, which block the translation of survival factors and apoptosis inhibitors [84]. 
Preclinical evidence demonstrated an effect of mTOR inhibition in cancer-induced bone-
diseases. For instance, in the 4T1 orthotopic breast cancer model, rapamycin treatment of 
tumour-bearing animals reduces the number of osteolytic lesions and increased survival [88]. 
In osteoblastic and osteolytic osteosarcoma models, everolimus plus ZOL combination 
treatment slowed tumour progression and increased bone mass [89]. In prostate cancer, 
everolimus alone or in combination with docetaxel and/or ZOL decreased tumour burden and 
cachexia [90]. In oral squamous cell carcinoma, temsirolimus slowed tumour growth and 
inhibited osteolysis [91]. In neuroblastoma, despite the known direct effects of mTOR 
inhibition on osteoclasts and osteoblasts and their respective precursors the overall effects on 
cancer-induced bone-disease may well be a combination of direct anti-tumour effects and 
microenvironmental effects as the PI3K/AKT/mTOR pathway also regulates cell growth and 
apoptosis.  
Due to its in vivo synergistic effect with other bone resorption inhibitors, chemotherapy and 
hormonal therapy, several clinical trials evaluated the effect of mTOR inhibitors in advanced 
cancers. In breast cancer, the efficacy of everolimus vs placebo in combination with 
trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced 
breast cancer (BOLERO-1 trial) was investigated [92]. Although everolimus did not improve 
progression-free survival (PFS) of the whole population, compared to placebo there was a 7- 
month PFS prolongation in hormone receptor negative HER-2 positive breast cancer patients 
[92]. The BOLERO-2 trial led to the approval of everolimus in combination with exemestane, 
for patients with advanced hormone receptor–positive/HER2-negative (HER2−) breast cancer 
who progressed on prior endocrine therapy with either letrozole or anastrozole [93-95]. 
Additionally, exploratory analyses in BOLERO-2 evaluated the effect of everolimus on bone 
marker levels and progressive disease in bone [6]. Data obtained show that, compared to 
exemestane alone, everolimus plus exemestane has beneficial effects on bone turnover and 
progressive disease in bone in patients, irrespective of the use of bisphosphonates [6]. The 
effect of everolimus, as a single agent, was also studied in a double-blind, placebo-controlled, 
phase II trial in HER2-negative breast cancer patients with bone metastases only (RADAR 
study) [96]. The results suggest that patients with bone metastases only may retrieve long-
term benefit from everolimus.  
The efficacy and safety of everolimus has also been examined in other advanced cancers with 
bone metastasis, including renal cell carcinoma, non-small cell lung carcinoma and prostate 
carcinoma [97-99]. Compared to everolimus alone, the combination of everolimus and ZOL 
significantly reduces bone resorption markers and prolongs tumour control in renal cell 
carcinoma patients with bone metastases [97]. 
Similar synergistic effects of everolimus and ZOL in delaying bone metastasis and prolonging 
OS were seen in patients with advanced non-small cell lung carcinoma and bone metastases 
[99]. In contrast, the addition of everolimus to carboplatin demonstrated minimal clinical 
efficacy in metastatic castrate-resistant prostate cancer patients. However, in this trial, patients 
were not pre-selected for: PTEN deletion, TSC1 mutations, and lack of pAKT staining, all 
potential biomarkers for mTOR inhibition response. Thus, the studied population could be 
biased to everolimus non-responders [100].  
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Phase-I clinical trials also explored the use of everolimus in relapsed and/or refractory 
multiple myeloma patients [101,102]. Although these trials were designed to evaluate 
feasibility, anti-myeloma activity, defined as clinical benefit, was documented when 
everolimus was used as a single agent or in combination with lenalidomide [102]. 
The adverse events profile of mTOR inhibitors includes stomatitis, infection, rash, non-
infectious pneumonitis, hyperglycaemia, and hyperlipidaemia, most reversible by dose 
adjustment and supportive care measures. The metabolic abnormalities are of utmost concern 
in postmenopausal women, who have an already increased risk for such conditions. Thus, 
special attention must be paid in the management of this patient population [103]. 
 

Radium-223 and other radiopharmaceuticals 
External beam radiation therapy has been in clinical practice to treat bone pain in metastatic 
patients. However, its use is limited to localized disease due to the toxicity to healthy 
surrounding tissues. Low linear energy transfer β-emitter radionucleotides like strontium-89 
(calcium mimetic that binds to bone mineral) and bisphosphonate-conjugated samarium-153 
enabled targeted delivery of radiotherapy to bone and showed benefits in the palliative 
treatment of bone metastatic patients. The wide radiation range of the latter two agents causes 
dose-limiting toxicities, thus their use is restricted. On the contrary, high linear energy 
transfer radionucleotides (particularly a-emitters) such as radium-223 have advantages in 
terms of relative biological effectiveness, enhanced bystander effect, reduced oxygen 
enhancement ratio and shorter range of radiation emission. This decreases toxicity and 
delivers higher energy to target tumour cells even in hypoxic sites, with lower probability to 
target healthy bone marrow cells [104,105]. 
Radionucleotides act by inducing DNA double strand breaks which when accumulated in 
target cells lead to cell death. Due to unknown mechanisms, bystander cells not directly 
irradiated may also undergo apoptosis, via the formation of foci of γ-phosphorylated histone 
protein (γH2A) [104]. 
Preclinical studies demonstrated radium-223 distribution to osseous sites [106,107] and its 
effectiveness in decreasing osteolytic lesions in experimental models of bone metastasis 
[108]. In the clinic, a phase II trial in castration-resistant prostate cancer patients with 
symptomatic bone metastases (ALSYMPCA) showed that radium-223 improves OS, 
compared to the placebo group receiving the best standard of care, including bisphosphonates 
or denosumab [109,110]. Additionally, radium-223 impoves quality of life, provides pain 
relief and is well tolerated in this patient population. Results from the ALSYMPCA study led 
to the FDA approval of radium-223 as a single agent in patients with hormone refractory 

prostate cancer and bone metastases. Similar encouraging results were observed in metastatic 
breast cancer [111-113]. Experimentally, radium-223 alone or in combination with ZOL or 
doxorubicin, increases OS, decreases osteolysis and skeletal tumour burden and prevents 
tumour-induced cachexia in a breast cancer model of bone metastasis [111]. In an open-label 
phase IIa study on breast cancer patients with bone-dominant disease, who have progressed 
on endocrine therapy, radium-223 treatment consistently reduced bone resorption and bone 
formation markers as well as metabolic changes associated with osteoblastic bone metastases 
[113]. Large randomized clinical trials in bone metastatic breast cancer patients are ongoing 
in order to examine the effect of radium-223 in combination with endocrine therapy and 
exemestane plus everolimus (NCT02258464 and NCT02258451 trials, respectively) [105]. 
Little is known on the effect of radium-223 in other cancer types. However, trials are ongoing 
in osteosarcoma (NCT01833520) and thyroid cancer with refractory bone metastases 
(NCT02390934) [105]. 
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At the recommended doses (six injections of radium-223 at 50 kBq/kg every 4-weeks) data 
from the ALSYMPCA trial indicate low-grade diarrhoea and low-grade myelosuppression as 
the most common adverse effects of radium-223 [110]. 
 

Proteasome inhibitors (bortezomib) 

The proteasome is an ATP-dependent enzymatic complex responsible for the degradation of 
ubiquitinated proteins. Malignant cells are generally more sensitive to proteasome inhibition 
due to their higher proliferation and protein synthesis rates. This is particularly true in 
multiple myeloma [114].  
Bortezomib was the first proteasome inhibitor approved in the treatment of multiple myeloma. 
Bortezomib reversibly binds to the chymotrypsin-like subunit of the proteasome inhibiting its 
catalytic activity. Bortezomib dose-dependently inhibits RANKL-induced osteoclastogenesis 
as it prevents the degradation of the NF-!B inhibitor I-!B, which blocks the binding of NF-
!B to the promoters of target genes. Additionally, bortezomib promotes bone formation via an 
increase in both Runx2 activity and expression of osteoblast markers such as type I collagen, 
as well as by increasing BMP-2 secretion by osteoblasts and inhibiting multiple myeloma-
induced osteocyte death [114]. Due to its direct anti-tumour and anti-osteoclastic effects and 
its stimulatory effect on osteoblasts, bortezomib (as a proteasome inhibitor) seems ideal in the 
management of multiple myeloma. However, cancer patients have intrinsic or acquired 
resistance to bortezomib therapy. The mechanisms for this resistance are not fully understood, 
but include: upregulation of constitutive proteasome; point mutations in the bortezomib 
binding pocket; down-regulation of the immunoproteasome; cellular extrusion of bortezomib 
by the drug efflux transporter P-glycoprotein; activation of pro-survival pathways 
(particularly in the bone marrow microenvironment: MAPK, insulin like growth factor and 
Akt/PI3K/signalling upregulation, increased IL-6 secretion, and expression of miRNA 15a ); 
loss of Xbp1; increased expression of (phosphorylated) MARCKS; and autophagy [115].  
Hundreds of clinical trials with bortezomib in combination therapy regimens are ongoing in 
multiple myeloma. Addressing them all is out of the scope of this review. A recent meta-
analysis demonstrated that bortezomib improves OS, PFS and response-rate in multiple 
myeloma patients, compared to those who did not receive bortezomib. The most common 
side-effects of bortezomib are increased risk of thrombocytopenia, neutropenia, gastro-
intestinal toxicities, peripheral neuropathy, infection and fatigue [116]. 
 

Hormone related therapies 

Anti-androgens 

Sex steroids are essential for bone homeostasis. In males, testosterone is the most abundant 
sex steroid and it confers protection against osteoporotic fractures mainly via aromatization to 
oestradiol, which will act on oestrogen receptors. Testosterone also acts on the androgen 
receptor present in osteoblasts and osteocytes as well as in other cell types [117]. Abiraterone 
acetate is an irreversible inhibitor of cytochrome P17, which blocks androgen biosynthesis 
(Figure 3) leading to undetectable levels of androgens [118]. 
Enzalutamide is an inhibitor of the androgen receptor (Figure 3), which has shown to have 
bone specific effects, blocking the aromatization independent effects of testosterone in bone 
[119]. 
Prostate cancer is an androgen dependent pathology, which initially responds to surgical or 
chemical castration. Androgen altered signalling is a validated therapeutic target in metastatic 
castration-resistant prostate cancer.  
Initially thought to target only prostate cancer cells, abiraterone acetate directly inhibits 
osteoclastogenesis and promotes osteoblastogenesis and bone matrix deposition [120]. The 
use of antiandrogens like abiraterone acetate increases OS and delays time to development of 
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SRE in metastatic castration-resistant prostate cancer patients [121]. However, despite their 
approved use in metastatic castration-resistant prostate cancer, the existence of androgen 
receptor splice variants (e.g. AR.V7) and mutants leads to the quick development of 
resistance to anti-androgens [122]. 
 

Bone targeting therapies in clinical trials 
Molecular targeted therapies 

Cathepsin K inhibitors 

Cathepsin K is a lysosomal cysteine proteinase essential for osteoclast activity. Osteoclast 
secrete protons providing the optimal acidic microenvironment for cathepsin K degradation of 
the demineralized collagenous matrix by cleavage at multiple sites and release of N-
telopeptide collagen fragments. Moreover, cathepsin K is also expressed by bone metastatic 
breast and prostate cancer cells, thus cathepsin K activity is elevated in osteolytic bone 
metastases and its targeting may provide dual cell targeting (osteoclasts and cancer cells)[123-
125]. Additionally, in osteosarcoma patients, cathepsin K seems to be predictive of poor 
prognosis [126]. 
The design of cathepsin K inhibitors was initially challenging due to high similarity of 
substrate and mechanisms between members of the cysteine cathepsin family. Additionally, 
species differences (87-88% human/rodent homology) make human cathepsin K inhibitors 
less potent than rodent cathepsin K inhibitors. The initial cathepsin K inhibitors bound to the 
catalytic site irreversibly, which made them non-attractive to chronic use. Later generations of 
inhibitors (e.g. dutacatib, odonacatib, balicatib) reversibly bind to the catalytic site of 
cathepsin K, blocking substrate binding and subsequent cleavage. Another issue with these 
drugs is their high lysosomotropism. Prolonged lysosomal trapping of cathepsin K inhibitors 
leads to off-target effects and to skin adverse effects, common to lysosomal targeting drugs 
[127]. For instance, balicatib a basic lysosomotropic cathepsin K inhibitor successfully 
completed a phase II clinical trial for osteoarthritis (NCT00371670), increasing BMD and 
decreasing bone resorption, but was discontinued due to rash and morphea-like skin changes 
[127]. 
In preclinical models of breast cancer bone metastasis, treatment and preventive protocols 
with the cathepsin K inhibitor dutacatib (AFG495) 50 mg/kg, twice daily intraperitoneally 
alone or in combination with ZOL (single dose of 100µg/kg) decreased tumour-induced 
osteolysis and skeletal tumour burden and did not affect primary breast tumour growth [124]. 
Cathepsin K inhibition did not affect breast cancer cell proliferation, thus pointing to a 
microenvironmental effect of decreased bone resorption leading to a less nurturing soil for 
tumour cell implantation [124]. Odanacatib is another cathepsin K inhibitor that is as effective 
as ZOL to reduce bone resorption in breast cancer patients with bone metastases, as assessed 
by measuring urinary N-telopeptide of type I collagen [128]. Interestingly, cathepsin K 
inhibitor L-235, which is structurally related to odanacatib but with higher potency against the 
rodent enzyme, was tested in a breast cancer model of bone metastasis and results were very 
similar to those previously reported for AFG495 [124,129]. Additionally, L-235 inhibited 
breast cancer cell invasion in vitro, thus pointing to a dual targeting of breast cancer cells and 
osteoclasts [129]. 
The promising preclinical results obtained with non-basic/non-lysosomotropic cathepsin K 
inhibitors such as odanacatib led to several clinical trials in osteoporosis and cancer-
associated bone metastases. As aforementioned, the safety and efficacy of odanacatib on 
inhibition of biochemical markers of bone turnover in patients with breast cancer and 
established bone metastases has been reported [128]. Similarly, a phase-II study in 
postmenopausal osteoporosis reported that a 5-year continuous therapy with odanacatib 
inhibited bone resorption and increased BMD [130]. A phase-III Long-Term Odanacatib 
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Fracture Trial (LOFT) enrolling 16,713 participants from 387 centres was therefore conducted 
[131]. Unfortunately, phase III results showed that while the drug could reduce osteoporotic 
fractures, it also increased the risk of atrial fibrillation and stroke. The big pharma Merck, the 
odanacatib manufacturer, therefore decided to discontinue the development of this drug. For 
undisclosed reasons the metastatic bone disease trials (NCT01552122, NCT00691899 and 
NCT00692458) were also withdrawn. 
 

c-Src inhibitors 

c-Src was the first proto-oncogene to be identified and it is a non-receptor protein tyrosine 
kinase crucial in several cellular processes such as proliferation, migration, invasion and 
survival. c-Src knockout mice have defective osteoclasts, impaired bone remodelling, are 
osteopetrotic and toothless [132]. Osteoclastic c-Src activation is important for osteoclast 
differentiation and activity; it recruits several signalling proteins for motility and cytoskeletal 
rearrangement (e.g. podosome formation). RANK/RANKL signalling leads to c-Src 
activation, which in turn triggers PI3K/Akt/mTOR signalling, promoting osteoclast survival 
[133]. Therefore, c-Src inhibition has the potential to impair osteoclast-mediated bone 
resorption. Additionally, c-Src inhibition has been shown to affect osteoblasts, suppressing 
proliferation and enhancing differentiation (Figure 3) [134]. 
Several orally active c-Src/multikinase inhibitors are FDA-approved (bosutinib, dasatinib, 
ponatinib and vandetanib) or are in clinical trials for various malignancies. Due to the high 
similarity of Src family tyrosine kinases, none of the current inhibitors is uniquely selective 
for Src, Table 4 shows their known targets and potential therapeutic indications [135]. 
Pharmacological inhibition of c-Src or intra-cardiac injection of dominant-negative kinase 
dead c-Src breast cancer cells, reduces bone and visceral metastatic incidence as well as 
morbidity and lethality. Additionally, subcutaneous injection of c-Src overexpressing breast 
cancer cells originates larger and more proliferating breast tumours than wild type cells. 
Breast cancer cell c-Src overexpression affects osteoclastogenesis (via osteoblast inhibition) 
and endothelial proliferation. Thus, c-Src pharmacological inhibition may decrease bone 
metastasis by acting directly in tumour cells, osteoclasts, osteoblasts and endothelial cells 
[136]. 
In addition to osteoclasts, platelets and tumour cells, c-Src is also expressed by neurons. 
Therefore, a recent preclinical study evaluated the use of saracatinib in cancer-induced bone 
pain. Intra-tibial injection of rat mammary cancer cells induced thermal hyperalgesia and 
mechanical allodynia via phosphorylation of the GluN1 subunit of the N-methyl-D-aspartate 
receptor. Saracatinib treatment reduced this phosphorylation levels and reversed the thermal 
hyperalgesia while having no anti-tumour or bone preservation effect at any of the doses used 
[137]. This prompted the initiation of a clinical trial for the use of saracatinib in cancer-
induced bone pain NCT02085603. 
 

Table 4 c-Src/multikinase inhibitors (adapted from [135]) 

Inhibitor Known Targets Potential therapeutic 

indications 

Clinical trials in bone 

disease 

Bosutinib BCR-Abl, Src, Lyn, Hck, Kit, 
PDGFR 

Ph+, CML, ALL, breast cancer, 
glioblastoma 

Yes [138] 

Dasatinib BCR-Abl, Src, Fyn, Yes, Lck, 
Arg, Kit, EphA2, EGFR, 
PDGFRβ 

Ph+, CML, ALL, breast, 
colorectal, endometrial, head 
and neck, ovarian, and small cell 
lung cancers, glioblastoma, 
melanoma, and NSCLC 

Yes [139-141] 

Ponatinib BCR-Abl, Src family kinases, 
VEGFR, PDGFR, FGFR, Eph, 
Kit, RET, Tie2, Flt3 

Ph+, CML,  ALL, endometrial, 
GIST, hepatic biliary, small cell 
lung, and thyroid cancers 

No 

Vandetanib RET, Src family kinases, Medullary thyroid cancer, Yes (NCT00659438) 
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Preclinical studies with the PC-3 human bone metastatic prostate cancer model and two 
different c-Src inhibitors bosutinib [142] and saracatinib [143] demonstrated that c-Src 
inhibition decreases prostate cancer cell proliferation, migration and invasion in vitro and 
reduces tumour burden (orthotopically and in bone) and tumour-induced osteolysis in bone 
metastatic animals. Moreover, c-Src inhibition decreased the phosphorylation levels of several 
signalling molecules (AKT, mitogen-activated protein kinase MAPK, focal adhesion kinase 
FAK) as well as the transcription of genes essential for tumour progression (urokinase 
receptor uPAR, matrix metalloproteinase 2 MMP-2, MMP-6, bone morphogenetic protein 2 
BMP-2, BMP-6, interleukin 8 IL-8 and TGF-β) in prostate cancer cells. An orally 
bioavailable c-Src inhibitor (KX2-391), which targets the substrate binding site instead of the 
ATP-binding site, as all the other c-Src inhibitors, has been also investigated in castration-
resistant prostate cancer patients with bone metastases. KX2-391 40mg po twice daily did not 
however have an anti-tumour effect and had only modest effects on inhibition of bone 
turnover markers [144]. The study of its pharmacokinetic demonstrated that the median 
maximum concentration (Cmax) achieved was inferior to the Cmax necessary for inhibition of 
tubulin polymerization, which may explain these modest inhibitory effects [144].  
Overall, phase I/II trials in bone metastatic patients, using dasatinib and saracatinib showed 
these drugs are safe, well tolerated and have encouraging results in terms of delaying disease 
progression. The use of these drugs in large phase III trials is awaited.  
 

Anti-Sclerostin antibodies 

Sclerostin (SOST) is an extracellular wingless pathway (Wnt) inhibitor, which acts by binding 
to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6), preventing 
Wnt ligands binding and activation of canonical Wnt signalling (Figure 4) in bone thus 
decreasing bone formation through osteoblast inhibition. SOST is a protein mainly secreted 
by osteocytes [145]. Nevertheless, multiple myeloma cells [146] and breast cancer cells also 
secrete SOST [147], SOST becomes therefore an interesting target in cancer-induced bone-
disease, as SOST inhibition could potentially lead to increased bone. For example, anastrazole 
treatment of postmenopausal women with hormone receptor positive non-metastatic early 
breast cancer leads to increased SOST serum levels [148]. This suggests a role for osteocytes 
in bone turnover of breast cancer patients, which could be therefore modulated by anti-SOST 
therapy. Similarly, in symptomatic multiple myeloma patients, high SOST circulating levels 
positively correlated with altered bone remodelling and advanced disease [149,150].  
The role of SOST in prostate cancer is more controversial. Studies show an increase of serum 
SOST levels in prostate cancer patients, particularly those under androgen deprivation therapy 
[151] or with high bone turnover [152]. However, a transcriptional and proteomic study 
shows no significant difference in the local levels of SOST in prostate cancer bone osteolytic 
and osteoblastic metastases [153]. A confounding factor could be the use of androgen 
depriving therapy, which could mask differences between baseline circulating and local SOST 
levels. Additionally, according to Hudson and colleagues SOST and Dickkopf 1(DKK1, 
another Wnt-inhibitor) have opposing effects in prostate cancer bone metastasis. DKK1 

EGFR, 
VEGFRs, Brk, Tie2, EphRs 

breast, head and neck, kidney 
cancers, NSCLC, and several 
other solid tumours 

Saracatinib 
(AZD0530) 

Src, BCR-Abl Colorectal, gastric, ovarian, 
small cell lung 
cancers, NSCLC, and metastatic 
osteosarcoma in lung 

Yes (NCT00559507, 
NCT00397878, 
NCT02085603, 
NCT00558272) 
 

Abbreviations: Ph+, Philadelphia chromosome positive leukaemia ; CML, Chronic myelogenous leukaemia;  ALL, acute 
lymphoblastic leukaemia; NSCLC, non- small cell lung cancers; GIST, gastrointestinal stromal tumour 
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promotes prostate cancer invasion and metastasis and SOST evokes the opposite effect [154]. 
This surprising result warrants further investigations into the role of SOST in prostate cancer, 
especially as studies demonstrate that Wnt activation evokes prostate cancer soft tissue and 
bone metastasis [155]. 
There is some preclinical evidence that anti-SOST antibodies exhibit bone anabolic effects in 
animal models of bone loss [156-158]. A study in a multiple myeloma model demonstrated 
that an anti-SOST antibody can increase bone volume in tumour-bearing mice to levels 
similar to naïve mice and it decreased tumour burden, thus slowing disease progression [159]. 
Human SOST neutralizing monoclonal antibodies, such as romosozumab, blosozumab and 
BPS804 are in clinical development for osteoporosis and osteogenesis imperfecta [160-162]. 
Pending of the results of these ongoing clinical trials, anti-SOST therapy in cancer patients 
with bone metastasis could be then considered.  
 

Emerging bone targeting therapies 
Molecular targeted therapies 

Anti-Dikkopf-1 antibody 

Dikkopf-1 (DKK1), another extracellular Wnt inhibitor, produced by breast [163], prostate 
and multiple myeloma cancer cells leads to pronounced osteoblast inhibition, which is 
essential for the establishment of osteolytic bone disease. Wnt inhibition evokes OPG 
downregulation and RANKL upregulation, thus indirectly controls osteoclastogenesis [145]. 
Preclinical evidence in multiple myeloma shows that DKK1 inhibition reduces cancer-
induced bone destruction and promotes bone formation [164]. In breast cancer bone 
metastasis DKK1 inhibition is controversial, as in vitro studies show that DKK1 inhibits 
tumour growth [165], which poses issues to the clinical utility of an anti-DKK1 treatment. In 
a PDX model of human osteosarcoma, the use of a monoclonal antibody against human 
DKK1 (BHQ880) slowed the orthotopical tumour growth and inhibited metastasis, while 
increasing bone differentiation markers [166]. 
Phase I (NCT00741377) and II (NCT01302886, NCT01337752) clinical trials were 
conducted in multiple myeloma with the BHQ880, alone or in combination with ZOL and 
anti-myeloma therapy. The phase I trial showed that BHQ880 is well tolerated and has 
potential clinical activity in multiple myeloma [167]. Phase III clinical trials are missing to 
further ascertain the clinical utility of BHQ880. 
Due to compensatory mechanisms in the expression of Wnt inhibitors upon their inhibition in 
monotherapy, a bispecific monoclonal antibody targeting SOST and DKK1 is in preclinical 
development. So far the dual inhibition of the Wnt inhibitors by bispecific antibodies has 
shown a further increase in bone mass (Figure 4) [168]. 
 

MET/VEGFR inhibitors 

MET also known as hepatocyte growth factor receptor (HGFR) and vascular endothelial 
growth factor receptors (VEGFRs) are tyrosine protein kinase receptors. Expression of 
VEGFRs especially by bone marrow-derived endothelial progenitor cells and hematopoietic 
progenitor cells has been linked with the establishment of pre-metastatic niches. Particularly, 
VEGFR1+ cells are required for extravasation, and VEGFR2+ cells for neovascularization 
[169]. Moreover, VEGF/VEGFR signalling contributes to prostate cancer-induced osteoblast 
differentiation and activity [170]. MET is overexpressed in prostate cancer primary tumours 
and bone metastases and correlates with higher tumour grade [171]. MET/VEGFR targeting 
has thus the potential to impair tumour-induced neoangiogenesis, pre-metastatic niche 
formation, and osteoblast differentiation and activity (Figure 3). 
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Initial studies with VEGFR inhibitors (e.g. sunitinib, sorafenib) and anti-VEGF therapy (e.g. 
bevacizumab) evoked an increased invasion and metastasis probably due to a rebound 
vascularization via activation of the MET pathway. 
Cabozantinib is a tyrosine protein kinase receptor inhibitor, which preferentially targets 
VEGFR2 and MET. AXL, FLT-3, KIT and RET tyrosine kinase receptors are also inhibited 
but with less potency [172]. Cabozantinib treatment suppresses tumour growth and 
angiogenesis in multiple tumour types. Contrary to VEGFR/VEGF inhibition, cabozantinib 
also decreases metastasis [172]. In bone metastatic prostate cancer models, cabozantinib 
inhibited bone- and subcutaneous tumour growth. Additionally, cabozantinib altered bone 
remodelling in tumour free and tumour-bearing bones. In tumour free bones, cabozantinib 
increased bone volume/tissue volume ratio (BV/TV). In tumour-bearing bones, cabozantinib 
effects on bone remodelling were dependent of the tumour type: in LuCaP 23.1 tumours 
(osteoblastic, androgen sensitive) cabozantinib decreased BV/TV; in C4-2B tumours (mixed 
osteoblastic/osteolytic, castration resistant) it tended to increase BV/TV. The authors 
speculated that the different effects seen in the LuCap 23.1 and C4-2B models were due to the 
higher bone remodelling induced by the former, thus an effect on the tumour growth (smaller 
bone tumours, lower osteoblastic reaction, lower bone formation) led to a decrease on 
BV/TV. However, since the treatment also affected normal bone remodelling, one should 
consider that, the overall effect is a combination of cabozantinib on tumour and bone cells 
[173]. Dai and colleagues have obtained similar results with the additional demonstration of 
an effect of cabozantinib in osteoblasts [174]. Further studies in normal bones have shown 
that this agent reversibly: increases bone volume; increases osteoblast numbers (in male 
mice); decreases the number of osteoclasts (in female mice); and alters the bone marrow 
composition of treated animals, originating vascular ectasia, spillage of mature red blood cells 
in the extra vascular bone marrow and increasing the number of megakaryocytes [32]. 
Additional proof for the direct effect of cabozantinib in prostate cancer tumour cells, 
endothelial cells and osteoblasts was provided by patient derived xenografts and clinical trials 
[175]. 
A study with TAS-115, another MET/VEGFR inhibitor that also inhibits FMS, demonstrated 
an osteolysis prevention effect (PC-3 model) due to prostate cancer cell and osteoclast 
targeting (the latter via inhibition of FMS-dependent RANKL-induced pre-osteoclast to 
osteoclast differentiation) [176]. Similar results emerged from a model of bone metastatic 
lung carcinoma [177]. 
At least eight clinical trials of cabozantinib in bone metastatic cancers (prostate, breast, lung, 
multiple myeloma) are currently active. In the phase III clinical trial in heavily treated (with 
docetaxel and Abiraterone acetate and/or enzalutamide) bone metastatic castration-resistant 
prostate cancer patients the results of cabozantinib versus prednisone were somehow 
disappointing, as the primary outcome of improved OS was not met. Cabozantinib improved 
bone scan response, radiographic PFS, symptomatic skeletal events, CTCs and bone 
biomarkers. The investigators argue that patient selection may be an issue and that treatment 
discontinuation in the cabozantinib group may be a confounding factor [178]. Nevertheless, 
the results of this trial led to the termination of several other trials in bone metastatic 
castration-resistant prostate cancer. Further clinical development of cabozantinib is pending 
on the use of a specific biomarker to select patients, on the clarification of the best diagnostic 
tool to determine its effectiveness in bone metastatic castration-resistant prostate cancer (as 
bone scans seem inappropriate), and of its use in combination therapy [179,180]. 
The most common adverse events of cabozantinib reported in the phase III clinical trial were 
decreased appetite, nausea, diarrhoea, fatigue, vomiting, asthenia, decreased weight, 
constipation and anaemia [178].  
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Anti-integrins 

Integrins are heterodimeric cell-surface receptors that mediate adhesion to the extracellular 
matrix and immunoglobulin superfamily molecules. Structurally, integrins are composed of 
non-covalently bound a and β subunits forming 24 different heterodimers. Each has an 
extracellular domain, a single trans-membrane region and a short cytoplasmic tail. The 
extracellular domain shows high affinity for a defined RGD-motif expressed by vitronectin, 
fibronectin, osteopontin and other extracellular matrix components. Ligand binding 
propagates outside-in and inside-out intracellular signalling. The unique integrin repertoire of 
a given cell determines the extent of adhesion and migration of that cell in different matrices. 
Abnormal integrin overexpression by tumour and/or host cells has been associated with 
tumour proliferation, survival, angiogenesis, migration and metastasis [181]. Particularly, in 
osteotropic tumours, overexpression of avβ3 integrin has been linked with increased bone 
colonization by breast, prostate and lung cancer cells and osteomimetism by multiple 
myeloma cells. The interaction of cancer cells with stromal cells and immune cells via avβ3 
integrin induces the production of cytokines and growth factors that recruit and differentiate 
osteoclast precursors, thus inducing lytic lesions [182]. Other integrins, such as αvβ5, αvβ6, 
α5β1, α6β4, α4β1, have also been implicated in the tumour progression of different tumour 
types [181]. Therefore, integrin-targeting strategies either by the use of RGD-motif 
peptidomimetics or of monoclonal antibodies has reached preclinical and clinical 
development. avβ3 integrin is the predominant integrin in osteoclasts and it is involved in 
osteoclast attachment to the bone matrix [183]. 
Preclinical evidence has established αvβ3 as a target in breast cancer bone metastasis. Tumour 
αvβ3 [184,185] expression was essential for bone homing but not for bone colonization of 
breast and ovarian cancer cells. Short-term preventive treatment with a peptidomimetic 
antagonist of αvβ3 (PSK1404) inhibited tumour cell invasion in vivo while it did not inhibited 
bone resorption in ovariectomized mice. However, tumour-induced bone resorption was 
inhibited via the decrease in the secretion of osteoclast-activating factors by tumour cells. 
Continuous treatment, with a dose that inhibits bone resorption in ovariectomized mice, led to 
an even more effective reduction in skeletal tumour burden probably due to a dual inhibitory 
effect in tumour cells and osteoclasts [184]. 
Treatment with the selective peptidomimetic inhibitor for αv integrins, cilengitide, leads to 
decreased lung metastasis in an osteosarcoma model. In osteosarcoma patient specimens, 
avβ5 and αvβ3 integrins are expressed by tumour cells and stromal cells, respectively. Dual 
inhibition of these integrins did not however affect primary tumour growth. In contrast, it 
decreased lung metastasis, thus advocating for a role of cilengitide in the treatment of 
metastatic osteosarcoma patients [186]. 
Inhibition of α5β1 integrin with a novel peptidomimetic antagonist also showed preclinical 
benefits in breast cancer cell invasion and angiogenesis, decreasing lung colonization and 
bone metastasis progression [187]. 
A peptidomimetic of the α2β1 integrin binding domain is efficacious at inhibiting 
ovariectomy induced bone loss, and impairs breast primary tumour growth and bone 
metastasis in mice. Combination with a suboptimal dose of doxorubicin increased OS to 
levels similar to the optimal doxorubicin dose [188]. 
A Phase II clinical trial of MEDI-522 (also known as etaracizumab), a human monoclonal 
antibody directed against the human avβ3 integrin, in combination with docetaxel, 
prednisone, and ZOL in the treatment of patients with metastatic castration-resistant prostate 
cancer has been completed (NCT00072930) although no results are publicly available. Phase 
I/II Clinical studies in colorectal cancer and melanoma have also been completed. The 
outcome of phase II clinical trials showed increased median survival of metastatic melanoma 
patients with minimal side effects. An in vitro study demonstrated that anti- avβ3 integrin 
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antibody treatment reduced bone resorption without affecting osteoclastogenesis, simply by 
the inhibition of osteoclast attachment to bone surfaces [189]. 
Cilengitide in asymptomatic bone metastatic castration-resistant prostate cancer patients was 
well tolerated in a phase II clinical trial, and the higher dose had a modest clinical effect in 
stabilizing disease, with no apparent effects on bone markers [190]. 
Overall, no clinical trials point to an efficacy of an integrin targeting strategy being efficient 
in the management of cancer-induced bone disease, at least not in monotherapy. However, 
large phase III clinical trials are lacking. Additionally, integrin targeting could be of use in 
theranostics. Integrin peptidomimetic inhibitors conjugated with radioligands have been used 
to target tumour and tumour endothelial cells aiding imaging and targeted radiotherapy in 
breast [191] and prostate cancer [192]. 
 
Hormone related therapies 

Activin A inhibitors 

Activin A is a member of the TGFβ superfamily. In vitro, activin A promotes bone 
remodelling, increasing both osteoclastogenesis and osteoblastogenesis [193]. In vivo, 
blocking activin A increases bone formation [194]. Activin A binds to activin receptor type 
IIA, recruits activin-like kinase 4 which phosphorylates Smad2/3 leading to the nuclear 
translocation of Smad 4. In cancer, activin A has paradoxical effects. Despite decreasing cell 
proliferation, activing A promotes migration and invasion of cancer cells in bone matrices. 
Increased levels of circulating and intra-tumour activin A are associated with prostate [195] 
and breast cancer bone metastasis, as well with multiple myeloma-induced bone disease 
[196,197]. Moreover, the decreased ratio of inhibins/ activins is linked with the increased 
bone resorption, observed around perimenopause. Activin A is generally secreted by bone 
marrow stromal cells, inhibiting osteoblastogenesis and increasing osteoclastogenesis. 
Multiple myeloma cells stimulate this production [194,198]. Inhibition of activin A signalling 
rescues multiple myeloma- and breast cancer-induced bone lytic disease [194,196]. 
Cumulative preclinical evidence steered clinical trials in multiple myeloma and metastatic 
breast cancer (terminated due to slow recruitment) of sotatercept, a recombinant activin 
receptor type IIA (ActRIIA) ligand trap comprising the extracellular domain of the high-
affinity human ActRIIA and the human immunoglobulin G Fc domain which binds activin 
A/B and other TGFβ superfamily members with high affinity. In the phase II clinical trial 
sotatercept showed anabolic improvements in bone mineral density, while barely affecting 
bone resorption. The most serious adverse events seen in sotatercept-treated patients (grade 4) 
were neutropenia, granulocytopenia, and atrial fibrillation. Excessive increases in 
haemoglobin levels led to dose interruption in certain patients and suggested the use of 
sotarcept as an erytropoyetic agent [199]. 
Lenalidomide, an approved multiple myeloma therapy, was shown to increase activin A 
production by bone marrow cells and therefore decrease osteoblastogenesis. Preclinical 
evidence suggested a combination of lenalidomide with sotatercept to promote bone 
formation. This led to the ongoing clinical trial of the combination treatment of lenalidomide 
or pomalidomide with dexamethasone plus sotatercept in refractory multiple myeloma 
(NCT01562405) [200]. 
 

Conclusion 
Thanks to the existing clinically approved bone targeted therapies, bone metastatic patients 
currently have fewer skeletal related events and prolonged disease-free survival than in the era 
where such agents were unavailable. Table 5 provides a selection of ongoing clinical trials of 
bone-targeted therapies in cancer-induced bone disease, whose results may contribute to the 
approval of new drugs or new indications for currently used agents (remove in the near 
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future). With the growing improvement of bone anabolic agents and constant discovery of 
novel cellular and molecular targets in the bone metastatic cascade, one may expect that in the 
forthcoming years we will be able to further improve patient overall survival, quality of life 
and ideally prevent cancer-induced bone disease.  
 

Table 5 Currently ongoing clinical trials of bone targeted agents for cancer-induced bone disease 

Bone targeted 

therapy 
Patient population 

Clinical trial 

Acronym/number 
Phase Clinical trials.gov link 

Denosumab High risk early breast cancer 
D-CARE 

NCT01077154 
3 https://clinicaltrials.gov/ct2/show/NCT010

77154?term=NCT01077154&rank=1 

Radium-223 
Bone metastatic breast cancer 

with endocrine therapy 
NCT02258464 2 https://clinicaltrials.gov/ct2/show/NCT022

58464?term=NCT02258464&rank=1 

Radium-223 
Bone metastatic breast cancer 

treated with exemestane 
NCT02258451 2 https://clinicaltrials.gov/ct2/show/NCT022

58451?term=NCT02258451&rank=1 

Radium-223 Osteosarcoma NCT01833520 1-2 
https://clinicaltrials.gov/ct2/show/NCT018
33520?term=radium+223&cond=osteosarc

oma&rank=1 

Radium-223 
Thyroid cancer refractory bone 

metastases 
RAD-THYR 

NCT02390934 
2 https://clinicaltrials.gov/ct2/show/NCT023

90934?term=NCT02390934&rank=1 

Bortezomib 

Relapsed multiple myeloma 
(comparison carfilzomib and 

dexamethasose versus 
bortezomib) 

NCT01568866 3 
https://clinicaltrials.gov/ct2/show/NCT015
68866?term=Bortezomib&recrs=d&cond=
Multiple+Myeloma+in+Relapse&phase=2

&rank=1  

Bortezomib 

Relapsed multiple myeloma 
(addition of daratumumab to 

bortezomib and 
dexamethasone) 

NCT02136134 3 

https://clinicaltrials.gov/ct2/show/NCT021
36134?term=Bortezomib&recrs=d&cond=
Multiple+Myeloma+in+Relapse&phase=2

&rank=2  
 

Bortezomib 
Relapsed multiple myeloma 
(pomalidomide, bortezomib 

and low-dose dexamethasone) 

OPTIMISMM 
NCT01734928 

3 
https://clinicaltrials.gov/ct2/show/NCT017
34928?term=Bortezomib&recrs=d&cond=
Multiple+Myeloma+in+Relapse&phase=2

&rank=3 

Bortezomib 

Relapsed multiple myeloma 
(comparison carfilzomib, 
dexamethasose and once 

weekly bortezomib versus 
twice weekly bortezomib) 

 

ARROW 
NCT02412878 

3 
https://clinicaltrials.gov/ct2/show/NCT024
12878?term=Bortezomib&recrs=d&cond=
Multiple+Myeloma+in+Relapse&phase=2

&rank=4 

Bortezomib 

Relapsed multiple myeloma 
patients(pomalidomide, 

bortezomib and low-dose 
dexamethasone versus high-

dose dexamethasone) 

NIMBUS 
NCT01311687 

3 
https://clinicaltrials.gov/ct2/show/NCT013
11687?term=Bortezomib&recrs=d&cond=
Multiple+Myeloma+in+Relapse&phase=2

&rank=5 
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Figure legends 
Figure 1 Cancer-induced disease bone marrow microenvironmental targets. 
 

Figure 2 RANK-RANKL signalling in cancer induced bone disease. 
 
Figure 3 Simplified mechanisms of action of c-SRC inhibitors, MET inhibitors and anti-
androgens in prostate cancer induced bone disease. 
 

Figure 4 Wnt signalling in bone, mechanisms of action of anti-SOST, anti-DKK1 and 
bispecific antibodies. 
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