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Abstract

Recently there has been interest in the approaches for train-

ing speech recognition systems for languages with limited re-

sources. Under the IARPA Babel program such resources have

been provided for a range of languages to support this research

area. This paper examines a particular form of approach, data

augmentation, that can be applied to these situations. Data aug-

mentation schemes aim to increase the quantity of data available

to train the system, for example semi-supervised training, multi-

lingual processing, acoustic data perturbation and speech syn-

thesis. To date the majority of work has considered individual

data augmentation schemes, with few consistent performance

contrasts or examination of whether the schemes are comple-

mentary. In this work two data augmentation schemes, semi-

supervised training and vocal tract length perturbation, are ex-

amined and combined on the Babel limited language pack con-

figuration. Here only about 10 hours of transcribed acoustic

data are available. Two languages are examined, Assamese and

Zulu, which were found to be the most challenging of the Ba-

bel languages released for the 2014 Evaluation. For both lan-

guages consistent speech recognition performance gains can be

obtained using these augmentation schemes. Furthermore the

impact of these performance gains on a down-stream keyword

spotting task are also described.

Index Terms: data augmentation, speech recognition, babel

1. Introduction

A large amount of transcribed training data is usually needed to

enable accurate speech recognition [1, 2]. Although for some

languages, such as English and Mandarin, these resources may

be sourced, for others, termed low resource languages, it may

not always be feasible. This has recently created lots of in-

terest in the approaches that can be applied to these situations

[3, 4, 5]. To facilitate research in this direction, consistent packs

of limited resources for a range of languages have been provided

under the IARPA Babel program. The goal of the program

is to provide effective search capabilities to efficiently process

real-world recorded speech. This is effectively a spoken term

detection task, where speech recognition systems are assessed

based on keyword search (KWS) performance rather than more

conventional transcription accuracy. Though improvements in
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thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or im-
plied, of IARPA, DoD/ARL, or the U. S. Government.

speech recognition performance may not necessarily translate

into improved KWS capacity [3], a certain positive correlation

does exist [3, 4, 5], which motivates the work on building accu-

rate speech recognition systems.

A common issue that arises from the use of limited re-

sources in speech recognition systems is robust parameter es-

timation. A range of approaches can be applied to address ro-

bustness issues. These include standard statistical approaches,

such as maximum a posteriori (MAP) estimation [6], and data

augmentation [7, 8, 9, 10, 11, 12]. The MAP estimation intro-

duces a prior on model parameters into training objective func-

tion [6, 13]. However, this approach is ill-suited in situations

when there is no training data or informative prior distribution

available. The data augmentation aims to increase the quantity

of training data. This approach has an important theoretical ad-

vantage of being able to produce data when real examples are

not available [8]. Common schemes include semi-supervised

training [7, 2, 11], multi-lingual processing [3, 11, 14], acoustic

data perturbation [9, 10, 12] and speech synthesis [8].

The previous work with data augmentation has mostly fo-

cused on individual schemes. Not much work has been done

on contrasting and examining whether the schemes are compli-

mentary. This paper examines and combines semi-supervised

training and acoustic data perturbation on two languages, As-

samese and Zulu, found to be the most challenging of the Babel

languages released for the 2014 Evaluation.

The rest of this paper is organised as follows. Section 2

provides an overview of commonly used data augmentation

schemes including semi-supervised training and acoustic data

perturbation. Section 3 discusses options available for train-

ing speech recognition systems on augmented data. Sec-

tion 4 provides individual and combined results on using semi-

supervised training and acoustic data perturbation for the two

Babel program languages, Assamese and Zulu. Finally, Sec-

tion 5 presents conclusions drawn from this work.

2. Data augmentation

The data augmentation refers to the schemes that aim to increase

the quantity of data available to train speech recognition sys-

tems. The schemes can be split based on the type of produced

data, such as unsupervised, synthesised and other language data.

2.1. Unsupervised data

The unsupervised data refers to data which lacks correct tran-

scriptions. This also includes data having only rough transcrip-

tions, such as closed captions [7, 2]. The unsupervised data may

be adopted by recognising it with an existing or boot-strapped

system, filtering out those utterances that fail to decode/pass

confidence threshold [15, 16] and re-training the system on su-
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pervised and filtered unsupervised training data. This is com-

monly referred to as a semi-supervised training. The main ad-

vantage of unsupervised data is that it is generally possible to

collect vast amounts of such data, e.g., radio and television

news broadcasts [7], covering all sorts of speaker and noise

conditions. The main disadvantage of this type of data is the

lack of correct transcriptions. This limits possible gains from

the approaches particularly sensitive to the accuracy of supplied

transcriptions, such as discriminative training [17] and speaker

adaptation based on discriminative criteria [18].

2.2. Synthesised data

The synthesised data may refer to existing but perturbed in a

certain way data as well as new artificially generated data. One

major advantage of synthesised data is that, similar to unsuper-

vised case, it is possible to collect vast amounts of such data.

Furthermore, different to unsupervised case, the correctness of

associated transcriptions is usually guaranteed. A major disad-

vantage of this type of data could be its quality.

There are numerous options how data can be perturbed.

These include vocal tract length perturbation (VTLP) [9, 10]

and stochastic feature mapping (SFM) [12]. The VTLP scheme

attempts to alter vocal tract length during extraction of stan-

dard speech parametrisations such as Mel-frequency cepstral

(MFCC) and perceptual linear prediction (PLP) coefficients.

Essentially, a single warping parameter is modified either

stochastically [9] or deterministically [12]. This results in a sim-

ple synthesis process yet the data is perturbed in a non-linear

way. Though the original motivation for VTLP was to learn

multi-layer perceptrons (MLP) robust to changes in vocal tract

length [9, 10, 12], the scheme could be of a wider interest, for

instance, to boot-strap systems used for recognising unsuper-

vised data. In contrast to VTLP, the SFM is a general method-

ology for stochastically mapping features from one domain to

another [19, 12]. When applied to speakers, the SFM essentially

yields a simplified voice morphing [20] scheme. One simple ap-

proach to map utterances of one speaker to another is to apply

global constrained maximum likelihood regression (CMLLR)

transform [21] estimated from statistics of the other speaker

[12]. The issue with this approach is that a simple global trans-

form is applied to every observation in the sequence which may

not be powerful enough to yield accurate mapping.

Rather than perturbing existing data it is possible [8] to

artificially generate new examples using speech synthesis ap-

proaches, such as concatenative or statistical [22]. The concate-

native approach attempts to synthesise speech by concatenating

existing waveform segments into a sequence. The statistical ap-

proach usually adopts acoustic models, such as hidden Markov

models (HMM), to produce speech parameter sequences max-

imising likelihood [22]. These model-based schemes may be

particularly useful since speech parameter sequences, such as

MFCC or PLP, rather than waveforms are required. Thus

many of the waveform production issues [23] are not rele-

vant. Furthermore, these schemes permit model-based adap-

tation/compensation approaches [24] to be used for synthesis-

ing data with target [25] and new [26] speaker and environ-

ment characteristics. In contrast to acoustic data perturbation

schemes, the use of speech synthesis offers flexibility in gen-

erating data for arbitrary given transcription. For instance, it is

possible to generate data for targeting only particular confusions

using schemes such as acoustic code-breaking [27].

Hidden Layers

Layer
Bottleneck

Input Layer

Targets

GMM

L PM

Figure 1: Schematic diagram of a tandem approach

2.3. Other language data

Though for many languages there are only limited or no re-

sources, for some languages sufficient resources are available.

This has prompted lots of interest in using this type of augment-

ing data [3, 11, 14]. Furthermore, the use of unsupervised other

language data has also been considered [11]. Compared to syn-

thesised data, this type of augmenting data, similar to unsuper-

vised data, is real. However, its use may also be more compli-

cated as it is not obvious what is the best way to exploit it [3].

There have been proposed several approaches. One group relies

on the use of a universal phone set to accomplish mapping of

one language to another [28, 3]. Another group relies on an al-

ternative form of mapping, such as phone-to-phone [29] or hid-

den layer unit-to-target as in the MLP-based work of [30, 14].

Both directions have their own advantages and disadvantages

[3]. In particular, it is not obvious how to ensure sufficient

coverage in the training data for approaches based on universal

phone sets, map phones between languages such as English and

Cantonese in approaches based on phone-to-phone mappings or

ensure that targets are optimally ordered in approaches that map

hidden layer units to targets.

3. Augmentation modes

Given augmenting data, an important question is how to best

exploit it. The answer to this question will ultimately depend

on the particular architecture the speech recogniser adopts and

the nature and amount of augmenting data used. There are nu-

merous configurations possible, such as standard Gaussian mix-

ture model (GMM) based HMM [31], tandem [32], hybrid [33],

stacked versions of the tandem [34] and hybrid [33] architec-

tures. This section considers several of these, putting a particu-

lar emphasis on the tandem architecture adopted in Section 4.

The tandem architecture may be illustrated by Figure 1

which shows a MLP and GMM-based HMM speech recog-

niser. Three types of MLP layers are shown: input, hid-

den and bottleneck. The standard parametrisation, such as

MFCC or PLP, optionally de-correlated and transformed, is

fed into the input layer which is followed by hidden layers

where it undergoes a series of non-linear transformations un-

til it reaches bottleneck layer where MLP-derived features are

extracted. These features, also called bottleneck (BN) features,

are then concatenated with the standard parametrisation, option-

ally de-correlated and transformed, and used within the standard

GMM-based HMM speech recogniser. The hybrid architecture

may also be illustrated by Figure 1, although in this case the

dashed part is not present and the bottleneck layer is replaced

with an extra hidden layer. The posterior probabilities of tar-
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gets at the final layer after proper scaling are adopted in place

of GMM likelihoods within the standard HMM speech recog-

niser [33]. The stacked architectures are based on replacing

the dashed block in Figure 1 by another MLP of tandem or

hybrid configuration. Though all these architectures are based

on MLPs, the final speech recognisers often show different er-

ror behaviours. This is where system combination approaches

[35, 16] may yield further gains in transcription accuracy.

Such MLP-based architectures offer flexibility into the use

of augmenting data. For instance, there are options how it can

be exploited in the tandem architecture. One option is to only

re-train the GMM whilst keeping MLP parameters fixed to the

estimates obtained from the supervised data. Another option is

to only re-train the MLP. The third option is to re-train both, the

GMM and MLP. For hybrid architectures it is common to re-

train the whole system on the augmented data [12], although it

is possible to consider fine-tuning on the supervised data only.

The stacked architectures offer more flexibility though for sim-

plicity they were not investigated in this paper.

In addition to architecture, the optimal approach will also

depend on the nature and amount of the particular data used. For

instance, it is not obvious which parts are best kept unilingual

and which are better to train multi-lingual in case of augmenting

data from other languages. Also, there is a clear limit to the

usefulness of schemes such as VTLP. Furthermore, some of the

augmenting data types may not combine well in practice.

4. Experiments

Experiments were conducted on two limited language packs re-

leased by IARPA Babel program: Assamese and Zulu.1 The

data is recorded in real conditions, such as conversational tele-

phone speech in a range of acoustic conditions. There are

also provided phone set and phonetic lexicon, which contains

only words that appear in the supervised training data transcrip-

tions. The amount of supervised data is 12 and 14 hours for

Assamese and Zulu respectively. The underlying transcriptions

were used to create a bigram language model (LM) for discrimi-

native training [31] and trigram LM for decoding. The develop-

ment sets for both tasks contain approximately 10 hours of data.

The experiments were conducted using an extended version of

CUED’s HTK-3.4.1 toolkit [31] providing GMM-based HMM

speech recognition techniques, an extended version of ICSI’s

QuickNet toolkit [36] providing MLP techniques and IBM’s

proprietary KWS system [37] for keyword searching.

4.1. Speech recognition system

The tandem architecture was selected for investigation. A con-

sistent procedure was used to create tandem systems. This

largely followed [38] and consists of three stages. In the first

stage a speaker-independent GMM-based HMM is built based

on PLP. This applies maximum likelihood (ML) training, het-

eroscedastic linear discriminant analysis (HLDA) and discrimi-

native, minimum phone error (MPE) [39], training. The HMM

states were phonetic decision tree clustered into 1000 unique

states following the procedure in [3]. The first stage system

was used to produce hypotheses for adaptation by running a

Viterbi decoding with the trigram LM over the development

sets. The second stage is the MLP training. A simple MLP

topology with 3 hidden, 1 input and 1 bottleneck layer was

1The precise code identifiers are IARPA-babel102b-v0.5a and
IARPA-babel206b-v0.1e. These releases additionally contain full lan-
guage packs, where the amount of transcribed data is roughly 70 hours.

adopted. The targets were set to 1000 unique states derived for

the first stage system. The input to MLP was a 504-dimensional

stack of 4 past, 1 current and 4 future vectors, where each vec-

tor was a 13-dimensional PLP feature vector augmented with

pitch [40], its delta (∆), delta-delta (∆2) and triples (∆3). The

MLP was pre-trained layer-wise and fine-tuned using a cross-

entropy criterion [33]. The first stage system was used to pro-

vide targets. This MLP was used to provide 26-dimensional

BN features for training and development data. These BN fea-

tures were concatenated with 52-dimensional PLP+∆+∆2+∆3

and 3-dimensional pitch+∆+∆ features. The third stage is the

tandem build. This stage (re-)estimates HLDA transform for

PLP and global semitied transform [41] for BN. This reduces

dimensionality of tandem features from 81 to 68. The SI tan-

dem system is then built similar to the first stage SI system.

In addition to SI, the third stage also performs CMLLR-based

speaker adaptive training (SAT) first using ML [21] and then

feature-space MPE (fMPE-SAT) criterion [42]. The CMLLR

transforms during fMPE-SAT were fixed to ML estimates and

not re-estimated. This final system was used for decoding. Prior

to this, CMLLR and MLLR transforms were estimated using

initial hypotheses produced by the first stage system. These

transforms were then used in Viterbi decoding with the bigram

LM to produce lattices. Though these lattices could be rescored

with more advanced LMs, this was not done in this initial inves-

tigation. The accuracy of speech recogniser was assessed based

on token error rate (TER) in percentage points (%).2 The TER

performance of this system on Assamese and Zulu was 69.4 and

78.4%, as shown in the first row of Tables 3 and 2.

4.2. Keyword search system

For the 2014 Evaluation the IARPA Babel program required

each submitted system to be assessed in keyword search ca-

pacity. The task was to find all the exact matches of a query

in the development set. The KWS performance is measured

according to the maximum term weighted value (MTWV), a

metric that takes into account the probabilities of misses and

false alarms with larger MTWV values corresponding to bet-

ter KWS performance. The supplied queries were split into in-

vocabulary (IV) and out-of-vocabulary (OOV) parts. For the IV

queries the set of word lattices is searched [43] to retrieve the

list of hits. For the OOV queries a different approach is used.

This operates at the phone level by converting OOV queries

into phonetic representation using a grapheme-to-phoneme con-

verter [44]. A soft search, which may improve recall whilst de-

grade precision, is then performed by expanding the obtained

phonetic OOV query representation using phone-to-phone con-

fusion matrix [44]. Only 100 representations with the highest

score were retained. Furthermore, the language model scores

during search were zeroed as this was found to improve KWS

performance. The same approach was also adopted with those

IV queries that produced no hits (IV-OOV). The combined list

of hits including IV, OOV and IV-OOV parts after sum-to-one

normalisation [37] is used to compute MTWV.

4.3. Data augmentation

Two data augmentation schemes, semi-supervised (semi)

training and VTLP (vtlp), were considered. The unsupervised

2The TER is used for consistency of reporting performance for all
Babel program languages, such as Assamese and Zulu, where token is
a word, or Vietnamese, where token is a syllable or foreign word, or
Cantonese, where token is a character.
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data is provided by the limited language pack release and con-

versational portion of the full language pack. The unsupervised

data was selected as described in Section 2.1. Here, the tan-

dem system was used to produce lattices. These lattices were

then converted into confusion networks to yield word confusion

scores [16]. The confusion scores were weighted by the aver-

age number of frames to yield the final score for data selection.

The data selection process followed [17] and retained half of

the unsupervised data. This corresponds to the threshold of 0.4

and 0.3 for Assamese and Zulu respectively as can be seen from

Figure 2. The perturbed data, sup+vtlp and semi+vtlp,

 0
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D
a
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%
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Figure 2: Percentage of unsupervised data retained for semi-

supervised training at different confidence threshold values

was obtained as discussed in Section 2.2. Here, the original

data, sup and semi, was perturbed 4 and 8 times for Assamese

and Zulu respectively as the former was found sensitive to the

larger amount of perturbed data. One perturbation factor was

fixed to 1, which yields the original data, and the rest, 3 and

7, were randomly sampled from [0.8, 1.2] range for each side.
The perturbed semi-supervised (semi+vtlp) data was created

in the same way. This provides with an approach to increase the

amount of unsupervised data where confidence in the accuracy

of the underlying transcriptions is above 0.4 and 0.3 thresholds.

The amounts of supervised (sup) and other types of augment-

ing data are summarised in Table 1.

Table 1: Augmenting data quantity in hours

Type Assamese Zulu

sup 12 14

sup+vtlp 48 110

semi 42 49

semi+vtlp 152 213

4.4. Results

A range of experiments was conducted to assess the useful-

ness of augmenting data starting with the more challenging

language, Zulu. The first experiment examined the impact of

re-training MLP only. The first block of TER results in Ta-

Table 2: Zulu

GMM MLP TER MTWV

sup sup 78.4 0.1362

sup sup+vtlp 77.1 0.1496

sup semi 77.7 0.1468

sup semi+vtlp 76.7 0.1446

semi semi 76.9 0.1490

semi semi+vtlp 76.1 0.1441

semi+vtlp semi+vtlp 76.1 0.1454

ble 2 third column shows that the use of augmenting data yields

gains over the supervised data. In particular, the combined ap-

proach, (semi+vtlp, the fourth line) yields the largest 1.7%

absolute improvement. The next experiment assessed whether

increasing the complexity of GMM systemmay further improve

the results. The tandem system was retrained on the semi-

supervised data starting from the first stage. The number of

unique states was increased to 3000. This yields 76.9% TER

performance as shown on the first line of the second block in

Table 2. The use of additional data for training MLP in this case

gives small improvement. Re-training the tandem on perturbed

semi-supervised data with 5000 unique states yields no addi-

tional improvement in TER performance (last line in Table 2).

The second series of experiments was conducted on Assamese.

The results in Table 3 show a pattern similar to that of Zulu

apart from a rather limited usefulness of perturbed compared to

unsupervised data.

Table 3: Assamese

GMM MLP TER MTWV

sup sup 69.4 0.2286

sup sup+vtlp 69.3 0.2355

sup semi 67.6 0.2309

sup semi+vtlp 68.3 0.2341

semi semi 66.9 0.2221

semi semi+vtlp 66.9 0.2291

Although the above results indicate that data augmentation

schemes may be useful for improving TER performance, the

ultimate measure of interest in the IARPA Babel program is

MTWV. The KWS results in the fourth column of Tables 2 and

3 show that consistent gains in MTWV are also possible. These

results also illustrate that improvements in TER do not nec-

essarily translate into improvements in MTWV [3]. For both

languages the best MTWV is obtained with the GMM trained

on supervised data and MLP trained on perturbed supervised

data. The use of standard and perturbed semi-supervised data

for training MLP yields a slightly lower MTWV. However, in

this case re-training GMM on the semi-supervised data may

hurt performance. This indicates that the approach is also sen-

sitive to the accuracy of training transcriptions.

5. Conclusions

Providing accurate speech recognition and keyword searching

capabilities for low resource languages is a challenging task.

This paper examined an approach, data augmentation, that aims

to increase the quantity of available data. Particular schemes

discussed were semi-supervised training, acoustic data pertur-

bation, speech synthesis and multi-lingual processing. This

paper also discussed various ways to exploit this data in tan-

dem and hybrid architectures. Two of these schemes, semi-

supervised training and acoustic data perturbation, individu-

ally and in combination were applied within the tandem archi-

tecture for two low resource languages, Assamese and Zulu.

Speech recognition performance gains were observed from the

use of both scheme, with the combined scheme yielding largest

gain only for Zulu. Keyword search results showed that gains

are also possible, however, the use of semi-supervised training

yielded mixed results in this case suggesting sensitivity of the

approach to the accuracy of training data transcriptions.
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