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Abstract

Traditional truss layout optimization employing the ground structure method will often generate layouts that are too complex

to fabricate in practice. To address this, mixed integer linear programming can be used to enforce buildability constraints,

leading to simplified truss forms. Limits on the number of joints in the structure and/or the minimum angle between

connected members can be imposed, with the joints arising from crossover of pairs of members accounted for. However,

in layout optimization, the number of constraints arising from ‘crossover joints’ increases rapidly with problem size, along

with computational expense. To address this, crossover constraints are here dynamically generated and added at runtime

only as required (so-called lazy constraints); speedups of more than 20 times are observed whilst ensuring that there is no

loss of solution quality. Also, results from the layout optimization step are shown to provide a suitable starting point for

a non-linear geometry optimization step, enabling results to be obtained that are in agreement with literature solutions. It

is also shown that symmetric problems may not have symmetric optimal solutions, and that multiple distinct and equally

optimal solutions may be found.

Keywords Layout optimization · Topology optimization · Discrete optimization · Truss optimization ·
Multiple load-cases · Mixed integer linear programming

1 Introduction

Reducing the volume of material consumed in construction

projects is a challenge of increasing importance. The theory

of minimum volume structures is well established (Michell

1904) and can provide benchmark values to help evaluate

the structural efficiency of proposed designs. However,

for practical usage, the truss-like continua generated by

classical methods are often challenging or impossible to

construct in practice. Whilst novel construction methods

may allow more complex designs to be realized in the

future, more immediate benefits may arise through the use

of optimization methods capable of generating less complex

solutions.
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Numerical topology and layout optimization methods

allow structurally efficient forms to be identified. These

methods can be divided into continuum-based approaches

and discrete truss/frame-based methods. Perhaps the best

known of the continuum-based approaches is the SIMP

method (Bendsøe and Sigmund 1999). This uses penal-

ization to drive the solution to a distinct structural form.

A number of extensions to the SIMP method have been

suggested to control the complexity of the forms iden-

tified. For example, minimum length scale (Zhou et al.

2015) and maximum perimeter length (Park et al. 2018)

constraints have been proposed. However, the quantities

involved are not intuitive when considered in the context

of a typical structural engineering design problem. More

generally, interpreting solutions from a continuum topology

optimization in a structural engineering context will often be

challenging, and is likely to necessitate considerable man-

ual post-processing effort. Furthermore, the fraction of the

available design space occupied by structural members in a

typical building or bridge structure will generally be very

small, such that very high numerical resolutions are required

to achieve accurate results (see, e.g. Aage et al. 2017).
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Here, attention is therefore focussed on methods that

directly represent the structure as a frame or truss composed

of a series of discrete members. The most well-known

numerical method of this type is the ground structure layout

optimization method (Dorn et al. 1964), in which an optimal

set of members is chosen from a dense initial ground

structure. The commonly used plastic design formulation

gives rise to a problem that can be solved using linear

programming, allowing problems involving large numbers

of potential members to be solved rapidly.

One potential method for limiting the complexity of a truss

structure was suggested by Parkes (1975). This involves

adding a volume penalty to represent the material required

in the connections joining each member in the structure,

known as a joint cost. The penalty is linearly related to

the member volume, allowing this method to readily be

integrated with numerical ground structure based layout

optimization methods, whilst retaining computational effi-

ciency. However, as this method penalizes short members,

rather than the number of members, its efficacy is problem

dependent.

Another, similar concept was presented by Prager (1977);

however, here the cost of a joint was assumed to be

constant. With Prager’s approach minimum volume trusses

with fixed numbers of joints are first found, with the ranges

of costs for which they are optimal later established. The

minimum volume trusses are based on use of a mesh-wise

constant strain field, furnishing a set of geometrical rules

for the joints. Mazurek et al. (2011) identify the same

rules by direct optimization of joint positions for simple

structures, building on the principles of graphical statics.

These rules imply that the angles between members at

every unsupported joint should be identical. Prager (1978)

extends these rules to the case where σT �= σC , where σT

and σC are respectively the limiting stress in tension and

compression. Each of the aforementioned authors applies

their approach to three-force problems, such as the classical

Michell cantilever problem (where two of the three forces

are support reactions).

Of these approaches, only the linear joint cost method is

applicable to multiple load-case problems. When multiple

load-cases are present, the optimal solutions for elastic and

plastic design problems diverge. The plastic problem gives

rise to the simplest numerical formulation and, since it is

accepted by many structural design codes, is considered

here.

Optimality criteria for multiple load-case plastic design

problems were first given by Prager and Shield (1967).

For scenarios with two load-cases, it is possible to use the

superposition principle derived by Nagtegaal and Prager

(1973) to split the problem into two single load-case

problems that can then be superimposed. The superposition

principle was later extended to problems with more than two

load-cases by Rozvany and Hill (1978), although this has a

restricted range of applicability. However, numerical results

for various problems demonstrate the ‘overlapping’ nature

of many of the optimal layouts identified. In such cases,

manually identifying the layout of a discretized structure

becomes challenging.

Various means of characterizing the complexity of a given

structure are possible. However, whatever the chosen com-

plexity measure, it generally results in a non-smooth prob-

lem that can be challenging to solve numerically. Conceptu-

ally, the simplest measures of complexity are the numbers

of joints or members in a given structure. Additionally, sig-

nificant attention has been devoted to limiting the numbers

of different cross sections present in a given solution.

Kanno and Fujita (2018) limit the number of joints in solu-

tions whilst minimizing the compliance of the structure,

considering both a heuristic method and a mathematical

programming formulation including integer variables. How-

ever, although the resulting mixed integer second-order cone

programming (MISOCP) problem could solve problems

with up to 1500 potential members reasonably quickly (in

a time of 112 s), conditions were not imposed to prevent

intersecting or overlapping members. Therefore, many of

their results contain members that cross, which would likely

be interpreted as additional joints by practitioners, therefore

limiting the usefulness of the results obtained.

A similar approach based on plastic design principles

with volume minimization was used by Park (2013),

resulting in a mixed integer linear programming (MILP)

problem. Here, complexity was reduced by imposing limits

on the numbers of members in the solution; he also used a

similar approach to identify tensegrity forms.

Tensegrity forms were also identified by Kanno (2013),

using another MILP formulation considering both compli-

ance and stress constraints, as well as a number of practical

considerations. This formulation prevents the inclusion of

intersecting members by including constraints for every

intersecting pair of potential members in the ground struc-

ture. As the problems considered are limited in size (with

ground structures containing up to 18 nodes and 99 poten-

tial members), the number of potential intersection points is

small (≤ 32). Nonetheless, the problems took up to 67,000 s

to solve, and the number of intersection points and the time

required would rapidly increase at higher resolutions.

The great majority of work on truss-based optimization

methods with discrete constraints has focused on restricting

the cross sections of each member to be chosen from a

given list of catalogue sections. A comprehensive review

of methods for approaching this problem can be found

in Stolpe (2016), covering both deterministic (e.g., integer

programming) and meta-heuristic methods. In this, it is

observed that complex formulations generally restrict the
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size of problems, such that these fall within the realm

of ‘size optimization’ rather than true layout or topology

optimization. Identification of global optima (deterministic

methods) generally has a high computational cost; for

example when Achtziger and Stolpe (2007) identified the

global optimum for a problem with 131 potential members

and 6 possible cross sections, the associated computational

time was 488,592 s.

Heuristic methods are simple to implement and are

therefore popular with many researchers (e.g. Ahrari et al.

2015; Mortazavi and Toǧan 2016; Gonçalves et al. 2015).

However, the number of independent design variables is

then usually limited (≪ 100). Therefore, these methods

generally employ very low-resolution and/or restricted

ground structures, often tailored to individual problems.

The moving morphable components (MMC) method,

developed by Guo et al. (2014), combines a continuum

level-set model and explicit description of geometry.

Although this does not obviate the need to employ high

resolutions, this does allow complexity to be controlled in

intuitive ways. For example, Hoang and Jang (2017) limit

the thickness of members, and Zhang et al. (2017) limit the

number of ‘effective components’ (≈ number of members).

However, the problem is highly non-linear and prone to

identification of local optima; there are also issues treating

problems with low-volume fractions.

Identification of local optima is also an issue for ground

structure–based methods involving continuous non-linear

approximations, such as those of Asadpoure et al. (2015)

and Torii et al. (2016), which are usually non-convex.

Leng and Duan (2012) use a continuum approximation

based on the Heaviside function to prevent intersecting bars;

however, only problems with up to 68 potential members

are considered, and there is no indication of the associated

computational cost.

Ohsaki and Katoh (2005) also include a constraint on

member intersection, as well as nodal stability and stress

constraints. They use non-linear programming (NLP) and

MILP in combination to provide both upper and lower

bounds on solutions; problems solved have a maximum of

72 bars, and the ground structure is such that very few

members can intersect. Times of up to 3000 s are reported.

Ohsaki (2016) also considers the truss topology opti-

mization problem with discrete cross sections, and addi-

tionally considers the problem of combined topology and

geometry optimization of trusses, i.e. where the nodal loca-

tions are also included as design variables. In this, it is

noted that these problems may be both non-convex and

non-smooth, and therefore solving them is very difficult. A

number of other means of addressing this are also possible,

such as the implicit programming approach of Achtziger

(2007), and the post-processing rationalization method used

by He and Gilbert (2015).

MILP formulations have also been used to incorporate a

range of other constraints, including buckling (Groenwold

and Stander 1997; Mela 2014), stress constraints (Kanno

and Guo 2010), and the requirements of real-world design

codes (Van Mellaert et al. 2018). Complex real-world and

design code constraints have also been studied using meta-

heuristic methods (e.g. Koumousis and Georgiou 1994;

Villar et al. 2016; Huang and Xie 2007). However, for both

MILP and metaheuristic methods, the additional complexity

that these constraints cause limits their applicability to size

optimization or very low-resolution layout optimization (up

to around 200 potential member) problems.

Most numerical approaches in the literature that consider

buildability constraints can therefore be seen to fall into one

of the following categories: (i) those that present topology

optimization problem formulations of such complexity that

only trivial scenarios can be solved, and (ii) those that

present solution algorithms that produce structures with

no guarantee or measure of optimality. The methodology

presented in this paper seeks to extend the scale of

truss layout optimization problems with basic buildability

constraints that are solvable, so as to provide a potentially

useful conceptual design tool for practitioners. To this end,

an MILP formulation is used to find a globally optimal

solution for a ground structure of finite resolution. The

main contribution of this paper is to substantially increase

the speed by which problems can be solved, and hence

also the scale of problems solvable. This is achieved

through the runtime generation of some constraints (so-

called lazy constraints), as part of a two-stage design

process. The MILP problem forms the first stage, followed

by an optional second non-linear geometry optimization

refinement stage. Application of the developed procedure

to a range of problems allows observations to be drawn

on the nature of the structures identified as optimal under

the imposed buildability constraint, with results compared

with analytical solutions in the case of one of the problems

considered.

The paper is organized as follows: Section 2 describes the

layout optimization formulations that will be employed in

the present study; Section 3 describes the non-linear geom-

etry optimization stage; Section 4 describes application of

the methods described to a range of numerical example

problems; conclusions from the study are then drawn in

Section 5.

2 Truss layout optimization formulations

2.1 Linear programming formulation

The well-known plastic layout optimization formulation for

volume minimization of trusses subject to stress constraints

(Dorn et al. 1964) is used herein; the process involves setting
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up a ground structure (Fig. 1) and solving the following

linear programming problem:

minimize V = lT a (1a)

subject to (Bqk = fk)∀k (1b)

(σT a − qk ≥ 0)∀k (1c)

(σCa + qk ≥ 0)∀k (1d)

a ≥ 0 (1e)

where V is the total volume of all members, l is a vector

of all potential member lengths, and a is a vector of all

potential member areas. B is a suitable 2n × m equilibrium

matrix (for planar problems), where n is the number of

nodes and m the number of potential truss members in the

ground structure. qk is the vector of member internal forces,

and fk is the externally applied loading, in load-case k. σT

and σC are the limiting stresses in tension and compression.

Note that in this formulation, buckling of members may be

considered only in a highly simplified manner, by reducing

σC .

Note that when limitations on structural complexity are

imposed (see Section 2.2), it is useful to include overlapping

members in the ground structure. For example, considering

the problem shown in Fig. 1, if it is required that the

Fig. 1 Truss layout optimization: a problem specification (applied

load(s), supports and design domain); b discretization with nodes;

c ground structure without overlapping members; d unique optimal

solution associated with (c); e ground structure including overlapping

members (as used herein); f alternative optimal solution obtainable

only when using (e)

solution contains no more than four joints (or members), it

is evident that the structure shown in Fig. 1d is not feasible,

whereas the structure shown in Fig. 1f is feasible, where

these structures were generated respectively without and

with overlapping members in the ground structure. In the

former case, this would result in an alternative, suboptimal,

solution being generated. Thus, overlapping members are

included in the ground structures of all problems considered

herein.

2.2 MILP formulations

2.2.1 Addition of discrete flag variables

The previous formulation can be extended using mixed

integer linear programming (MILP) to provide a flexible

method capable of imposing a wide range of constraints,

including constraints designed to increase the practicality

and buildability of a truss structure. In this formulation, a

new set of binary variables are added that represent, e.g., the

existence of a given potential member or joint. In the case of

member flag variables, these are set based on cross section

area:

Mw − a ≥ 0 (2a)

wi ∈ {0, 1} i= 1, 2, ..., m (2b)

where w = [w1, w2, ..., wm]T is the vector of flag variables

for each potential member in the ground structure. M is a

large number, which becomes effectively an upper bound

on cross section area and must therefore be larger than

any required cross section in the final solution. However,

if M is too large, numerical issues can arise; here, M

was pragmatically chosen to be 20 times the maximum

magnitude of any point load divided by the minimum

limiting stress.

To provide flag variables to represent the existence of a

joint, the sum of the areas of all members linked to a given

node is used:

M̂vj −
∑

i∈Jj

ai ≥ 0 j= 1, 2, ..., n (3a)

vj ∈ {0, 1} j= 1, 2, ..., n (3b)

where Jj is the set of member indices for all members

connected to node j . v = [v1, v2, ..., vn]T is another

vector of flag variables, where here vj is the flag variable

indicating the involvement of node j . M̂ is another

sufficiently large number. In this case, M̂ should be bigger

than the total area of members connected to any node; here,

M̂ was pragmatically taken to be 4 times M .

The modelling of (3a) is similar to that found in the

literature (e.g. Kanno and Fujita 2018) when only the

number of nodes are limited. However in light of the

presence of integer flags for member existence in the



Layout optimization of simplified trusses using mixed integer linear programming with runtime generation...

present formulation, an equivalent formulation whereby v

and w are linked is possible. This was found to produce

inferior performance compared to (3a) (for more details, see

Appendix A).

These flag variables can then be used to form constraints

to increase the practicality of the forms produced.

2.2.2 Limits on the number of joints, including ‘crossover

joints’

Due to the much lower number of nodes compared to

potential members (∝ n instead of ∝ n2), imposing a limit

on the number of nodes is comparatively computationally

efficient. The simplest method to limit the number of joints

to some given value η is to add the following constraint

n
∑

j=1

vj ≤ η (4)

and constraints (3a,b) to the problem given in (1a–e).

However, this formulation may produce a structure which

contains members that intersect each other partway between

their ends. These ‘crossover joints’ will appear to be

additional joints from the point of view of the designer, but

will by default not be counted as such in the formulation.

To prevent this, constraints can be added for each pair of

intersecting members, preventing both of them from being

present in the solution at the same time:

n
∑

j=1

vj ≤ η (5a)

(wh + wi ≤ 1)∀{h,i}∈X (5b)

where X is a set containing unordered pairs of indices,

{h, i}, for each pair of intersecting elements.

However, the size of X increases at a very high rate

(∝ n4), meaning that the full form of this problem will

be extremely computationally expensive to formulate and

solve. Fortunately, since only a small subset of these

constraints are likely to be used, these can instead be

generated on-the-fly, during the running of the solver. Most

commercial solvers, including CPLEX (IBM Corp 2015)

and Gurobi (2018), are capable of implementing these so-

called lazy constraints by allowing user-defined code (often

referred to as a callback function) to be called at intervals

during a single run of the solver. As any intermediate

solution which violates one or more potential constraints

will be eliminated, this methodology does not alter the

final solution, which remains identical to the solution of

the full MILP problem containing all constraints from the

beginning.

Lazy constraints have previously been used when solving

the travelling salesman and related problems (Dantzig et al.

1954), where they have been shown to provide significant

advantages in terms of computational efficiency. More

recently, Haunert and Wolff (2010) have applied them

to the simplification of building outlines for maps. Here

it is shown that, when applied to truss structures, the

use of lazy constraints enables true topology optimization

problems to be solved, i.e., layout optimization problems

utilizing fully connected, non-problem specific, ground

structures to identify optimal topologies under various

different constraints.

The problem is initially provided to the solver without

the constraints of (5b) (see Appendix B for the full problem

statement). In the initial problem, all member flags in w

can be assumed to be equal to 1 without violating any of

the initial constraints. This can be used as a partial warm

start, although the speed advantage in explicitly doing so

was found to be modest. When a feasible solution is found,

the set of members with non-zero areas are identified and

each pair from this set (of which there are several orders

of magnitude fewer than all pairs of potential members) is

checked to see if a crossover joint is produced. If a crossover

is found, then an appropriate constraint of the form of (5b)

is added to the problem, and remains present in the active

problem until the final solution is found.

Note also that for multiple load-case problems, optimal

solutions are often made up of multiple, almost independent,

forms overlain on top of each other. Therefore, it is

preferable to allow crossovers in the solutions, and to take

account of them when computing the total number of joints.

i.e. (5a,b) becomes:

n
∑

j=1

vj +
b

∑

g=1

v̄g ≤ η (6a)

(wh + wi − v̄ ≤ 1)∀h,i∈X (6b)

where v̄ = [v̄1, v̄2, ..., v̄b]T is a vector of flag variables

representing the existence of each possible crossover

between members of the ground structure. The length of

v̄, denoted by b, will be approximately proportional to n4,

although it will also depend on the exact positions of the

ground structure nodes.

The constraints of (6a,b) describe the case where two

lines overlap. A similar constraint could be derived for

a point where three or more lines intersect. However,

identifying these points becomes reliant on the tolerances

used in the calculations, and such cases are unlikely to occur

in practical situations. As such, this extension will not be

considered further in this paper. Note that the general case

of three members intersecting at three points (i.e. forming a

triangle) is handled correctly by the constraints of (6a,b).

When the constraints of (6a,b) are implemented using

lazy constraints, the size of v̄ can be greatly reduced.

v̄ becomes a pool of variables, which are assigned to

crossovers as required. The pool size should be chosen to
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be larger than the number of lazy constraints expected to be

added, but small enough to not require excessive memory.

For the problems shown here, a pool size of 100 was found

to be sufficient. In this case, the variables in v̄ can be

set to zero without affecting the optimality of the problem

as initially provided; this affects the problem in a similar

manner to the variables in w.

Initial tests suggested that it was more advantageous

to check and impose these lazy constraints each time a

feasible integer solution was identified, rather than each

time a continuous relaxation was solved. This also reduced

the number of times the check was performed, and meant

a smaller pool of constraints could be used. This approach

was therefore adopted here. As the solution is not changed

by the proposed method, these heuristics impact only the

speed with which the solution is obtained, and not the

solution itself.

The procedure used to dynamically generate these

constraints is shown in Fig. 2 and Algorithm 1. The

process to instead forbid crossovers is similar, except that

Fig. 2 Procedure for runtime constraint generation. Problem shown

involves imposing a limit on the number of joints, including ‘crossover

joints’. The steps in the shaded region are performed within the

callback function which is called by the MILP solver (e.g. Gurobi)
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all references to v̄ are removed, and the newly added lazy

constraint is instead wp + wq ≤ 1.

In the procedure, once a constraint has been added

to the current reduced problem, it will not be removed.

This ensures that the solution obtained by successively

adding dynamically generated constraints will converge to

the globally optimal solution for the original full problem

(i.e. the problem that includes all constraints from the

outset). This will occur when the solution for the current

reduced problem, comprising only a subset of all possible

constraints, is also found to be feasible for the original full

problem. For continuous linear optimization problems, a

similar principle underpins the cutting plane method (Kelley

1960) and analogous column generation method (Dantzig

and Wolfe 1960), which has been successfully used by

Gilbert and Tyas (2003) to develop a computationally

efficient ‘member adding’ procedure for large-scale truss

layout optimization problems.

Finally, note that the optional geometry optimization

post-processing step (see Section 3) is not shown in Fig. 2

and Algorithm 1, and is performed following a successful

termination of the solver.

2.2.3 Imposing symmetry

For a given problem with symmetrical design domain,

loads and supports, it is known (Stolpe 2010) that truss

optimization with discrete cross sections may have an

optimal solution that is not symmetrical; it will be shown

that this is also the case when the MILP problem

formulation proposed here is used to impose limits on the

number of joints in the structure.

However, it is useful to consider how a requirement for

a symmetrical solution can be imposed as an additional

constraint, since symmetry will often be preferred for

reasons of standardization or aesthetics. It also allows

problem size to be significantly reduced, as only half of the

design domain needs to be explicitly modelled. To impose

a symmetry condition, each symmetrical pair of members

is assigned only a single area variable. Additionally, only

one integer flag is added to each symmetrical pair of

members or nodes. Members that cross the defined line

of symmetry, or ‘mirror plane’, are not included, as they

can be approximately modelled using nodes that lie on the

mirror plane, as shown in Fig. 3. Thus, the number of

potential members (and therefore variables) will be reduced

to approximately a quarter of the initial number.

To achieve this, some modifications to the constraints are

needed. A node which lies on the mirror plane and which

is connected only to members which are perpendicular to

the mirror plane will not appear to be a joint in the final

design. Therefore, for nodes lying on the mirror plane, (3a)

is replaced by

M̂vj −
∑

i∈J ′
j

ai ≥ 0 j = 1, 2, ..., n (7)

where J ′
j is the set of member indices for members

connected to node j , but not including those members which

are perpendicular to the mirror plane.

The constraint on the total number of joints must also be

modified such that joints that are formed by crossovers or

nodes lying remote from the mirror plane are counted twice

in the computations.

2.2.4 Limits on the angle betweenmembers

A feature that can make Michell structures difficult to

manufacture is the presence of small angles between

adjacent members, especially in fan-type regions. To

prevent this, integer constraints can be added in the layout

optimization stage as follows:

(wh + wi ≤ 1)∀{h,i}∈D (8)

where D = {{h1, i1}, {h2, i2}, ...} is the set containing

unordered pairs of indices for all pairs of members that form

an angle that is smaller than μ, the minimum permitted

joint angle. Note that this angle may be formed either at a

node which is common to both members or at a point where

the members intersect, partway along one or both of their

lengths.

Fig. 3 Approximation of members crossing a mirror plane in part of

a layout optimization solution: a members crossing the mirror plane

(shown as a dash-dotted line) permitted, noting that the crossover joint

will be counted due to (6a); b members crossing the mirror plane not

permitted, with a node on the mirror plane used to approximate (a); c

geometry optimization used improve (b), with the node on the mirror

plane in this case moving to the same location as in (a)
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Again, the full formulation is very time consuming to

compute as the number of these constraints is approximately

proportional to n4. These constraints are therefore also

implemented as lazy constraints. The procedure is similar to

that outlined in Fig. 2; however, references to v̄ are removed,

and the check on each pair of members, p & q, is to identify

if they form an angle (either at a crossover point or at an end

node) which is outside the permitted range.

3 Geometry optimization post-processing
step

Once the integer programming stage has been completed,

the resulting structure can be further refined by the use of

the geometry optimization post-processing rationalization

method developed by He and Gilbert (2015). This adds the

nodal positions of the structure as design variables, resulting

in a non-linear and non-convex problem. This stage is

optional as the structure generated by solving the MILP

problem will satisfy all the specified design constraints.

However it is attractive as it further reduces the volume

and may allow results which match analytically derived

solutions from the literature to be obtained.

As the geometry optimization problem is non-convex,

it is not generally possible to solve this to a guaranteed

globally optimal solution; thus this method relies on the

starting point provided by the topology optimization being

sufficiently close to the optimal point. A finding of this

study is that the solution of the MILP problem can

successfully be used as the starting point for geometry

optimization.

During the geometry optimization stage, it will be

important to ensure that the solutions continue to be

feasible with respect to the practical constraints imposed

in the previous sections. The remainder of this section

will outline the required modifications to the algorithm

proposed by He and Gilbert (2015). Note that the

original buildability constraints, involving integer variables,

need not be included at this stage, as the overall

topology is generally not significantly changed. Instead the

buildability constraints are reformulated as constraints on

the nodal positions, leading to a non-linear but continuous

problem.

When a limited number of joints are permitted, no

additional constraints will be required in the geometry

optimization (GO) stage. This is because the number of

joints in the problem generally remain constant, or will

reduce due to joint merging, or due to all connected

members at a joint vanishing.

The only possible means by which new joints can appear

is if the topology is changed by a member passing over

another joint, as shown in Fig. 4. However, this situation can

easily be avoided by converting the topology between the

Fig. 4 Detail of a layout, showing the importance of converting

‘crossover joints’ to standard joints between the MILP and geometry

optimization post-processing stages when imposing a limit on the total

number of joints: a before geometry optimization, containing 3 joints

in this region; b after geometry optimization, now containing 4 joints

in this region (due to a ‘crossover’ joint not first being converted to a

standard joint)

MILP and GO stages such that all ‘crossover joints’ become

standard joints.

When a limit on the angle between members has been

imposed, this must be converted to a continuous constraint

on the joint coordinates. This will be in the form:

−→
CA · −→

CB

|−→CA||−→CB|
≤ cos(μ) (9)

where C is the joint common to two members, A and

B are the other joints of each member, and μ is the

imposed minimum angle. Note that this requires point C

to be a standard joint; therefore, ‘crossover joints’ must

Fig. 5 Detail of area containing branched members during the

geometry optimization post-processing step: a initial branched

member topology; b joints moving closer together, though as the

bottom and middle member do not meet, the angle between them is

not checked; c joints are merged, but the bottom and middle members

now have an angle constraint, which is violated; d the feasibility

restoration phase finds a point at which all constraints are satisfied, but

the geometry is now quite different to the MILP starting point
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Fig. 6 Simple cantilever: details of applied load cases, a load case P1,

and b load case P2

again be converted to standard joints before the geometry

optimization stage.

In some cases where a minimum angle is imposed,

additional parameters may be required for the geometry

optimized results to be meaningful. For example, when a

branch-type form (as shown in Fig. 5a) is identified as

the optimal solution of the integer programming problem,

the branch joint tends to move towards the ‘root’ joint,

as in Fig. 5b. The joint merging phase will then combine

the two joints, and there then may be pairs of members

which violate the angle constraint (Fig. 5c). If the permitted

movement radius of the joints is sufficiently large, the

feasibility restoration phase of the non-linear solver is likely

to be able to find a new feasible solution using the new

topology (Fig. 5d).

This new form may now be notably different from the

initial starting point, and therefore potentially inefficient.

However, simply eliminating the joint merging step would

result in a final design where two joints were infinitesimally

close together. A minimum member length constraint can

be added to prevent this, i.e.

|−→AB| ≥ lmin (10)

where A and B are the end points of the member, and lmin

is the minimum permitted length. This constraint is only

explicitly required in the geometry optimization stage, since

during layout optimization, short members can simply be

omitted from the ground structure. Here, length limits have

generally been added only in the geometry optimization

stage, with lmin being set at or below the nodal spacing of

the original ground structure.

Within the examples of this paper, it has been observed

that the geometry optimization procedure did not need to

make use of several considerations of He and Gilbert (2015),

due to the simplified nature of the starting structures.

For example, new crossover joints were added only at

the initialization of geometry optimization. Also, the joint

merging procedure was triggered only in cases with

branching type structures. From this, it can be seen that the

structures produced by geometry optimization are generally

topologically very similar to the solutions obtained at the

end of the initial MILP stage.

4 Numerical examples

All numerical example problems were run on an Intel

Core i7-6700HQ CPU @ 2.60 GHz, with 16GB of RAM.

Gurobi 7.0.1 (2018) was used to solve the MILP problems,

with 4 physical cores available for use. All problems

mentioned were solved to a 0.01% optimality gap (the

default value when using Gurobi). For practical usage,

this level of accuracy may not be required, and a higher

value can be used to reduce computation time. All other

Gurobi parameters were set to their default value. The

computational times reported are wall clock times, and

include the time taken to set up the problem.

4.1 Simple cantilever

The first example involves the setup shown in Fig. 6. This

consists of two load-cases denoted as P1 and P2. These each

contain a single point load, which are each applied at a given

angle θ to the global coordinate axes at point (d, 0), and

have magnitude, Q.

Table 1 Simple cantilever: comparison of theoretical and numerical methods for problem with 3 joints

θ Theoretical MILP results MILP + GO results

yA(d) yB(d) V
(

dQ
σ

)

yA(d) yB(d) V
(

dQ
σ

)

Time (s) yA(d) yB(d) V
(

dQ
σ

)

π
4

0.657 0.657 2.553 0.660 0.660 2.553 10 0.659 0.659 2.553

θ2 1.308 0.116 2.491 1.300 0.120 2.491 7 1.222 0.174 2.491

1.222 0.174
3π
8

1.117 0.414 2.158 1.120 0.420 2.162 3 1.117 0.414 2.158
π
2

1.000 1.000 2.000 1.000 1.000 2.000 2 1.000 1.000 2.000

Where yA and yb refer to the vertical distance between the height at which the point loads are applied, and the upper and lower support locations

respectively. θ2 is as marked in Fig. 7b (for more information, see Appendix C)
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Fig. 7 Simple cantilever: theoretical results, a volumes of optimal

structures with unlimited complexity (light grey) and maximum 3

joints (dark grey) for values of θ between 0 and π
2

; b locations of sup-

port points for optimal structures with unrestricted complexity (light

grey) and maximum 3 joints (dark grey), with line width proportional

to the area of the member which connects there (forms e and h shown

for context); c–f forms of optimal structures with unlimited complex-

ity for θ = π
4
, θ2,

3π
8

, π
2

; g–j forms of optimal structures with only 3

joints for θ = π
4
, θ2,

3π
8

, π
2

Derivations of the minimum volume structures, both

unconstrained and with a maximum of 3 joints, can be found

in Appendix C. The optimal member sizes and support

locations are shown in Fig. 7.

It can be seen that even for this very simple problem, the

behaviour is quite complex and unintuitive. The rationalized

structures are not closely linked to the equivalent un-

rationalized form, which may make such structures difficult

to obtain by intuitive or mathematical post processing. The

volume penalty caused by imposing the three joint limit is

at most 20.3%.

Table 1 shows the difference between the theoretical and

numerical results for this example. The MILP results were

found with nodes permitted only along the support, at 0.02d

spacing over −1.5d ≤ y ≤ 1.5d (i.e. 152 nodes, including

the loaded node). As none of the members in the ground

structure crossed, crossover constraints were not required.

Geometry optimization (GO) was also performed to further

refine the results.

The numerical and analytical volumes can be observed

to be in close agreement. At θ = θ2 a discontinuity occurs,

where two distinct results are equally optimal (see Appendix

C.2.3). Here, the MILP solver identifies one of these

solutions. Then, use of the interior point method for the GO

stage perturbs this solution, resulting in identification of the

alternative solution.
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When a limit on the angle between members is imposed,

solutions may be more complex in form, involving members

that do not simply directly connect the loaded point and

a point on the support. Therefore, numerical solutions for

joint angle limits have been calculated using a 5×13 grid of

nodes, and a fully connected ground structure (m = 2080).

Figure 8 shows results for the problem with angle θ =
3π
8

radians, i.e. as shown in Fig. 7e and i. The scenario

is subjected to limits on the minimum angles between

members of 35◦ and 45◦. The unusual topologies identified

demonstrate the difficulty in trying to identify optimal

solutions for this problem analytically or manually.

The problem was solved firstly by imposing all angle con-

straints from the outset (‘basic formulation’), and then by

implementing the angle limit (i.e. Eq. (8)) using lazy con-

straints. Both implementations produced identical final

results; however, it can be seen that the use of lazy con-

straints reduced the time required by approximately a factor

of 20.

Fig. 8 Simple cantilever: numerical results for problem with specified

minimum angles between members (load inclination θ = 3π
8

radians)

Fig. 9 Michell cantilever: problem specification (fully connected

ground structure used)

Figure 8 also shows the result of applying geometry

optimization post-processing. Despite the different topolo-

gies identified in the MILP stage, similar topologies are

found after geometry optimization. Additionally, it can be

observed that the volumes after geometry optimization are

both lower than the three-joint form shown in Fig. 7i,

demonstrating that the more complex topology is bene-

ficial, albeit only by 3.6% and 2.8% respectively. This

suggests that, although the geometry optimization process

is non-convex and therefore cannot be proven to identify a

global optimum, the starting points provided by the MILP

formulation appear to be sufficient to provide good results.

4.2 Michell cantilever

4.2.1 Problem specification

The proposed methods are now applied to a classical

Michell cantilever problem, as shown in Fig. 9. The

theoretical minimum volume can be found using equations

derived by Chan (1960) to be VT = 39.43Qd . Discretized

versions of this problem have been studied by Prager (1977)

and Achtziger and Stolpe (2007). In both cases, the topology

Fig. 10 Michell cantilever: Results after MILP (top) and GO (bottom)

stages. The volume difference between MILP and GO solutions is 1%,

1.4% and 1.6% respectively
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Table 2 Michell cantilever: results with limits imposed on the total number of joints

Permitted

no. of

joints

Number of lazy

constraints added

Timea (s) Volume after Optimal for joint costs

MILP MILP+GO

3 0 10 +31.9% +31.9% 15.11% ≤ cj ≤ ∞
4 0 16 +17.4% +16.8% 6.25% ≤ cj ≤ 15.11%

5 3 74 +10.7% +10.5% 6.24% ≤ cj ≤ 6.25%

6 4 72 +5.3% +4.3% 0.69% ≤ cj ≤ 6.24%

7 4 117 +4.9% +3.9% N/A

8 0 257 +4.3% +2.9% 0.45% ≤ cj ≤ 0.69%

9 3 291 +3.9% +2.8% N/A

10 9 196 +3.6% +2.6% N/A

11 17 133 +3.1% +1.6% 0.09%b ≤ cj ≤ 0.45%

12c 240 44 +3.0% +1.5%

20d — 4 +2.6% +0.8%

aElapsed time for MILP stage
bAssumes next optimal design is the continuous layout optimization solution; designs with 13-19 joints may increase this value

cResult of preventing crossovers without limiting the total number of joints

dContinuous layout optimization result, after crossover generation

of the optimal structures was manually inferred from the

continuum form; however, their observations are useful for

comparative purposes.

A fully connected ground structure of 99 nodes is used

here; this contains 4851 potential members. The solution to

the standard layout optimization problem at this resolution

has a volume of 40.45Qd , an increase of 2.6% over VT ,

although this reduces to +0.8% after GO is applied, and the

resulting solution has 20 joints (Table 2).

4.2.2 Limiting the number of joints

To set up the problem with all crossover constraints

from the beginning requires checking 11,763,675 pairs of

Fig. 11 Michell cantilever: results with limits imposed on the total

number of joints. (Volume shown as percentage above theoretical min-

imum volume, VT = 39.43Qd . Forms shown after MILP and GO. An

example cost function is also shown where each joint has a constant

cost, equal to an increase in volume 0.7% of VT .)
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Table 3 Michell cantilever example: results with limited joint angle (Volume shown as percentage above theoretical minimum volume.)

Permitted

angle between

members

Number of lazy

constraints added

After MILP After MILP+GO

Time (s) Min. angle Volume Min. angle Volume

45◦ 3462 2341 47.7◦ +6.3% 45◦ +5.4%

40◦ 1415 2009 47.7◦ +6.3% 40◦ +4.6%

35◦ 805 234 37.9◦ +5.1% 35◦ +4.2%

30◦ 1377 537 33.7◦ +5.0% 30◦ +2.5%a

25◦ 665 344 26.6◦ +4.4% 25◦ +1.8%

20◦ 349 91 22.8◦ +4.3% 21.9◦ +1.6%

15◦ 73 21 18.4◦ +3.8% 15◦ +1.3%

aGO with a length limit of of 0.5d (i.e. equal to shortest length in ground structure) gives volume of +2.51%; GO without a length limit and after

joint merging and subsequent feasibility restoration gives a volume of +2.55%

members, of which 2,795,779 produce a constraint. (Simply

performing these checks was found to take nearly 20

minutes with the C++ code used here.)

Alternatively, using lazy constraints, the problem can be

set up almost instantly, producing an initial problem with

14,553 variables and 14,844 constraints. The problem was

first solved using lazy constraints to prevent crossovers

but without limiting the number of joints. This produced a

structure with 12 joints, and required 240 lazy constraints,

around 0.01% of the full number.

The problem was then solved with limits imposed on the

maximum numbers of joints, η, from 3 to 11. The results can

be seen in Table 2 and Figs. 10 and 11, with further details

available in Online Resource 1. Note that the longest time

taken to solve any of these problems was under 5 minutes,

around a quarter of the time needed just to formulate the full

problem.

It may be observed that the forms for 3, 6 or 11

joints agree with those found by Prager (1977)1. Also the

unsymmetrical 8 joint solution is somewhat similar to the

unsymmetrical solution presented by Mazurek et al. (2011,

fig 22).

4.2.3 Other related problems

Prager extended his results to postulate a solution to the

related problem of minimizing total cost, comprising a

material cost and a fixed cost per joint. It is possible to

reformulate the integer programming problem to consider

this directly, by changing the objective function to be of the

form

minimize lT a + cj v (11)

where cj is the normalized cost of a joint.

1Note that Prager (1977) gives a volume of 36.41Qd for the 11 joint

solution; this can clearly be seen to be incorrect, as it is lower than the

minimum value from the equations of Chan (1960). However, the form

given by Prager is correct.

However, (11) may alternatively be expressed in the form

of an equation, plotted as a straight line on Fig. 11. The

example objective function shown on Fig. 11 is a line of

constant cost when the joint cost, cj , is equal to the cost

of a volume increase of 0.7% of the minimum volume, VT .

In this case, the solutions with 6 and 8 joints are equally

optimal. However, the 7-joint solution has a higher cost; it is

therefore not optimal for any objective function in the form

of (11).

Prager’s solution to this problem over a range of values

for cj consisted of only the 3, 6 and 11 joint solutions. From

Fig. 11, this can now be extended to add solutions with 4,

5 and 8 joints. The ranges of joint cost cj for which each

solution is optimal is shown in the final column of Table 2.

Limiting the number of members in a solution is another

concern for ensuring practicality. As this is a single load-

case problem, and due to the Simplex solver used to

solve the LP sub-problems of the MILP problem, the

optimal structures identified are all likely to be statically

determinate, meaning that the number of joints is directly

linked to the number of members (number of members

= 2η − 4). Therefore, this method can also be used as a

proxy for limiting the number of members.

4.2.4 Limiting the angles betweenmembers

Solutions for the same Michell truss problem, but with

imposed minimum angle limits, from 15◦ to 45◦ are shown

in Table 3 and Fig. 12, with further details provided in

Online Resource 2. It can be seen that the topologies shown

in Fig. 12 are symmetrical, and several are distinct from

those shown in Fig. 11.

In the layout optimization stage, only a limited number

of member angles are available; therefore, the structures

identified do not have a minimum angle that exactly

corresponds to the limit. Generally, once the geometry

optimization post-processing step has been applied, the

angle limits become active, although this is not always the
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Fig. 12 Michell cantilever: results with limited joint angle. (Volume given as percentage above theoretical minimum volume. Forms shown after

MILP and GO. For branched forms, results both with and without a length limit are shown)

case (e.g. in the case of the 20◦ limit). In some cases, such as

the 40◦ and 45◦ solutions, the same initial result is identified

for multiple angle limits, and the solutions only diverge in

the geometry optimization stage.

Most results in Fig. 12 are shown after geometry

optimization with no length limit imposed. However, for

the limit of 30◦, a branching form similar to that shown

in Fig. 5 was identified. During the geometry optimization

stage for this result, the merging of the ‘root’ and ‘branch’

joint occurred, leading to a significant change in topology.

The solution reduces in volume as the distance between the

branching joints approaches zero, but then increases again

in order to ensure compliance with the new angle constraint.

A length limit was therefore imposed to produce more

meaningful results. For practical purposes, this is likely to

be defined by the same manufacturing process that dictates

the minimum angle between members; here lmin will be set

at or below the length of the shortest member in the ground

structure (0.5d). When lmin = 0.5d , the new volume was

only slightly smaller (+2.51% vs. +2.55%). However, for

small values of lmin, the volume reduced to +1.9%; this is

shown as a dotted line in Fig. 12. Both the results with no

length limit and with lmin = 0.5d are illustrated in Fig. 12.

By comparing the results in Tables 2 and 3, it can be

seen that the angle limits require a greater number of lazy

constraints to be added, leading to correspondingly longer

execution times. This is likely to be due to the fact that,

when a limit on the number of joint is imposed, the initial

constraints significantly reduce the number of feasible

integer topologies before any lazy constraints are required.

However, the maximum number of lazy constraints added

in Table 3 was at most 0.3% of the total number possible

(for the 45◦ limit), showing that the advantage of using lazy

constraints is still very significant.

4.3 Spanning example

A more complex, two load-case problem is now considered.

This consists of two point loads which are applied

separately, and transmitted to a pair of pinned supports; the

problem specification is shown in Fig. 13.

Fig. 13 Spanning example: problem specification, after Sokół and

Rozvany (2013) (The two point loads are applied separately. Grey

shading shows the area modelled when the symmetry condition is

imposed.)
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Table 4 Spanning example: results with symmetry condition imposed and limits on numbers of joints (Bold values highlight when the two

methods produce different results)

Permitted

number

of joints

Counting ‘crossover joints’ Preventing ‘crossover joints’

No. of lazy

cons. added

Timea (s) Volume after No. of lazy

cons. added

Timea (s) Volume after

MILP MILP+GO MILP MILP+GO

5 0 7 +59.5% +58.1% 0 6 +59.5% +58.1%

7 0 56 +8.8% +8.4% 0 31 +8.8% +8.4%

9 7 52 +5.9% +5.1% 14 77 +5.9% +5.1%

11 26 345 +5.2% +4.1% 33 154 +5.2% +4.1%

13 24 528 +4.5% +3.3% 154 446 +4.5% +3.3%

15 28 436 +3.5% +2.7% 48 184 +3.7% +2.5%

17 40 504 +3.4% +2.3% 444b 455b +3.5% +2.4%

19 76 8150 +3.1% +2.4%

21 68 6833 +3.0% +2.0%

31 90 138265 +2.7% +1.8%

45c – 6 +2.3% +1.2%

aElapsed time for MILP stage

bRefers to forbidding crossovers with no limit on number of joints, which produces a structure with 17 joints

cLayout optimization result, which produces structure with 45 joints

This is a symmetrical problem, and therefore the

minimum volume structure is also symmetrical when no

discrete buildability constraints are imposed. The minimum

volume solution, VT , is given by Sokół and Rozvany (2013)

as 3.44363Qd
σ

. The design domain is discretized using a

grid of 90 nodes. The layout and geometry optimization

solution for this resolution had a volume 1.2% greater than

the theoretical optimal value.

The problem was first solved without imposing a

requirement for a symmetrical solution. Solutions with

maximum numbers of joints, η, ranging from 5 to 9 were

found. Solutions with odd numbers of joints were found to

be symmetrical, and were equal to the corresponding results

shown in Fig. 15 and Table 4. However, the solutions with

6 and 8 joints were asymmetric, as shown in Fig. 14. Note

that the 8 joint example approximately consists of one-half

from each of the topologies with 7 and 9 joints.

Due to these findings, and the general preference in

practice for symmetrical designs, the model was modified

Fig. 14 Spanning example: results after MILP and GO showing

asymmetric optimal solutions

to explicitly impose a symmetry condition about the centre

line, using (7) and the method outlined in Section 2.2.3.

Solutions were again sought for 6 and 8 joints; however, the

optimal solutions were found to be identical to the solutions

for 5 and 7 joints respectively. This demonstrates that the

lack of a symmetrical optimal solution, a characteristic

previously noted in the solutions of truss optimization

problems with discrete cross sections, is also a characteristic

of the problem with continuous cross sections when limits

are imposed on the numbers of joints.

Results for various numbers of joints are given in

Table 4 and Fig. 15, with further details provided in Online

Resource 3. The constraints (5a,b) (to prevent ‘crossover

joints’) and (6a,b) (to include ‘crossover joints’ in the total

number of joints to be limited) have both been tested. When

‘crossover joints’ are not permitted, only structures with up

to 17 joints can be identified; results in the range 17 < η <

45 can only be identified by allowing ‘crossover joints’ and

explicitly including them in the total limit.

The problem of including the ‘crossover joints’ is a more

relaxed version of the problem where ‘crossover joints’ are

prevented. Therefore, solutions from the MILP problems

that take account of crossovers must be at least as good

as solutions found when these are prevented. However, the

geometry optimization stage is non-linear, and therefore

local optima may result, depending on the initial point

provided. It can be seen that for the 15 and 17 joint

solutions, local optima have been identified; both methods
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Fig. 15 Spanning example: results with limited numbers of joints (Vol-

ume shown as percentage above theoretical minimum volume. Forms

shown are after MILP and GO, with symmetrical solutions required.

Results preventing crossover joints are shown only where they differ

from the result of counting the crossover joints)

appear to be susceptible to this. However, the volume

difference is less than 0.2%, demonstrating that at this point,

multiple solutions of similar volume and complexity are

available, any one of which would likely be suitable for

practical application. Many commercial solvers (e.g. IBM

Corp 2015; Gurobi Optimization LLC 2018) provide the

ability to record a pool of nearly optimal solutions, which

may be of use in addressing this issue.

As a multiple load-case problem, the solutions identified

are generally not statically determinate, and therefore there

is not a direct relationship between number of members and

Fig. 16 Spanning example: number of joints and members in solutions

where the number of joints has been limited, also showing best fit line.

(R2 = 0.997)

number of joints. However, Fig. 16 shows that there is still

a very strong correlation between the number of members

and the number of joints. Therefore, for practical purposes,

this method is still likely to produce useful results when

structures with few members are desired.

4.4 Commentary

The numerical examples described here have demonstrated

the applicability of the method to single and multiple load

case problems in 2D. The method described could also

be immediately applied to 3D problems, if crossovers are

considered to occur at points where the centrelines of two

members intersect exactly, or to within some predefined

tolerance. Some modification of the approach described

would be necessary in order to prevent the outer faces

of members intersecting, taking into account the chosen

member cross section form. As is generally the case with

layout optimization methods, a greater number of nodes

would be required to fill a 3D domain to a similar density

compared to a 2D domain, increasing the computational

requirements.

The method has proved effective at identifying simple

truss structures. However, from a practical point of view,

the simplest structure may not be a truss. For example, in

the case of the spanning example considered in Section 4.3,

a single beam along the base of the domain would
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generally be considered to provide a simpler, albeit less

efficient, solution. When bending is involved the chosen

cross-section form needs to be taken into account, and

the associated numerical formulation is somewhat more

complex. However, many of the principles described herein

are still applicable in this case.

5 Conclusions

It was found that the use of dynamically generated lazy

constraints can significantly reduce the computational

time required to solve layout optimization problems with

discrete buildability constraints. Specifically, the use of lazy

constraints permitted ‘crossover joints’ to be dealt with in

a computationally efficient manner. Improvements in speed

of over a factor of 20 were observed for relatively small

problems; this difference is likely to increase further as

problem size increases. This allows the proposed method to

be used for problem sizes that would be intractable using the

standard formulation.

Rationalized structures with limited numbers of joints

or limited angles between adjacent members have been

identified for a range of problems, including those with

multiple load-cases, using a two-stage process incorporating

a layout optimization stage and a geometry optimization

stage. Using this process, results were found to agree

with analytically derived results from the literature,

suggesting that the proposed separation of topology and

geometry/shape optimization is effective, and that MILP

solutions are suitable starting points for a non-linear

optimization stage.

The rationalized structures were often found to have a

volume within a few percent of the corresponding minimum

volume Michell structure, whilst being far more feasible

to construct. A number of interesting features of these

solutions have been observed:

– Symmetrical problems do not always have symmetrical

optimal solutions when limits on the numbers of joints

are imposed. Therefore, the decision to use symmetry to

reduce the computational expense of a problem should

be made with care.

– Multiple optimal or near optimal solutions are possible.

Many numerical methods, such as geometry optimiza-

tion, will identify only one of these, although there may

be many that would be acceptable for practical use.

– When the angle between adjacent members is limited,

‘branching’ type structures may occur. This may then

require the addition of a minimum length constraint to

produce practical results.

– When the number of joints is limited, it was found that

the number of members in the solution was strongly

linked to the number of joints. This may provide a

computationally efficient proxy problem.
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Appendix A: Comparison of problem
formulations

Several equivalent formulations are possible to ensure that

the flag variables v accurately represent the existence of

each node. The method that is used within this paper links

the value of vj to the sum of the members connected to node

j using (3a), reproduced here:

M̂vj −
∑

i∈Jj
ai ≥ 0 j = 1, 2, ..., n (12)

This formulation will be referred to as formulation A.

An alternative formulation,z which may be considered

to be more standard in the general integer programming

community, is to link the value of vj to the flag variables of

the members connected to node j :

Nvj −
∑

i∈Jj
wi ≥ 0 j = 1, 2, ..., n (13)

In this formulation, the arbitrary large number, M̂ , is

replaced by N , the maximum number of members which

will be permitted to connect to any node. This formulation

will be referred to as formulation W .

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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Table 5 Speed comparison between formulations for defining the node

flag variables, v

Permitted Formulation A Formulation W

number No. of lazy Time No. of lazy Time

of joints cons. added (s) cons. added (s)

3 0 10 0 14

4 0 16 0 58

5 3 74 8 137

6 4 72 0 95

7 4 117 7 222

8 0 257 0 686

9 3 291 1 571

10 9 196 10 376

11 17 133 17 224

Problem is the Michell cantilever with limited number of joints, as

shown in Table 2 and Fig. 11

For both A and W , the remainder of the formulation

is as described in Section 2.2. The two formulations

produce identical solutions; however, the computational

requirements may differ.

To investigate this, both formulations have been used to

test the Michell cantilever problem with a limit imposed on

the number of joints. Full results using form A are given in

Table 6 Symbols used in

problem statements Symbol Description

a = [a1, a2, ..., am] Vector of member cross sectional areas

B Matrix of member direction cosines

b Total number of intersections between potential members

D Set containing all pairs of potential members which form an angle of less than μ

fk Vector of external forces at nodes in loadcase k

g Index of a potential ‘crossover joint’

h, i Indices of potential members

j Index of ground structure node

k Index of load-case

l = [l1, l2, ..., lm] Vector of member lengths

M , M̂ Large numbers

m Number of potential members in the ground structure

n Number of nodes in the ground structure

qk Vector of member internal forces in loadcase k

v = [v1, v2, ..., vn] Vector of flags indicating existence of ground structure nodes

v̄ = [v1, v2, ..., vb] Vector of flags indicating existence of joints at crossovers

w = [w1, w2, ..., wn]Vector of flags indicating existence of members

X Set containing all pairs of potential members which intersect

σT , σC Allowable stress in tension and compression respectively

η Number of joints permitted

μ Minimum permitted joint angle

Table 2. A comparison of the speed of the two formulations

is given in Table 5.

It can be seen that formulation A takes roughly half the

time to solve the problems compared to formulation W .

This is as expected if the characteristics of the two formu-

lations prior to the addition of any lazy constraints is con-

sidered. Formulation A initially begins with all the member

flags, w, unconstrained; i.e., they may all be set equal to

1 without making any potential solution infeasible. It only

becomes necessary to begin to branch on any variable wi

once the member i is part of an added crossover constraint.

In contrast, formulation W couples all integer variables

from the outset, leading to a much more challenging

initial problem. This outweighs the potential benefits of

eliminating M̂ .

Formulation A has therefore been used to generate all

results contained in the main body of the present paper.

Note that the findings in this section apply only to

problems where the number of joints is limited, as limiting

the angle between members does not require the presence of

node flags, vj .

Appendix B: Full problem statements

For clarity, full problem statements for the problems solved

in this paper are given here. Symbols are as defined in the
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main body of the paper, and are also summarized in Table 6.

Firstly, the problem to restrict the number of joints in a

solution, whilst preventing crossover nodes, is given by:

minimize V = lT a (14a)

subject to (Bqk = fk)∀k (14b)

(σT a − qk ≥ 0)∀k (14c)

(σCa + qk ≥ 0)∀k (14d)

Mw − a ≥ 0 (14e)

M̂vj −
∑

i∈Jj

ai ≥ 0 j = 1, 2, ..., n (14f)

n
∑

j=1

vj ≤ η (14g)

(wh + wi ≤ 1)∀{h,i}∈X (14h)

a ≥ 0 (14i)

wi ∈ {0, 1} i = 1, 2, ..., m (14j)

vj ∈ {0, 1} j = 1, 2, ..., n (14k)

The problem initially supplied to the solver is as above

but excluding the constraints of (14h), which are generated

as required during the running of the solver.

The problem to count ‘crossover joints’ as contributing

to the limiting number of joints is fully stated as:

minimize V = lT a (15a)

subject to (Bqk = fk)∀k (15b)

(σT a − qk ≥ 0)∀k (15c)

(σCa + qk ≥ 0)∀k (15d)

Mw − a ≥ 0 (15e)

M̂vj −
∑

i∈Jj

ai ≥ 0 j = 1, 2, ..., n (15f)

n
∑

j=1

vj +
b

∑

g=1

v̄g ≤ η (15g)

(wh + wi − v̄ ≤ 1)∀h,i∈X (15h)

a ≥ 0 (15i)

wi ∈ {0, 1} i = 1, 2, ..., m (15j)

vj ∈ {0, 1} j = 1, 2, ..., n (15k)

v̄g ∈ {0, 1} j = 1, 2, ..., b (15l)

When implemented using lazy constraints, the constraints of

(15h) are omitted from the initially provided problem, and

generated generated as required during the running of the

solver. In addition, b may be reduced to a value less than the

total number of potential crossover points.

The problem of eliminating small angles between

members can be stated as:

minimize V = lT a (16a)

subject to (Bqk = fk)∀k (16b)

(σT a − qk ≥ 0)∀k (16c)

(σCa + qk ≥ 0)∀k (16d)

Mw − a ≥ 0 (16e)

(wh + wi ≤ 1)∀{h,i}∈D (16f)

a ≥ 0 (16g)

wi ∈ {0, 1} i = 1, 2, ..., m (16h)

When implemented using lazy constraints, the problem

is initially provided to the solver omitting constraints (16f),

which are generated as required during the running of the

solver.

Appendix C: Derivation of global solutions
for simple cantilever problem

C.1 Minimum volume solution

To provide a global solution for validation, a simple problem

is considered. This consists of 2 load-cases denoted as P1

and P2. These each contain a single point load, which

are both applied at the point with coordinates (d, 0), and

with the same magnitude, Q. The two loads are applied

orthogonally, and the load in P1 is at an angle of θ to the

horizontal (Fig. 17a, b), cases where 0 ≤ θ ≤ π
2

will

be considered. Two special cases of this, with θ = 0 and

θ = π
4

, were studied by Rozvany et al. (2014).

First the component load-cases are calculated; the sum

component load-case2 P∗
1 = (P2 + P1)/

√
2 contains a point

load of magnitude Q and inclined at an angle of θ − π
4

(Fig. 17c). The difference component P∗
2 = (P2 − P1)/

√
2

is also of magnitude Q and inclined at an angle of θ − 3π
4

(Fig. 17d).

The solution for P∗
1 consists of a single member inclined

at the same angle as the force (Fig. 17e), i.e. connecting

to the support at y = −d tan(θ − π
4
). The member has an

internal force of −Q. The length of the member is d
cos(θ− π

4 )
.

Therefore, the component volume is

V ∗
1 = Qd

σ cos(θ − π
4
)

(17)

For P∗
2, the external load is again of magnitude Q and its

direction varies by π
4

either side of vertical, the solution to

this was given my Rozvany et al. (1995). This consists of

2Note that here we use the component load form of Rozvany and Hill

(1978) which allows for generalizations to more than two load cases.
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Fig. 17 Simple cantilever:

problem specification and

component load-cases, a–b,

imposed load-cases; c–d,

component load-cases; e–f

component solutions with

unlimited complexity; g–h final

optimal solution with unlimited

complexity; i–j component

solutions with only 2 members.

k–l final solution with only 2

members

2 symmetrical, orthogonal members, which connect to the

support at heights y = ±d (Fig. 17f). The length of each

member is d
√

2. The internal force in the top member is

Q sin θ and in the bottom member is Q cos θ . Therefore, the

volume in this component is

V ∗
2 = Qd

σ

√
2 cos θ +

√
2 sin θ (18)

By the superposition principle, these two component

solutions are combined to give the optimal design (Fig. 17g–

h). The total volume is given by:

V =
V ∗

1 + V ∗
2√

2
= Qd

σ

(

1√
2 cos(θ − π

4
)

+ cos θ + sin θ

)

(19)

As there are no co-incident members, the final member

areas are given by dividing the component areas by
√

2.

C.2 Limited complexity solution

C.2.1 Internal member forces

It is now required to find the minimum volume solution

for the same problem, but with the additional constraint

that only 3 joints are permitted. This permits only a

single topology; two members reaching from the point of

application of the forces to the support line. Therefore,

all potential solutions to this problem can be enumerated

using 2 degrees of freedom, the vertical locations of the two

support points, which will be denoted yA and yB (Fig. 17i-j).

The two component load-cases are identical to the

previous section. The lengths of the members are given by

lA =
√

y2
A + d and lB =

√

y2
B + d respectively.

The member forces are found from equilibrium equations

at the loaded point. In P∗
1 the member forces in members A

and B are

qA
1 = Q

(sin(π
4

+ θ)yB − cos(π
4

+ θ)d)

√

y2
A + 1

d(yA − yB)
(20)

qB
1 = Q

(− sin(π
4

+ θ)yA + cos(π
4

+ θ)d)

√

y2
B + 1

d(yA − yB)
(21)

In P∗
2, the member forces are

qA
2 = −Q

(− cos(π
4

+ θ)yB − sin(π
4

+ θ)d)

√

y2
A + 1

d(yA − yB)
(22)

qB
2 = −Q

(cos(π
4

+ θ)yA + sin(π
4

+ θ)d)

√

y2
B + 1

d(yA − yB)
(23)
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The superposition principle is again used to find the

overall design (Fig. 17k, l), and define the total volume as:

V =
V ∗

1 + V ∗
2√

2
=

(|qA
1 lA| + |qB

1 lB |) + (|qA
2 lA| + |qB

2 lB |)
σ
√

2
(24)

By inspection of the graph for all values of 0 ≤ θ ≤ π
2

(see examples in Fig. 18), it can be seen that the minimum

volume solution falls within or on the border of the region

where the member forces in P∗
1 are in the same direction,

and the member forces in P∗
2 are in opposing directions.

Based on this, the expression for V is re-written without

using the absolute value operator, for the purposes of this

derivation using the sign convention that tensile stresses are

negative.

V =
−qA

1 lA − qB
1 lB − qA

2 lA + qB
2 lB√

2
(25)

Additionally, the cusps of the plots in Fig. 18 must be

considered; these define the limits of the region within

which (25) is valid. They are given by:

qA
1 ≤ 0 qA

2 ≤ 0 (26)

qB
1 ≤ 0 qB

2 ≥ 0 (27)

For a given value of θ , these equations each define a

vertical plane. Equations (26) are planes with constant yB ,

and (27) are planes with constant yA.

C.2.2 Optimal values in each region

The equations which describe the optimal solution vary

depending upon the value of θ . Three regions are possible,

and each of these are considered separately.

When θ > θ2 (where θ2 is a critical value, approximately

equal to 0.9), the minimal value is found on the cusp of

the volume function defined by qA
1 = 0. The optimal point

lies on the minima of the cusp line, i.e. where the partial

derivative VyA
= 0. In this region, the optimal values of yA

and yB , and the optimal volume V are given by:

yA = 1

tan(π
4

+ θ)
+

√
2

sin(π
4

+ θ)
(28a)

yB = −1

tan(π
4

+ θ)
(28b)

V =

√
2

(

sin(θ + π
4
) + 2

√
2 + 3 cos(θ + π

4
)
)

2 sin2(θ + π
4
)

(28c)

Similarly, for values of θ ≤ θ1 (where θ1 ≈ 0.65), the

minimal value is found on the intersection of VyB
= 0 and

qB
1 = 0. This gives

yA = 1

tan(π
4

+ θ)
(29a)

yB = −1

tan(π
4

+ θ)
+

√
2

sin(π
4

+ θ)
(29b)

V =

√
2

(

sin(θ + π
4
) + 2

√
2 − 3 cos(θ + π

4
)
)

2 sin2(θ + π
4
)

(29c)

In the inner region, where θ1 ≤ θ ≤ θ2, the minimum

volume structure is found at the local minima of (25), i.e.

where VyA
= 0 and VyB

= 0. In this region, values for pairs

of yA and yB are given by the equation:

0 = y4
B

−2y2
Ay3

B +2yAy3
B

−2y3
Ay2

B +4yAy2
B

+2y3
AyB +4y2

AyB +4yAyB −2yB

+y4
A −2yA −2

(30)

To calculate the corresponding value of θ for such a pair,

the values of yA and yB are simply substituted into either

VyA
= 0 or VyB

= 0. For this region, it is quite difficult to

Fig. 18 Simple cantilever: volume of two member truss with for 0 ≤ yA ≤ 2d and 0 ≤ yB ≤ 2d for various force inclinations, θ . (The solid

region shows where qA
1 < 0, qB

1 < 0, qA
2 < 0 and qB

2 > 0, the blue cross shows the globally minimum volume/design to resist each set of forces)
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Table 7 Simple cantilever: behaviour of volume function in vicinity of optimal values for force inclinations in the vicinity of θ2. (Point M is a

local minimum, point S is a saddle point, and point C is the minimum value along the cusp at line qA
1 = 0. Values in boldface are the optimal

points for that problem, note that when θ = 0.90068 two equally optimal solutions exist)

θ Point yA yB V

0.90011 C
1.30835 0.11521 2.49230

S

M 1.19519 0.19318 2.49217

0.90068 C 1.30786 0.11580 2.49136

S 1.27886 0.13492 2.49138

M 1.22241 0.17384 2.49136

0.90087 C 1.037709 0.11599 2.49106

S
1.25026 0.15444 2.49108

M

begin with a value of θ and calculate the optimal values of

yA and yB .

C.2.3 Boundaries between regions

The final task is to establish the boundary values, θ1 and θ2

between the outer and inner regions. To do this, some points

of interest must first be defined. The point C is defined as

the minimum volume point lying on the cusp qA
1 = 0, this

is the point given by the (28a–c), and is the optimal value

when θ ≥ θ2.

Next, the stationary points of (25) are considered, these

lie on the line defined by (30). There are at most 2 stationary

points in the region in which this function is valid. To

characterize these, the discriminant of this function, � =
VyAyA

VyByB
−(VyAyB

)2 is calculated. The stationary point at

which � > 0 is defined as point M, this is a local minima,

and additionally represents the optimal value in the central

region (θ1 ≤ θ ≤ θ2). The stationary point where � < 0

is defined as S, this is a saddle point of the function. The

critical value θ2 is the point at which the optimal value

switches from point C to point M.

Table 7 gives values of yA, yB and V for these three

points at notable values of θ . Additionally it provides

illustrations of the topography of the volume function in

the vicinity of C, M and P; these illustrations show the

approximate profile the volume function at the bottom of a

‘valley’ which runs roughly parallel to the plane yA + yB =
1. This valley may also be observed in the plots in Fig. 18,

particularly when θ = π
4

When θ < 0.900110, the point S is outside of the

valid region for (25). Point S enters the valid region when

the relations from (28a, b) are substituted into (30), giving

θ = 0.900110. Here, points S and C are co-incident and

have a volume which is 0.005% greater than the optimal

value at M.

At the point where VyA
= 0, VyB

= 0 and � = 0, a

single degenerate stationary point is formed as points S and

M become co-incident. This occurs when θ = 0.900874,

and the volume at points S and M is 0.0008% higher than

the volume at C. Therefore the value θ2, at which points M

and C are equally optimal must lie in the region 0.900110 ≤
θ2 ≤ 0.900874.

The value of θ2 is found at the point where VyA
= 0,

VyB
= 0 and the right-hand side of (28c) is equal to the

right-hand side of (25) (where the values of yA and yB

refer to the point M). From this, it is found that θ2 =
0.9006836427. By a similar logic, θ1 = 0.6701126839.

It has been shown that within the the region 0.900110 ≤
θ ≤ 0.900874, the range of volumes is small (< 0.005%)

over a wide range of possible values for yA and yB (of up

to 0.1d). This may cause problems for numerical methods if

accuracy levels are not set high enough. Additionally, when

θ = θ1 or θ2, two distinct solutions are equally optimal.
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