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Abstract

This contribution presents a diffuse framework for modeling cracks in heterogeneous media. Interfaces are depicted

by static phase-fields. This concept allows the use of non-conforming meshes. Another phase-field is used to describe

the crack evolution in a regularized manner.

The interface modeling implements two combined approaches. Firstly, a method from the literature is extended

where the interface is incorporated by a local reduction of the fracture toughness. Secondly, variations of the elastic

properties across the interface are enabled by approximating the abrupt change between two adjacent subdomains

using a hyperbolic tangent function, which alters the elastic material parameters accordingly.

The approach is validated qualitatively by means of crack patterns and quantitatively with respect to critical energy

release rates with fundamental analytical results from Linear Elastic Fracture Mechanics, where a crack impinges an

arbitrarily oriented interface and either branches, gets deflected or experiences no interfacial influence. The model

is particularly relevant for phase-field analyses in heterogeneous, possibly complex-shaped solids, where cohesive

failure in the constituent materials as well as adhesive failure at interfaces and its quantification play a role.

Keywords: phase-field modeling, brittle fracture, diffuse modeling framework, heterogeneity, adhesive failure

1. Introduction

Crack propagation is one of the most severe mechanisms compromising the bearing capacity of engineering struc-

tures. The phase-field approach to fracture has proven to be a powerful tool for the numerical prediction of crack

propagation. The method allows for the description of complex failure mechanisms, such as crack nucleation and

arrest, as well as branching and merging phenomena [1, 2, 3, 4]. The concept is based on the variational approach

to brittle fracture [5], which is consistent with the energetic criterion of Griffith [6]. The key idea of the phase-field

method is the regularization of the underlying energy functional [7]: Cracks are approximated by an auxiliary field,

often referred to as the crack phase-field. The phase-field variable continuously varies from the intact to the fully

broken material state; cracks are regularized using a finite length scale ℓc. Furthermore, the approach allows for the

description of cracks with a non-conforming mesh, i.e. the element edges do not have to be aligned with the crack.

Modern engineering materials often consist of several components, e.g. fiber-reinforced composites. As a separa-

tion of these components can occur, the adhesive interfaces within a heterogeneous material can significantly influence

the mechanical behavior of structures under external loading. Therefore, it is indispensable to account for interfaces

in numerical simulations of fracture phenomena.

In the context of the Linear Elastic Fracture Mechanics (LEFM) analyses of He and Hutchinson [8, 9], the interface

is defined as a zone of infinitesimal width, which is assigned a fracture toughness that differs from the bulk material.

Different setups were investigated, where a crack impinges a possibly inclined interface and either experiences no

interfacial influence regarding the crack path or gets deflected. These fundamental and insightful investigations serve

as analytical reference for numerical models, which incorporate interfaces in different manners.
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Nomenclature

Latin symbols

a domain measure

A cross-sectional area

b domain measure

c

{

domain measure

phase-field

C circular integration domain

d signed distance

D physical dimensions

Di denominators for projection tensors

ei eigenvalues of the strain tensor ε

E Young’s modulus

g degradation function

g̃i configurational force

G energy release rate

Gc fracture toughness

I functional

I1, I2, I3 principal invariants of ε

Ji crack driving force

ℓ regularization length scale

Mi projection tensors

ni surface normal vector

O





integration constantsP

Q

r radius

s, t coordinates oriented to interface

t time

t̄i given surface traction

ui, ūi displacement, given displacement

u displacement boundary condition

V volume

xi index notation of coordinates

x̄ = [x̄ ȳ]⊤ position of virtual crack tip

x, y cartesian coordinates

Greek symbols

α First Dundurs’ parameter

γ surface density

Γ surface

δ Dirac distribution

δ• test function for •

δi j Kronecker delta

∆ increment of . . .

ε, εi j strain tensor

η residual stiffness

ηf kinetic fracture parameter/viscosity

κ external volume micro force

ν Poisson ratio

ξi micro force traction

π internal volume micro force

σi j stress tensor

Σi j energy momentum stress tensor

ϕ inclination angle

ψ free energy density

Ψ free energy

Ω domain

Sub-/superscripts

+ tensile part

− compressive part

ˆ compensated . . .

0 initial . . .

1, 2 material numbering

act actual . . .

b bulk . . .

BC boundary condition

c crack . . .

def deformation . . .

dis dissipation . . .

el elastic . . .

E exponential description

G Gaussian-like description

H

{

Heaviside-like description

sharp Heaviside jump

i interface . . .

ℓc regularized crack/phase-field . . .

ℓi regularized interface . . .

len length along interface

max maximum . . .

min minimum . . .

modE varying Young’s modulus . . .

n increment number

ref reference value

s side

t natural boundary condition

th threshold

tip crack tip . . .

⊤ transposed

T hyperbolic tangent regularization

u essential boundary condition

Abbreviations

FEniCS open-source finite element package

LEFM Linear Elastic Fracture Mechanics

PETSc numerics library

UFL Unified Form Language
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An approach quite close to the LEFM view on the interface was proposed by Paggi and Reinoso [10] and later

Guillén-Hernández et al. [11]. They introduced a phase-field model for brittle fracture, where the interface is captured

by cohesive zone elements: The cohesive zone approach is extended so that the phase-field affects both, the bulk

material and interface stiffness. Good agreement of their hybrid model and the analytic investigations of He and

Hutchinson [8] was achieved. A drawback of the model is the necessity of a mesh-conforming interface, i.e. cohesive

zone elements have to be introduced along the interface. An extension to moving interface problems as apparent in

phase transitions is thus not straightforward.

Kuhn and Müller [12] recently presented an approach where the interface is incorporated by adding a phase-field

dependent surface term to the total energy of the elastic body. A qualitative study demonstrates the general capability

of the modeling approach. For now, their formulation relies on a conforming interface description similar to the

cohesive zone approach above.

Nguyen et al. [13, 14] proposed a phase-field model for interface failure, where the relations for a standard cohesive

zone model are applied to a regularized interface. The regularization is inspired by the crack surface density and takes

the same form. Instead of the fracture toughness, a cohesive energy depending on the regularized displacement jump

captures the energetic contribution to the total energy. In contrast to a classical cohesive zone model, the interface can

be described in a non-conforming manner using a level-set, which can be generated from CT images.

Schneider et al. [15] presented a multiphase-field model capable of depicting cracks along the interface separating

solid phases. By using a multiphase-field model, the interface is accounted for by a grain boundary energy, which

is, however, different from the fracture toughness. For a varying grain boundary energy, the authors reproduced

phenomena similar to those considered by He and Hutchinson [8]. A quantitative comparison is not straightforward

because the fracture toughness, present in [8], was not used in [15] to characterize the fracture properties of the

interface. The advantage of the multiphase-field model is the capability to describe non-conforming interfaces in a

framework, which already allows for phase transitions and thus, a possible evolution of the interface itself.

Hansen-Dörr et al. [16, 17, 18] have presented the concept of a regularized, diffuse interface: In the context of the

fracture phase-field, the regularized interface Γℓi is defined as a narrow subdomain of a solid with a small – but finite –

characteristic width ℓi, which is assigned an interface fracture toughness Gi
c. As the length scales of the interface and

crack interact, the effective fracture toughness of the interface depends on the characteristic length scales ℓi and ℓc,

and on the fracture toughness of the surrounding bulk material. In [18], a compensation of this effect by means of

definition of a modified numerical interface fracture toughness was proposed. The advantage of this approach is

simplicity, while keeping accuracy. Once the compensation has been determined, a non-conforming interface can be

embedded. This approach can be extended to moving interfaces, where evolution equations for the interface have to

be implemented, cf. [19, 20].

The characteristic interface width ℓi is closely related to experimental work of Park and Chen [21], and Parab

and Chen [22]. In both papers, projectiles are fired at brittle solids to provoke dynamic crack propagation towards a

perpendicular interface. The interface has a varying, finite width and is made of an adhesive, gluing two brittle solids

together. Depending on the interface width, different fracture phenomena occur. The same behavior is observed in the

present paper and underlines the fact, that the characteristic width of the interface is not a purely numerical parameter.

This contribution extends the modeling approach developed by Hansen-Dörr et al. [18] to obtain a more numer-

ically robust description of the interface and to incorporate elastic heterogeneities. The first issue is addressed by

introducing two continuous regularization functions that characterize the interface. These functions which smoothly

describe the transition from the bulk to the interface fracture toughness, are considered instead of an actual material

stripe assigned the interface fracture toughness. Elastic heterogeneities are captured by postulating an approxima-

tion for the elastic constants in the interface region depending on the surrounding bulk materials properties. The

consequences of different interface regularizations are discussed in detail. The model is validated by qualitative and

quantitative comparisons to analytical results from LEFM [8]. In order to obtain a controlled crack growth through

or along the interface, surfing boundary conditions [23] are applied. For a quantitative insight into the failure mecha-

nisms, the concept of configurational forces is exploited [24, 25].

This paper is structured as follows. Section 2 introduces the phase-field model and the diffuse modeling of material

heterogeneities like interfaces or dissimilar elastic materials. Furthermore, the compensation approach is outlined. A

detailed quantitative and qualitative evaluation of the capabilities of the model and a comparison to four fundamental

simulation setups from LEFM [8] is presented in Section 3. The paper concludes with a brief summary of the model

and the results and a discussion.
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0

δ(x)δ

x

(a) Discrete crack representation

0

1

0

2ℓc

c

x

(b) Regularized crack representation

Figure 1: In (a), the location of the sharp crack is described by the Dirac distribution. The regularized representation using an exponential function
is depicted in (b). The length scale parameter ℓc controls the width of the transition region from c = 0 to c = 1.

2. Phase-field modeling of regularized material heterogeneities

2.1. Introduction of crack surface density

The idea of phase-field modeling of fracture is the introduction of an additional scalar field c ∈ [0, 1], which

implements a smooth transition from intact (c = 1) to fully broken (c = 0) material. The additional field c is

referred to as the phase-field in view of the resemblance of the concept to classical phase-field models. Suppose a

one-dimensional rod with x ∈ (−∞,∞) of cross-sectional area A which is cracked at the center at x = 0 mm: The

crack location can be fixed using a Dirac distribution, cf. Figure 1a, and the total crack surface Γc can be obtained by

integration over the domain

Γc =

∫

Ω

δ(x) dV =

∞∫

−∞

δ(x)A dx = A , (1)

yielding the intuitive result Γc = A. The motivation to describe the crack surface in a regularized manner arises in the

context of finite element analyses. The smooth function c enables the use of non-conforming meshes, which obviates

the need for remeshing in case of crack propagation. Following Bourdin et al. [1], the Dirac distribution is regularized

using an exponentially shaped function

c(x) = 1 − exp

(

−|x|

2ℓc

)

(2)

yielding a representation, which is depicted in Figure 1b. The characteristic length scale ℓc controls the maximum

gradient of the regularization, which has to be resolved in a finite element implementation.

It has been shown [2] that a functional

I
[

c, c′
]

=

∫

Ω

1

4ℓc

[

(1 − c)2 + 4ℓc
2 (

c′
)2
]

dV (3)

can be found, where Equation (2) is the solution to the Euler-Lagrange equation for I [c, c′] → min and c′ = dc/dx,

subject to the boundary condition c′(x → ±∞) = 0. Note, that inserting Equation (2) into (3), in analogy to Equa-

tion (1), yields I = A = Γℓc , which is why Γℓc is used below instead of I. A three-dimensional generalization

Γℓc
[

c, c,i
]

=

∫

Ω

1

4ℓc

[

(1 − c)2 + 4ℓc
2c,ic,i

]

︸                          ︷︷                          ︸

γℓc

dV (4)

is obtained by replacing c′ by the gradient, where γℓc is referred to as crack surface density, cf. [2]. Herein, the

summation convention and (•),i = ∂(•)/∂xi apply.
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2.2. Governing differential equations and Clausius-Duhem inequality

The local form of the momentum balance, neglecting volume forces and inertia, reads

σi j,i = 0 where σi j = σ ji, (5)

with the Cauchy stress tensor σi j, subject to the boundary conditions

σi j ni = t̄ j on ∂Ωt and

ui = ūi on ∂Ωu ,
(6)

where the boundary ∂Ω = ∂Ωt ∪ ∂Ωu has been decomposed into a part ∂Ωt with natural boundary conditions and a

part ∂Ωu with essential boundary conditions, and ∅ = ∂Ωt ∩ ∂Ωu. The symmetry of the stress tensor follows from the

angular momentum balance. The stress is energetically conjugate to the strain rate ε̇i j, with the strain defined as

εi j =
1

2

(

ui, j + u j,i

)

, (7)

in a geometrically linear setting, and the displacement ui.

Following Borden [26, p. 63 ff.] or Kuhn [27, p. 41 ff.], micro forces are introduced as energetically conjugate to

the phase-field rate ċ. The according conservation equation in the local form reads

ξi,i + π + κ = 0 , (8)

where ξi is the micro force traction and π and κ are internal and external volume forces, respectively. After some

manipulations and consideration of the first and second laws of thermodynamics, the Clausius-Duhem inequality

[

σi j (εkl, c) −
∂ψ

∂εi j

]

ε̇i j +

[

ξi

(

c, c, j, ċ
)

−
∂ψ

∂c,i

]

ċ,i −

[

π
(

c, c, j, ċ
)

+
∂ψ

∂c

]

ċ ≥ 0 (9)

is derived. Here, the argument of Gurtin [28] has been employed, that the free energy density ψ
(

εi j, c, c,k
)

must not

be a function of ċ. The dependencies of ψ are dropped above and below for the sake of readability. Furthermore, ε̇i j

and ċ,i appear linearly: If Equation (9) shall hold for any admissible ε̇i j and ċ,i, the constitutive relations

σi j(εkl, c) =
∂ψ

∂εi j

and (10)

ξi

(

c, c, j, ċ
)

=
∂ψ

∂c,i
(11)

can be deduced. Following the argument of Gurtin [28] or Kuhn [27, p. 41 ff.], the last term can be satisfied if

π
(

c, c, j, ċ
)

= −ηf ċ −
∂ψ

∂c
, (12)

where ηf ≥ 0 serves as a kinetic fracture parameter or viscosity. Inserting Equations (11) and (12) into Equation (8),

a Ginzburg-Landau-type equation

ηf ċ =

(

∂ψ

∂c,i

)

,i

−
∂ψ

∂c
(13)

is obtained. As the phase-field c is not influenced by any external quantity directly, a zero external micro volume

force κ = 0 and the homogeneous boundary condition

ξi

(

c, c, j, ċ
)

ni = 0 on ∂Ω (14)

for Equation (13) are defined. The constitutive ansatz for ψ is discussed in the next section.
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2.3. Constitutive modeling of material response

The constitutive modeling approach follows an additive split of the total free Helmholtz energy

Ψ =

∫

Ω

ψ dV =

∫

Ω

ψel dV +

∫

Ω

ψℓc dV (15)

into an elastic ψel and a phase-field ψℓc contribution. For the elastic term, the widely used tensile split [2]

ψel = g(c)ψel
0,+ + ψ

el
0,− with ψel

0 =
E(xl) ν

2(1 − 2ν)(1 + ν)
(εkk)2 +

E(xl)

2(1 + ν)
εi jεi j (16)

has been adopted. Only the tensile part ψel
0,+

is degraded using the degradation function g(c) = c2 + η to prevent crack

forming under pressure. A small residual stiffness η = 10−6 is maintained for the fully degraded (c = 0) state. The

Young’s modulus E(xl) may exhibit a spatial dependence, cf. Section 2.5.2, while the Poisson ratio ν is assumed to

be constant in the remainder of this paper. The tensile split does not fully degrade the material under shear [29]. A

remedy to this issue is the physically based split [30]. Possible impacts on the results are discussed below.

The energy apparently stored within the phase-field contribution takes the form

ψℓc =
Gc(xl)

4ℓc

[

(1 − c)2 + 4ℓc
2c,ic,i

]

= Gc(xl) γ
ℓc , (17)

which stems from the energetic criterion of Griffith [6]. It is noted, that the fracture toughness Gc(xl) may exhibit a

spatial dependence, see Section 2.5.1.

With the constitutive model at hand, it is possible to deduce more specific expressions for the stress

σi j = g(c)
∂ψel

0,+

∂εi j

+
∂ψel

0,−

∂εi j

, (18)

the evolution equation for the phase-field

ηf ċ =
Gc(xl)

2ℓc

+ 2ℓc

(

Gc(xl) c,i
)

,i − c

(

Gc(xl)

2ℓc

+ 2ψel
0,+

)

(19)

and the corresponding boundary condition

c,i ni = 0 on ∂Ω (20)

from Equations (10), (13) and (14).

In order to prevent existing cracks from healing, an irreversibility constraint has to be imposed. There are two

widespread approaches, the damage-like and fracture-like irreversibility condition. The former one interprets the

phase-field as damage variable and requests ċ ≤ 0 in every material point. This can be achieved by introducing a

history variable [3]. The latter approach allows for local reversibility and does not constraint the phase-field before it

reaches a critical threshold close to zero [4]. Then, a Dirichlet boundary condition c = 0 is set at the corresponding

location. The advantage of the fracture-like constraint is, that the dissipated energy associated with the crack surface

is not overestimated [31]. In this contribution, the latter approach is chosen with a threshold of cth = 0.03. A study for

different values of cth did not reveal any significant differences between the simulation results obtained for this value

and those for higher cth. Additionally, no further influence of a varying characteristic element size from five to ten

times smaller than ℓc was observed for a fixed value of cth = 0.03.

2.4. Weak form and finite element implementation

The weak forms of the partial differential equations (5) and (19) are obtained as follows. Both equations are

multiplied with test functions δu j and δc, and integrated over the whole domain. Integration by parts and making use

of the divergence theorem yields

0 =

∫

Ω

σi j δu j,i dV −

∫

∂Ωt

t̄ jδu j dA and (21)

0 =

∫

Ω

[

Gc(xl)

2ℓc

− c

(

Gc(xl)

2ℓc

+ 2ψel
0,+

)

− ηf ċ

]

δc − 2ℓcGc(xl) c,iδc,i dV +

∫

∂Ω

2ℓcGc(xl) c,ini δc
︸              ︷︷              ︸

=0, cf. Eq. (20)

dA . (22)
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A time discrete form is obtained, by replacing the phase-field rate in Equation (22) using an Euler backward scheme

ċ ≈
c − nc

∆t
, (23)

where nc is the converged phase-field value of the previous increment and ∆t is the time step.

The open-source finite element package FEniCS and the numerics library PETSc [32] allow for an efficient par-

allelized solution of differential equations. An important ingredient of the framework is the so-called Unified Form

Language (UFL) [33], a python-based language for mathematical expressions. The implementation is carried out

using the Python interface of FEniCS by stating the weak form and all necessary constitutive relations using UFL.

From that, a parallelized code for the solution of the finite element system is automatically generated [34, 35]. For-

mulating the model equations in a UFL-conforming manner, special attention has to be paid to the necessary spectral

decomposition of the strain tensor due to the tensile split. The key aspects of the implementation are explained in

Appendix A. Furthermore, the complete formulation of the spectral decomposition as well as the implementation of

the constitutive relations and the weak forms of the governing equations are provided as supplementary material.1

The resulting non-linear, time-discrete equations are solved using a fully coupled, monolithic approach. In order

to avoid convergence problems, the backtracking line search algorithm provided by PETSc is enabled. Furthermore,

a heuristic adaptive time-stepping scheme is employed, which reduces the time step, if the Newton-Raphson scheme

reaches no convergence within 70 iterations and increases the time step if convergence is reached within four iterations.

Along the interface and the crack path, the mesh is refined such that the characteristic element length is five to

eight times smaller than ℓc. Spatial convergence has been verified.

2.5. Interface modeling in the context of regularized heterogeneities

In the context of LEFM, interfaces are mostly introduced as infinitesimal layers of D − 1 physical dimensions,

where D is the dimension of the considered domain separated by the interface. Such a description is also chosen in

the work of He and Hutchinson [8, 9], who investigated crack deflection and branching at interfaces. Surrounded by

two, possibly dissimilar, bulk materials i = 1, 2 with elastic Ei, νi and fracture Gb
c material parameters, the interface Γi

is only assigned an interface fracture toughness Gi
c, cf. Figure 2a. A crack Γc emerging along the interface has D − 1

physical dimensions, too.

Hansen-Dörr et al. [16, 17, 18] have introduced a regularized interface model which allows for non-conforming

interfaces within a regular mesh. In analogy to classical phase-field models, the interface is regularized and defined as

a subdomain Γℓi of D physical dimensions, which separates at least two other subdomains of materials with possibly

dissimilar elastic properties. The interface mid-surface is identical to the discrete interface Γi. The difference of

the interface Γℓi to other sub-structures is, that one physical dimension is considerably smaller than the smallest

characteristic lengths of every other subdomain (except from other interfaces). This property is called narrow and is

quantified by introducing the length scale ℓi, which measures the width in the direction of the signed distance d, cf.

Figure 2b. It is further assumed, that the elastic energy stored within such a regularized interface is negligibly small

compared to non-interfacial subdomains. Thus, in analogy to the LEFM description, the interface is not explicitly

assigned exclusive elastic parameters but also values depending on the surrounding bulk materials. Despite this

simplification the fracture toughness Gi
c is still relevant and can significantly influence the macroscopic cracking

behavior of a structure, even if the interface width is macroscopically not recognizable. A crack along the interface is

regularized, too, and becomes a phase-field crack Γℓc with the characteristic length ℓc.

2.5.1. Incorporation of the interface by means of a fracture toughness reduction

An interface, which is schematically depicted in Figure 2b, can be described using a Heaviside-like function for

the fracture toughness

GH
c (d,Gb

c ,G
i
c) =






Gb
c for |d| > ℓi

Gi
c for |d| ≤ ℓi

(24)

1Please cite this article if reused in any form.
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Gb
c Gb

c

Gb
c Gb

c

ΓcΓi, Gi
cΓi, Gi

c

(a) Intact and broken interface according to LEFM [8]

d d2ℓc2ℓi2ℓi

Gb
cGb

c

Gb
c Gb

c

ΓℓcΓℓi , Gi
cΓℓi , Gi

c

(b) Intact and broken interface in a regularized setting

Figure 2: Intact and partially cracked interface for a two-dimensional specimen: The interface Γi in LEFM is depicted by a line with a fracture
toughness Gi

c different from the bulk material fracture toughness Gb
c , (a) left picture. Failure leads to a sharp crack Γc, (a) right picture. For

a regularized interface Γℓi according to [18], the zone, where the fracture toughness deviates from Gb
c , has a finite width. The regularization is

schematically depicted by the grey hatched area, (b) left picture. The parameter ℓi measures the width along the direction of the signed distance d.
Failure leads to a regularized, phase-field crack Γℓc with characteristic length ℓc, (b) right picture.

within the whole domain. The spatial dependence of GH
c is implicitly incorporated by the signed distance d, which

measures the shortest distance from every point to the interface midline. This description was used by Hansen-Dörr et

al. [18], where it was shown that non-conforming interfaces can be described, despite the jump of the fracture tough-

ness, which may occur within an element. However, the sharp switch between two fracture toughness values nega-

tively influenced the convergence of the numerical solver. Besides the Heaviside-like description, an exponentially-

shaped

GE
c (d,Gb

c ,G
i
c) = Gb

c −
(

Gb
c − G

i
c

)

exp

[

−
| d |

2ℓi

]

(25)

and a Gaussian-like

GG
c (d,Gb

c ,G
i
c) = Gb

c −
(

Gb
c − G

i
c

)

exp



−

(

d

2ℓi

)2


 (26)

function are investigated. All three regularization functions2 are depicted in Figure 3a. The comparison clearly reveals,

that the regularizations GG
c and GE

c introduce a transition zone, which is larger than ℓi. However, in the context of the

regularized phase-field model, the length ℓi can still be identified as characteristic interface width in analogy to the

characteristic crack length ℓc. Additionally, the differentiation of the bulk material and the interface is softened by

introducing a continuous regularization: The interface is no longer an additional material stripe, which can clearly be

identified, but a diffuse region.3

2.5.2. Incorporation of elastic heterogeneities near the interface

In the proposed model, the interface formally has the same number of material parameters as the surrounding bulk

material. In earlier investigations with the model [17, 36], only elastically homogeneous cases were investigated. The

elastic constants of the two bulk materials were also applied within the interface even if it was in principle possible

to consider completely different elastic constants, in a similar fashion as in Equation (24). However, as outlined

above, the deformation energy of the interface is assumed to be negligibly small compared to the bulk materials’

deformation energy. This description is consistent with the assumption of analytic LEFM calculations [8], where the

D − 1-dimensional interface neither has elastic properties.

In this work, the interface is interpreted as a transition zone with respect to the elastic material parameters. In

principle, the transition could be modeled using a whole variety of different functions. In this work, only the Young’s

modulus is allowed to vary, while the Poisson ratio ν is assumed constant for the present investigations. The modulus

follows a hyperbolic tangent-like shape

ET(d) =
E2 − E1

2

(

tanh

[

d

ℓi

]

+ 1

)

+ E1 . (27)

2In the context of the fracture phase-field, the authors understand the regularization of the interface as increase of its dimension, i.e. from D− 1
in LEFM to D as in the present model within a D-dimensional domain.

3Referring to Figure 2b this means, that the grey stripe has to be understood as a symbol for the interface regularization and not a sharp
differentiation from the surrounding bulk material in the context of GG

c and GE
c .
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Figure 3: Regularization curves for the material parameters: (a) depicts the fracture toughness distribution for the different functions GH
c , GG

c and
GE

c . The signed distance d(x, y) measures the shortest distance from any point within the domain to the interface midline. (b) depicts the spatial

distribution of the Young’s modulus EH and ET. In both plots, the location of the interface midline d/ℓi = 0 is highlighted by a dashed
line.

For some investigations, the smooth Young’s modulus transition is compared to the sharp limit, which reads

EH(d) =






E2 for d > 0

E1 for d ≤ 0 .
(28)

It is further noted, that the length scales for the fracture toughness and Young’s modulus regularizations are both

chosen in dependence of ℓi. Generally, these values could be independent from each other. However, it makes sense

to choose them in the same order of magnitude because they govern the spatial discretization, too. The functions EH

and ET are depicted in Figure 3b for E2 > E1, but not restricted to this condition.

The concept of regularizing jumps in the elastic constants according to Equation (27) is not new and has widely

been used in literature, for example Schneider et al. [37], Mosler et al. [19] and Kiefer et al. [20], where a phase-

field model is used to describe phase transitions. Equation (27) can thus be understood as a static phase-field. The

assumption of such a transition might however lead to unwanted behavior in the vicinity of the interface as just stated.

Physically not reasonable effects like an exaggerated, interfacial energy [37] or a violation of the mechanical jump

conditions [37, 19] may result. A possible solution is the so-called partial rank-I relaxation, which accounts for the

mechanical equilibrium in every material point.

In this contribution, no such approach is implemented at the cost of possible inaccuracies near the interface. The

reason is that the combination of the tensile split introduced in Section 2.4 and a partial rank-I relaxation is non-trivial.

The error which is made, is quantified below by a comparison to results obtained with a sharp, mesh-conforming

elastic jump EH.

2.6. Configurational forces and link to energy release rate

The scope of this work is not only the qualitative analysis of various crack patterns in heterogeneous materials

but also the quantification of the so-called crack driving forces, which lead to the aforementioned and yield a deeper

understanding of why and when branching and deflection occur. Rice [38] and Cherepanov [39] developed the concept

of a path independent integral, the J-integral. The evaluation serves as an alternative way to calculate the energy

release rate G in LEFM. Later, the J-integral was generalized for multidimensional analyses, cf. [40, 41, 42]. For the

specific application within a coupled mechanical crack phase-field framework, Kuhn and Müller [4, 27, 24] introduced

a generalized configurational force balance, which is closely related to the generalized J-integral, to account for

heterogeneities within the material in the determination of the energy release rate. The configurational force balance

of the deformation energy

Σdef
i j,i + g̃modE

j + g̃dis
j + g̃

tip

j
= 0 (29)
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enables the computation of the crack driving forces. The individual contributions break down as follows. The defor-

mation energy contribution

Σdef
i j = ψ

elδi j − uk,iσk j (30)

is identical to the integrand of the generalized J-integral, cf. [42]. The contribution of varying elastic material

parameters manifests itself in

g̃modE
i = −

∂ψel

∂xi

∣
∣
∣
∣
∣
∣
explicit

, (31)

accounting for the explicit spatial dependence – in this work due to a varying Young’s modulus. The influence of the

dissipative, viscous term is incorporated in

g̃dis
i = ηf ċ c,i . (32)

Following Kuhn [24], the crack driving force

J
tip

i
= −

∫

C

g̃
tip

i
dV (33)

can be calculated by integrating over a circular volume of unit thickness

C =
{

x, y
∣
∣
∣ (x − xtip)2 + (y − ytip)2 ≤ r2

}

(34)

with radius r centered at the crack tip [xtip ytip]⊤. The numerical evaluation is based on the weak form of Equation (29)

to avoid the calculation of the divergence, cf. [24]. In analogy to LEFM, J
tip

i
can be named generalized J-integral.

In contrast to the classical J-integral it can be applied to locally heterogeneous structures. For the sake of simplicity,

only the most important implications and relations have been mentioned here.

In general, the choice of C may influence the results of Equation (33), especially, when the radius is chosen too

small or larger than the simulation domain. In order to arrive at an appropriate decision, the integral is evaluated for

many different radii and the results are compared concerning converged integral component values. These components

J
tip

i
, i = x, y, now reflect the energy release rates with respect to the chosen coordinate frame, which is why the term

energy release rate is used in the remainder of this paper for the discussion of individual components of J
tip

i
. In this

work, a comparison of different radii revealed r = 0.35 mm to be a good choice.

2.7. One-dimensional phase-field profiles at interfaces

Hansen-Dörr et al. [16, 17, 18] have observed that for homogeneous elastic properties and a fracture toughness

variation according to GH
c , a straight mode-I crack does not propagate along the interface for a critical energy release

rate equal to the fracture toughness of the interface Gi
c, but a higher value Gi,act

c between Gi
c and Gb

c . The exact value of

the actual fracture toughness of the interface Gi,act
c depends on the ratios Gb

c/G
i
c, ℓi/ℓc and the exact function GH

c , GG
c or

GE
c which is used. In the following, one-dimensional considerations are presented which illustrate this phenomenon.

The analytical solution for the phase-field profile in the one-dimensional case (2) is recovered for a homogeneous

fracture toughness. Suppose a one-dimensional rod with x ∈ (−∞,∞) of cross-sectional area A is cracked at x = 0 mm

where an interface is located, which is depicted by GH
c (x− ℓi,G

b
c ,G

i
c), cf. Equation (24). The phase-field profile which

forms under these circumstances can be calculated by considering the spatially dependent fracture toughness in the

minimization of the functional

I
[

c, c′
]

=

∫

Ω

GH
c

4ℓc

[

(1 − c)2 + 4ℓc
2 (

c′
)2
]

dV → min . (35)

The solution for x ∈ [0,∞) reads

c(x) =






1 + O exp[−x/(2ℓc)] for x > ℓi

1 + P exp[x/(2ℓc)] + Q exp[−x/(2ℓc)] for x ≤ ℓi

(36)
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Figure 4: In (a), the analytical one-dimensional phase-field profile for a heterogeneous fracture toughness is depicted. It exhibits a kink, where the
fracture toughness is discontinuous. This yields an overestimation of the interface fracture toughness, which is accounted for by the compensated
interface fracture toughness Ĝi

c in (b).

with the integration constants

O =
−2

(

1 − Gb
c/G

i
c

)

exp[−ℓi/ℓc] + Gb
c/G

i
c + 1

, P = O
1 − Gb

c/G
i
c

2
exp[−ℓi/ℓc] and Q = O

1 + Gb
c/G

i
c

2
. (37)

Due to symmetry, the solution for x ∈ (−∞, 0) can be obtained by mirroring at x = 0. The phase-field profile for

a cracked interface with Gb
c/G

i
c = 3 and ℓi/ℓc = 1.25 is depicted in Figure 4a and clearly exhibits a kink at |x| = ℓi

where Gi
c switches to Gb

c . We refer to the phenomenon of an altered phase-field profile as length scale interaction

of the crack and the interface lengths. Inserting the solution (36) into the crack surface density and integrating over

the domain gives a different value of the total crack surface with respect to the case of a homogeneous fracture

toughness. The same applies to the surface energy of the crack, which is overestimated depending on the ratios of

the length scales and fracture toughnesses. This is inconvenient because the crack energy is not independent from

internal length scales. In other words, assuming an interface crack, the actual interface fracture toughness Gi,act
c for

the one-dimensional example is not equal to the specified interface fracture toughness Gi
c in Figure 4a. After some

straightforward manipulation of Equation (35), which describes the total crack energy, and making use the analytical

solution (36), one obtains

Gb
c

G
i,act
c

=
Gb

c/G
i
c

P2[exp(ℓi/ℓc) − 1] − Q2[exp(−ℓi/ℓc) − 1] + O2[Gb
c/G

i
c exp(−ℓi/ℓc)]

. (38)

The compensation of the length scale interaction to achieve length scale independent results can be motivated with

Equation (38) by requiring Gi,act
c = Gi

c. Consequently, a compensated interface fracture toughness Ĝi
c has to be used

for the interface description GH
c (x − ℓi,G

b
c , Ĝ

i
c), which results in exchanging Gi

c with Ĝi
c on the right hand-side of

Equation (38). A graphical representation for different length scale ratios, where Gi,act
c = Gi

c is required, is given

in Figure 4b. It becomes apparent from Equations (37) and (38), that the compensation is only depending on ratios

Gb
c/G

i
c and ℓi/ℓc, and not on absolute values.

2.8. Numerical two-dimensional compensation approach for length scale interaction

For a more complex fracture toughness heterogeneity GE
c or GG

c , an analytical solution does not seem feasible.

Furthermore, for actual crack propagation simulations, the coupled field problem, cf. Section 2.4, is solved, which

adds a source term to the phase-field equation. Applying the analytical compensation introduces inaccuracies. There-

fore, the corresponding compensation plots are obtained numerically by a mode-I crack simulation along an interface.
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Figure 5: Compensation of the length scale interaction of ℓi and ℓc: Depending on the regularization (a) – (c) and the ratios Gb
c/G

i
c and ℓi/ℓc, a

compensated fracture toughness Ĝi
c can be determined, which accounts for the bulk material influence and leads to an interfacial crack resistance

of Gi
c.

A parameter study for various Gb
c/Ĝ

i
c and ℓi/ℓc similar to [18] has been carried out and the resulting ratios Gb

c/G
i
c are

recorded making use of the configurational forces, cf. Section 2.6. The resulting compensation plots are depicted

in Figure 5, where each symbol resembles one simulation. Comparing Figure 5a to Figure 4b, the inaccuracy of the

one-dimensional approach for two-dimensional crack propagation becomes apparent. For small ratios ℓi/ℓc and rising

ratios Gb
c/Ĝ

i
c, the discrepancy increases. Comparing Figures 5a–c, a crucial difference becomes clear. For the same

length scale ratios, different values for the compensated interface fracture toughness have to be applied. In other

words, if the interface regularization does not implement low fracture toughness values over a wide range across the

interface, a comparably lower compensated interface fracture toughness has to balance the bulk fracture toughness

influence. This effect increases from the Heaviside-like to the Gaussian-like to the exponential description and for

the latter one, the saturation effect, which can be observed for every regularization, becomes the strongest, which is

clearly a limitation. Its implications are discussed in Section 3.

A further limitation of the presented compensation approach, which is applied in all ensuing simulations on crack

branching and deflection, becomes apparent when looking at the compensation. It is based on a straight mode-I crack

along the interface, which is not always an appropriate assumption. As soon as the crack is not aligned symmetrically,

the compensation is distorted, which will become apparent later. The misalignment is also influenced by the crack tip

tracking method, which is mentioned below. However, due to its simplicity and the diffuse character of both, the crack

and the interface, this inaccuracy is accepted and quantified in the remainder. An extension to different bulk material

fracture toughnesses left and right of the interface is possible but not subject of this work, because the reference results

assume only one bulk material fracture toughness.

3. Crack branching and deflection at interfaces

The model presented above has been applied successfully to crack propagation along interfaces and it has been

shown that the compensation is necessary for a quantitative comparison of crack driving quantities [18]. In this

contribution, the setup is extended to a crack approaching an interface under a certain angle ϕi. Depending on the bulk

material and interface properties, the crack branches, deflects or experiences no interfacial influence on its path.

Analytical considerations from He and Hutchinson [8] serve as a comparison. They investigated several crack-

interface-configurations and have made predictions regarding the crack direction. Figure 6 captures all simulation

setups which are dealt with below: Depending on the choice of the Young’s moduli E1 and E2, the bulk material and

interface fracture toughnesses, Gb
c and Gi

c respectively, and the interface inclination angle ϕi, four setups – perpendic-

ular or inclined interface, and homogeneous or heterogeneous elasticity – serve as benchmarks. The Poisson ratio is
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Figure 6: The general setup for the four different studies is sketched on the left. The regularized interface is schematically depicted by the grey
hatched region, which may be inclined by a certain angle ϕi. The material parameters are assigned according to the regularization functions depicted

on the right, using values of E1, E2, Ĝi
c and Gb

c . The initial crack is depicted by Γℓc
0

. Dirichlet boundary conditions are applied for the displacement
along the bold marked side edges ∂Ωu,s whereas homogeneous Neumann boundary conditions are applied on ∂Ω \ ∂Ωu,s.

not varied within the domain and the simulations have been conducted in a plane strain setting. For the investigations

with a perpendicular interface, the domain measures are a = b = c = 1 mm. For the inclined interface, different

domain measures a = b/2 = c/3 = 1 mm are chosen to avoid that the interface passes through the corners of the

specimen for the angles ϕi under consideration.

All interface regularization functionsGH
c , GG

c andGE
c are compared for the first study with a homogeneous Young’s

modulus. Any influence arising from the regularization for the elastic heterogeneity ET is avoided in this way.

For the loading, the concept of the so-called surfing boundary condition [23] is exploited. The key idea of this

approach is to introduce a virtual crack tip with the time dependent position x̄. Here, a virtual tip moving along the

y-axis,

x̄ =

[

x̄

ȳ

]

=

[

0

v · t + ȳ0

]

, (39)

is considered. With respect to the virtual tip position, a displacement of hyperbolic tangent-like shape is applied on

the side edges ∂Ωu,s,

u
BC =

uBC
ref

2

(

1 − tanh
[
y − ȳ

d

])

sign (x)

[

1

0

]

, (40)

assuming uBC
ref
= 7.5 µm, d = 0.5 mm, v = 0.3 mm/s and ȳ0 = −2 mm. In previous studies, this set of parameters

proved to be suitable. Homogeneous Neumann boundary conditions are considered on the remaining part of the

boundary ∂Ω \ ∂Ωu,s.

All simulations presented within this paper are conducted assuming ℓc = 15 µm. The fracture toughness of the bulk

material is set to the constant value Gb
c = 2.7 N mm−1 while Gi

c is adapted according to the fracture toughness ratio

Gb
c/G

i
c which is varied in order to study different fracture phenomena. Similarly, E1 = 210 kN mm−2 is considered

and for the investigation of elastic heterogeneity, different values of E2 are defined. A constant Poisson ratio ν = 0.3

is assumed. The maximum and minimum time steps are ∆tmax = 8 · 10−2 s and ∆tmin = 1 · 10−9 s, respectively, and a

viscosity ηf = 10−5 kN mm−2 s−1 is applied. In order to investigate the impact of this numerically motivated parameter,

a convergence study has been carried out. For this purpose, ηf = 10−6 kN mm−2 s−1 and ηf = 10−4 kN mm−2 s−1 were

considered. The viscosity did not have an influence on the obtained crack pattern, nor did it affect the results which

were taken as quantification like the energy release rate or crack tip position.
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Figure 7: Three different crack phenomena for an initial crack perpendicular to the interface which is depicted using GG
c with ℓi/ℓc = 1.25. The

size of the contour plots corresponds to the domain size. Similar crack phenomena are obtained for other interface descriptions, i.e. for GH
c and GE

c

as well as different interface widths ℓi. The interface midline is indicated in black. The phenomena (a) – (c) correspond to the last three columns in
Table 1.

3.1. Homogeneous elasticity and crack perpendicular to interface

In a first numerical study, a large variety of different fracture toughness ratiosGb
c/G

i
c ∈ (1, 10] has been considered.

For all functions GH
c , GG

c or GE
c , and different values of the interface width ℓi, the crack patterns have been simulated

and investigated. A constant Young’s modulus E = 210 kN mm−2 and perpendicular interface, ϕi = 90◦, are consid-

ered to keep the setup as simple as possible. Table 1 gives a representative selection of the interface descriptions and

fracture toughness ratios which have been investigated and presents the corresponding simulation results.

The numerically predicted crack patterns can be divided into three groups. Representative examples for these

three phenomena are depicted in Figure 7:

(a) For fracture toughness ratios lower than a critical value Gb
c/G

i
c, crack growth straight across the interface is

induced, Figure 7a. In other words, there is no influence of the interface regarding the crack path.

(b) Considering higher ratios of the fracture toughnessesGb
c/G

i
c, crack branching occurs when the crack approaches

the interface midline and a symmetric growth with respect to the y-axis is observed. For some interface descrip-

tions and ratios Gb
c/G

i
c, one of the two crack tips kinks into the bulk material beyond the interface when the

interfacial crack advanced a bit, see Figure 7b. The choice whether it is the left or right tip is governed by

numerical round-off errors. As soon as one of the crack tips kinks into the adjacent bulk material, the other

crack tip arrests and does not propagate for the rest of the simulation.

(c) For higher Gb
c/G

i
c and some interface descriptions, the crack branches into the interface, yet no subsequent

kinking into the bulk material appears. Accordingly, a crack arises along the interface, approaching the vertical

edges of the domain for a large simulation time, Figure 7c.

From Table 1, it becomes clear that the description of the interface, i.e. the choice of the function GH
c , GG

c or GE
c ,

and the value of the interface width ℓi can have an impact on the simulation result although the procedure outlined in

Section 2.8 generally allows for energetically equivalent crack propagation along differently regularized interfaces.

Apparently, for a constant ℓi, the choice of the regularization function can affect the numerically predicted crack

path. The critical ratioGb
c/G

i
c for crack branching into the interface increases from the Heaviside-like to the exponential

to the Gaussian-like regularization, cf. rows with ℓi/ℓc = 2.5 and column Gb
c/G

i
c. In contrast, the compensated fracture

toughness ratio Gb
c/Ĝ

i
c increases from the Heaviside-like to the Gaussian-like to the exponential regularization. Thus,

the impact of the choice of the regularization function on the results seems not only to be caused by the compensation

procedure but also by the regularization directly.
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Table 1: Crack phenomena at an interface perpendicular to the initial crack for different regularization functions and length scales. The Young’s
modulus is constant within the entire domain. The results are a representative selection of those obtained for various fracture toughness ratios
Gb

c/G
i
c ∈ (1, 10]. According to LEFM [8], crack growth straight across the interface is expected for Gb

c/G
i
c . 4, branching into the interface for

5 . Gb
c/G

i
c. For 4 . Gb

c/G
i
c . 5, a single deflection into the interface is analytically predicted which was not recovered in any simulation.

Interface

description

Gb
c/G

i
c Gb

c/Ĝ
i
c crack growth

straight across

the interface

branching into the interface followed by . . .

Gc ℓi/ℓc . . . kinking into bulk . . . interfacial failure

GH
c

2.5

4.2 4.62 x

4.8 5.33 x

6 6.76 x

8 9.18 x

1.25
3.3 4.78 x

4.2 6.56 x

5.1 8.47 x

GG
c

2.5

5 8.38 x

7 9.63 x

8 11.58 x

1.875

5 7.12 x

6 9.34 x

6.5 10.55 x

7 11.82 x

1.25

4.5 8.38 x

4.75 9.26 x

5.5 12.18 x

6 14.31 x

GE
c

3.125

5.5 12.25 x

6 15.46 x

6.5 19.88 x

2.5

5 12.66 x

5.5 17.19 x

6 24.6 x

A variation of the interface width ℓi influences the crack path for all the regularization functions in a similar way:

In the context of crack deflection, an interface of higher ℓi seems to be tougher than a narrower one. For example, for

GG
c crack branching into the interface occurs for 4.5 . Gb

c/G
i
c when ℓi/ℓc = 1.25, while 8 . Gb

c/G
i
c has to be reached

if ℓi/ℓc = 2.5 is set. Furthermore, it depends on the interface length scale and the regularization function, respectively,

whether the crack propagates within the interface or kinks out into the bulk material when it has branched into the

interface. Arguably, these effects are triggered by different ℓi and not by the compensation. If only the compensation

procedure would have an influence, one would expect monotonously rising ratios Gb
c/Ĝ

i
c for the transition between the

phenomena from higher to lower ℓi values because the bulk material influence rises. This is, however, not the case, as

can be seen from Table 1 when comparing the compensated ratios for Gb
c/Ĝ

i
c corresponding to the critical ratios for

crack deflection Gb
c/G

i
c for the Gaussian regularization for different length scale ratios.

Due to its impact on the crack path, the interface width ℓi may not be regarded as a purely numerical parameter.

Rather, it should be considered as a material parameter in addition to the fracture toughness Gi
c. In other words, ℓi

can be assigned an experimentally determined value. This is consistent with experimental investigations of Park and

Chen [21], and Parab and Chen [22]. In both papers, dynamic crack propagation is investigated within two brittle

solids linked by an interface. The interface has a varying, finite width and is composed of an adhesive. Depending
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on the interface width, different crack patterns can arise. In this paper, numerical results obtained with the regular-

ized model have been compared to LEFM investigations, which assume an infinitesimal narrow interface. Hence, a

physically motivated choice of the regularization width ℓi is beyond the scope of this work. Instead, ℓi is set such that

optimal agreement is obtained between the simulation and the analytical results.

According to LEFM investigations [8], straight crack growth across the interface is expected for Gb
c/G

i
c . 4. For

interfaces of low fracture toughness, 5 . Gb
c/G

i
c, crack branching into the interface is energetically favorable. Hence,

the numerically predicted crack phenomena are in good qualitative agreement with LEFM predictions. However, He

and Hutchinson [8] anticipated a single deflection effect, i.e. crack deflection into the interface not coming along with

branching, for fracture toughness ratios 4 . Gb
c/G

i
c . 5. This crack path has not been found in the simulations.

Instead, a different asymmetric phenomenon, crack branching followed by a kink into the bulk material, has been

predicted. This limitation may be due to the application of the tensile split (16) which is not capable of fully degrad-

ing materials under non-mode-I loading. A remedy may be the directional split [30] which degrades the individual

components of the stress tensor on a physical basis.

In terms of convergence, the Gaussian-like and the exponential regularization appear to have an advantage, which

is why the Heaviside-like description is not considered in the following investigations. For the exponential regular-

ization GE
c , a pronounced influence of the bulk material on the interface fracture toughness was observed in the study

outlined in Section 2.8. This leads to a strong saturation effect. In other words, the fracture toughness ratio Gb
c/G

i
c that

can be reached is limited to a rather small value. For example, a maximum value of Gb
c/G

i
c ≈ 2.7 can be estimated

from Figure 5c for ℓi/ℓc = 0.625: Even a ratio of Gb
c/Ĝ

i
c = 50, which is not shown in the figure, yielded Gb

c/G
i
c < 2.7.

This leads to strong limitations concerning the crack phenomena which can be captured. Accordingly, the Gaussian-

like regularization is used in the remainder of the paper. It is applied with ℓi/ℓc = 1.25, as an optimal accordance

between the regularized interface model and the results from LEFM is obtained in this way.

So far, the ability of the model to predict failure phenomena which are consistent with LEFM has been demon-

strated. A deeper insight into the effect of the regularization on the crack driving forces is obtained by consulting the

energy release rate which is determined from the balance of the configurational forces and the crack tip trajectory. The

corresponding curves for a crack growing straight across the interface or propagating along the interface, respectively,

are presented in Figure 8. As cracks are described in a regularized manner, the definition of a discrete crack tip is not a

trivial question. Here, all nodes with a phase-field value c < cth, i.e. lower than the critical threshold cth introduced in

the context of the irreversibility constraint in Section 2.2, are considered. Then, the furthest top right node is identified

as the actual tip.

Figure 8b depicts the crack tip trajectory for a fracture toughness ratio Gb
c/G

i
c = 3. The crack grows straight across

the interface, i.e. propagates symmetrically along the y-axis. Its x-coordinate xtip is slightly overestimated, because of

the crack tip tracking method explained in the previous paragraph. The corresponding energy release rateJ
tip
y is shown

in Figure 8a. Away from the interface, a value equal to the fracture toughness of the bulk material Gb
c is recovered,

which is expected. Closer to the interface midline, J
tip
y follows the regularization function GG

c . However, significant

deviations occur when the crack tip approaches the interface, i.e. for −0.1 mm . ytip . 0.01 mm. The corresponding

interval is indicated in red in Figure 8a. Comparable deviations of the energy release rate or oscillations, respectively,

are observed in all simulations. As these do not coincide for two simulations with an identical setup, they are assumed

to be caused by numerical errors arising from the evaluation of the configurational force balance in FEniCS. Such

obscure phenomena never occurred in the alternative finite element environment of the authors, were not reported in

literature using the same approach [24] and question the usability of FEniCS for complex constitutive models.

For Gb
c/G

i
c = 8, the crack branches into the interface when approaching its midline. The trajectory of the right

crack tip propagating in the positive x-direction is depicted in Figure 8d. The crack tip overshoots the interface midline

at the beginning, but follows a curved path and approaches the midline when it continues to propagate in x-direction.

The elastic energy, that has to be built up to propagate the crack towards the interface through the bulk material with

a higher fracture toughness is suddenly released. The crack snaps into the interface and the elastic energy, which is

released, suffices for the crack to tackle the first bit of the energetic barrier towards the second bulk material layer.

However, as the simulation continues, it is energetically more favourable for the crack to find its path closer to the

interface midline, where the deviation at xtip = 0.5 mm is almost the same as for the straight crack. In contrast to

a sharp interface model, the crack propagating along the regularized interface does not follow the interface midline

exactly. Nevertheless, the uncertainty arising from the regularization and the tracking method does not exceed ℓi/2,
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Figure 8: Energy release rates (left) and crack tip trajectories (right) for a straight (top, cf. Figure 7a) and a branched (bottom, cf. Figure 7c) crack.

The energy release rates for a straight (a) and branched (c) crack are compared to the fracture toughness GG
c ( ) along the y- and x-axis,

respectively. The red intervals correspond to oscillations in (a) and no valid evaluation in (c). Outside these intervals, there is good agreement
between the energy release rate, at which the crack propagates and the fracture toughness. The corresponding crack tip trajectories are shown in

(b) and (d), where marks the interface midline. The trajectories are, as expected, either straight along the y-axis (b) or picture deflection
into the interface along the x-axis (d). In both cases, small deviations occur due to the crack tip tracking method. For the deflected crack, there is
still a tendency to penetrate into the adjacent bulk material layer, which is why the crack is not exactly centered in (d).

which is deemed acceptable regarding the characteristic domain size a. Figure 8c shows the corresponding energy

release rateJ
tip
x . It is noted that the validity ofJ

tip
x determined from the configurational force balance is compromised

for xtip < r = 0.35 mm. This is due to the crack tip propagating in the opposite direction along the interface and the

point of crack branching which are located within the integration domain C of the configurational forces. The former

cancels out J
tip
x for 0 ≤ xtip < r/2 and the latter provokes oscillations within r/2 ≤ xtip ≤ r. The corresponding

interval is marked in red in Figure 8c. Only for xtip > r = 0.35 mm, J
tip
x recovers the actual crack driving force. The

energy release rate of the crack propagating along the interface approximately meets the interface fracture toughness

Gi
c, yet is slightly higher than the exact value. On the one hand, this slight overestimation of Gi

c is due to the crack tip

not propagating exactly along the interface midline, an issue due to the interface regularization. This has already been

outlined in Section 2.8 as a limitation. On the other hand,J
tip
x exhibits an uncertainty which stems from the definition

of a discrete crack tip position based on the phase-field.

It is noted that a higher ratio ℓi/ℓc can lead to a larger deviation of the crack tip from the interface midline. This

may result in a larger discrepancy between the actual driving force of a crack propagating along the interface and the

interface fracture toughness. Hence, the interface length scale ℓi should not be chosen significantly larger than the

crack regularization length ℓc.
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Figure 9: Numerical results for a regularized (a) and a conforming jump (b) of the Young’s modulus are compared to predictions made by LEFM [8,
Figure 3]. Above the red lines, LEFM predicts straight crack growth across the interface. In between, a single deflection is expected. Below

the red lines, a double deflection should appear. The numerical results are in good agreement with the analytical predictions. However, instead
of a single deflection the crack keeps growing straight across the interface. It is noted that the branching and the branching followed by kinking

phenomena, denoted by a triangle and a circle respectively, count as a double deflection in the context of LEFM. When comparing (a) to (b), it can
be seen, that the regularization of the elastic dissimilarity influences the results.

3.2. Heterogeneous elasticity and crack perpendicular to interface

Elastic heterogeneities can have a crucial influence on the failure phenomena which arise when a crack approaches

an interface. The dissimilarity of the elastic fields on each side of the interface can induce crack patterns that differ

from those which occur in the case of homogeneous elastic constants. He and Hutchinson [8] argued for a setup

similar to the one investigated here, that the consequences of the elastic heterogeneity can be characterized by a

dimensionless parameter α introduced by Dundurs [43]. For the plane strain setting and a constant Poisson ratio ν

which are assumed in this paper, the first Dundurs’ parameter α may be written as a function of the Young’s moduli

of the bulk material,

α =
E2 − E1

E1 + E2

, (41)

in which E1 and E2 refer to the bulk in front of and beyond the interface, respectively. In order to analyze the effect

of the elastic dissimilarity on crack propagation, another numerical study has been carried out. Therefore, the Young’s

modulus E2, assigned to the material beyond the interface, has been varied and four different

values α ∈ {−0.5,−0.25, 0.25, 0.5} were investigated. In the first part of the study, the elastic heterogeneity is cap-

tured by the hyperbolic tangent function ET. In order to investigate if ET has a significant impact on the predicted

crack path, a conforming jump EH of the Young’s modulus with respect to the interface midline is considered, subse-

quently. The Gaussian-like regularization GG
c with ℓi/ℓc = 1.25 has been applied. All other parameters are identical

to the values in the previous section. Various fracture toughness ratios Gb
c/G

i
c ∈ [1.5, 10] are considered.

A representative selection of the parameters investigated and the corresponding results are depicted in Figure 9.

Therein, relevant results for the case of a homogeneous Young’s modulus, i.e. α = 0, are duplicated from Section 3.1.

The result of every simulation matches one of the crack phenomena described in the previous section. The crack

grows either straight across the interface or it branches into the interface. For some branching cases, one of the two

crack tips kinks out of the interface when the interfacial crack advanced a bit, while the other one is arrested.
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Figure 10: Three different crack phenomena for an initial crack which propagates towards an inclined interface ϕi = 45◦, depicted by the mid-

line . Depending on the ratio Gb
c/G

i
c, the crack tip trajectory experiences almost no (a) to significant (c) influence of the interface. Unlike

the sharp transition between a straight and deflected crack for the critical ratio assumed in [8], the crack patterns exhibit a transition from a straight
to a deflected crack.

The critical fracture toughness ratio which has to be reached for crack branching into the interface decreases with

increasing values of α. Thus, crack propagation within the interface becomes energetically more favourable when the

material beyond the interface is stiffer. This is consistent with the LEFM predictions [8]. Furthermore, the results

approximate the analytically predicted correlation between this critical fracture toughness ratio and the parameter α

especially for α ≤ 0.25. However, a significant deviation appears for α = 0.5.

Comparing the crack patterns with a regularized jump ET to those in which a mesh-conforming jump of the

Young’s modulus EH has been considered, see Figures 9a and 9b, it becomes obvious that the incorporation of the

elastic dissimilarity significantly influences the numerically predicted crack pattern. This may be due to the fact that

the use of ET does not necessarily lead to a solution which satisfies the mechanical jump conditions, so that unphysical

values of the strain energy can occur in the vicinity of the interface, cf. [37, 20]. This is a clear limitation of the model

presented herein. A remedy to this issue is for example the partial rank-I relaxation [19, 37, 20].

3.3. Homogeneous elasticity and inclined interface

In order to generalize the previous findings for an interface perpendicular to an initial crack, the setup is extended

to an inclined interface. As an example, the study of three inclination angles ϕi ∈ {30◦, 45◦, 60◦} and various fracture

toughness ratios Gb
c/G

i
c ∈ (1, 5] is presented. Within this section, homogeneous elastic constants are considered. All

other parameters are as in the previous section.

He and Hutchinson [8] considered a crack which impinges an inclined interface and analytically determined the

ratio
Gb

Gi
= 16

([

3 cos
(
ϕi

2

)

+ cos
(

3
ϕi

2

)]2

+

[

sin
(
ϕi

2

)

+ sin
(

3
ϕi

2

)]2
)−1

(42)

of the energy release rates for straight crack propagation across the interface Gb and crack deflection into the inter-

face Gi, cf. [10, Equation (36)]. Deflection into the interface is expected to occur for Gb
c/G

i
c > G

b/Gi. In other words,

the ratio Gb/Gi is identical to what has been named the critical fracture toughness ratio in the previous sections. It

is remarked that, in contrast to the analytical investigations which serve as comparison, a finite distance between the

initial crack Γℓc

0
and the interface is considered for the simulations, see Figure 6. Although this is a difference to the

analytical reference, a crack which has to approach an interface from a finite distance first is considered for the numer-

ical investigations, since this is the more realistic and more general case, while crack nucleation within the interface

is not discussed in this contribution.

For all inclination angles ϕi, similar crack phenomena are predicted numerically, depending on the fracture tough-

ness ratio Gb
c/G

i
c. For ϕi = 45◦ and three representative fracture toughness ratios, the crack tip trajectories obtained
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Figure 11: Crack length along the interface slen for three different inclination angles (a) – (c) and various ratios Gb
c/G

i
c. As expected, slen recovers

higher values for larger angles ϕi and constant ratios Gb
c/G

i
c. Additionally, the ratio, where the crack deflects into the interface gets more and

more pronounced with rising ϕi. In general, a rather smooth transition is observed for smaller inclination angles, which makes a comparison to the
analytic results, where a sharp transition is predicted, difficult.

from simulations are depicted in Figure 10. In general, the crack does not follow a straight path when approaching

the interface. Instead, it is deflected along a curved path towards the interface. This deflection is more pronounced

for higher values of the fracture toughness ratio Gb
c/G

i
c and smaller values of the interface inclination ϕi. It is noted

that this deflection leads to a discrepancy of the actual angle between interface and crack, and the initial inclination

angle ϕi. Thus, the significance of the prediction (42) when using the initial inclination angle can be biased for the

numerical setup considered here.

For lower values of the fracture toughness ratio Gb
c/G

i
c the crack propagates across the interface into the second

material, see Figure 10a. Within the second material layer, it firstly follows a curved path again, yet in the opposite

x-direction with respect to the path it took when approaching the interface. The path is shaped such that the crack

continues to propagate approximately vertically when it reaches the y-axis, i.e. it further propagates aligned with the

initial crack.

For higher values of the fracture toughness ratio Gb
c/G

i
c, the crack deflects into the interface. However, there is no

sharp transition between interfacial failure and crack penetration into the bulk material beyond the interface. Instead,

for intermediate ratios Gb
c/G

i
c, the crack propagates along the interface for a length slen

4 which is higher for weaker

interfaces with respect to the bulk, and for smaller angles ϕi, cf. Figure 11. Subsequently, it kinks out into the material

beyond the interface where it continuous to grow parallel to the y-axis, see Figure 10b. When a certain value of the

ratio Gb
c/G

i
c is reached, no more kinking out of the interface has been observed, see Figure 10c. Both, the increase

of slen with increasing Gb
c/G

i
c and decreasing ϕi, and the increase of Gb

c/G
i
c, for which no more kinking out of the

interface occurs, for increasing ϕi are consistent with the numerical results from [10] and the analytical reference [8]

which predicts the increase of Gb/Gi for increasing ϕi, cf. Equation (42).

Since the results indicate rather a smooth transition between failure of the bulk material beyond the interface and

interfacial rupture than a sudden switch between the two phenomena, the determination of a critical fracture toughness

ratio from the simulation results and its comparison to LEFM predictions, respectively, are not simple. However,

considering Figures 11b and 11c, slen remarkably increases for ϕi = 45◦, when Gb
c/G

i
c & 2.4 and for ϕi = 60◦,

when Gb
c/G

i
c & 3.8. In contrast, the analytically predicted ratios are Gb/Gi = 1.37 and Gb/Gi = 1.78, respectively.

This discrepancy suggests, that the prescribed angle ϕi is not decisive for interface failure, but the angle between the

interface and the crack tip trajectory, when the crack has already turned towards the interface. Considering Figure 10b,

this angle is approximately 60◦. Using this value, the ratio Gb/Gi = 1.78 still underestimates Gb
c/G

i
c & 2.4.

4For the definition of slen, the crack tip coordinates [stip ttip]⊤ are evaluated in the s, t-coordinate frame aligned with the interface, cf. Figure 10c.
In the context of the diffuse interface representation, the crack is assumed to propagate along the interface for |t| < ℓi.
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Figure 12: Energy release rate (a) and crack tip trajectory (b) for a crack which deflects into the interface. J
tip
i

is transformed from i = x, y to

i = s, t, where the s- and t-directions are aligned with and perpendicular to the interface, respectively. The value J
tip
s is quantitatively compared to

the interface fracture toughness . Within the red interval,J
tip
s determined from the configurational force balance does not recover the actual

crack driving force. Outside the interval, there is good agreement between the energy release rate at which the crack propagates and the fracture

toughness. The corresponding crack tip trajectory in terms of the s, t-system is shown in (b), where marks the interface midline. The crack
is, as expected, deflected into the interface along the s-direction.

The numerical predictions for the inclined interface are compared quantitatively considering the energy release

rate in the direction of crack growth and the crack tip trajectory. Both are depicted in Figure 12 for a crack which

propagates along the interface midline for ϕi = 45◦ and Gb
c/G

i
c = 3. Therefore, a transformed s, t-coordinate frame,

aligned with the interface midline, is introduced, see Figure 10c.

As mentioned above, the crack tip follows a curved path when it deflects into the interface. From the tip coordi-

nates [stip ttip]⊤ transformed into the coordinate frame aligned with the interface, it becomes clear, that the crack tip

trajectory looks quite similar to the path which is observed for a crack deflected into a perpendicular interface, com-

pare Figure 12b to Figure 8d. When the crack tip deflects, it first overshoots the interface midline, but approaches the

midline when it continues to propagate along the interface. For the inclined interface, the distance between interface

midline and actual position of the crack tip which propagates along the interface and hence the uncertainty of the

crack tip position that stems from the regularization and the crack tip tracking method is slightly higher than for the

perpendicular interface. Nevertheless, it does not exceed ℓi, which is again deemed acceptable in the context of the

regularized framework.

Figure 12a shows the corresponding energy release rate in direction of the interface midline J
tip
s . Similar to the

perpendicular interface, J
tip
s which is determined from the balance of the configurational forces does not correspond

to the crack driving force at every instant. Instead, for stip < r = 0.35 mm, the validity ofJ
tip
s is compromised, because

the area in which the crack deflects into the interface is located within the integration domain C of the configurational

forces. The corresponding interval is marked in red in Figure 12a. Only for stip > r = 0.35 mm, J
tip
s recovers the

actual crack driving force. Similar to the perpendicular case, the energy release rate of the crack propagating along

the interface approximately meets the interface fracture toughness Gi
c, yet is slightly higher than the exact value. As it

has been outlined in Section 3.1, this slight overestimation is mainly caused by the uncertainty of the position of the

crack tip which arises from the regularization.

3.4. Heterogeneous elasticity and inclined interface

In a final numerical study, the impact of an elastic heterogeneity on the fracture phenomena at an inclined interface

is investigated. The computed crack tip trajectories for ϕi = 30◦, α ∈ {−0.5, 0, 0.5} and Gb
c/G

i
c ∈ {1.3, 1.8, 2.2} are

depicted in Figure 13. They serve as representative examples for all phenomena which were predicted numerically,

because the same qualitative influence of α was observed for different interface inclination angles ϕi and fracture

toughness ratios Gb
c/G

i
c. The elastic heterogeneity was described using ET. Simulations were also carried out for
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Figure 13: Nine different crack phenomena, three for each ratio Gb
c/G

i
c (a) – (c), for an initial crack which propagates towards an inclined interface

ϕi = 30◦, depicted by the midline . The Young’s modulus varies across the interface according to α and the crack tip trajectories differ
accordingly. Firstly, comparing the trajectories for α = 0 to the ones from Figure 10, it is evident that a smaller inclination angle ϕi yields concurrent
phenomena for lower ratios Gb

c/G
i
c which is intuitive. Secondly, the elastic heterogeneity strongly influences the results according to the LEFM

predictions [8], which stated that for α > 0, the crack has a tendency away from the interface and vice versa. Thirdly, total deflection into the
interface can be preferred or delayed depending on α.

a mesh-conforming jump EH of the Young’s modulus with respect to the interface midline for the parameter set

mentioned above. All other parameters are as in the previous sections.

Firstly, the trajectories for α = 0 in Figure 13 are compared to Figure 10, which presents the same three types

of crack phenomena for a different angle ϕi = 45◦. As expected, the three phenomena, a straight crack (a), a small

deflection (b) and distinct interface failure (c), occur for lower ratios Gb
c/G

i
c for a smaller angle ϕi = 30◦.

Secondly, the elastic heterogeneity has an influence on the crack path when a crack approaches the interface. For

α < 0, the crack even more deflects in the direction of the interface than for α = 0. On the contrary, it tends away

from the interface for α > 0. In other words, the crack tends to propagate away from the interface when the material

beyond the interface is stiffer than the one in front of the interface and follows a curved path towards the interface,

otherwise. In additional simulations which are not reported here, it has been observed that this effect becomes the

more pronounced for a larger elastic dissimilarity between the two bulk materials. The deviation towards the interface

for α < 0 and vice versa is consistent with the LEFM [8]. For a wedge-loaded crack approaching an inclined interface

from a finite distance, a curved path in the direction of the interface and away from the interface has been predicted

analytically for α < 0 and α > 0, respectively.

Thirdly, the elastic heterogeneity controls whether deflection into the interface occurs. The corresponding critical

fracture toughness ratio decreases with increasing α and the crack length along the interface becomes higher when

α increases, respectively. This is consistent with the simulations and LEFM predictions [8] for the perpendicular

interface, see Section 3.2.

Similar to the investigations in Section 3.2, the results for a smooth transition of the Young’s modulus ET are

compared to a mesh-conforming jump EH. The according crack tip trajectories are depicted in Figure 13 as dotted

lines. Although the results qualitatively agree, deviations exist which have to be quantified in further studies, where a

partial rank-I relaxation is implemented.

4. Conclusion

A phase-field model for brittle fracture has been presented which incorporates materials with dissimilar elastic

properties and interfaces between them in a regularized manner. The discrete interface is regularized over a finite
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length by means of the finite interface regularization length scale ℓi. Since this length scale is very small compared

to the domain’s dimension, the interface is called narrow. It was observed in previous studies, that the characteristic

length of the crack phase-field model ℓc and the length scale ℓi exhibit an interaction, i.e. the phase-field profile

of an interfacial crack is altered with respect to the case of a homogeneous fracture toughness. Furthermore, the

dissipated energy related to a crack along the interface is overestimated due to an influence of the bulk material.

A numerical compensation approach was adopted that overcomes this issue and yields crack propagation along the

interface energetically independent from the crack and interface regularization length scales, and from the fracture

toughness of the bulk material. The compensation was analytically motivated considering the one-dimensional case.

Materials adjacent to the interface may have dissimilar elastic properties. The model introduces a smooth transition

of the sharp variation by a hyperbolic tangent function, which alters the elastic properties accordingly and is controlled

by the interface length scale ℓi, too.

The modeling framework was validated against analytical analyses from He and Hutchinson [8]. They investigated

crack branching and deflection phenomena for a crack, which impinges a possibly inclined interface. For the first of

the four investigated setups, three different interface regularizations were investigated. Due to numerical issues and

the general ability to predict all crack patterns, the Gaussian-like fracture toughness regularization was chosen for the

subsequent investigations. In the course of the regularization function comparison, the interface length scale ℓi proved

to be a parameter which is not of numerical nature but rather a material parameter. Additionally, the phenomenon of

a single deflection as described by He and Hutchinson [8] was never observed. This may be due to the fact that the

tensile split reveals significant disadvantages when it comes to shear load cases [30]. Despite its disadvantages and

limitations, it is widely used in the phase-field community because of its intriguing simplicity compared to physically-

based approaches. However, for a correct prediction of cracking phenomena under manifold loading conditions, it is

necessary to switch to a different directional split as for example introduced by Steinke and Kaliske [30], who degrade

the stress according to a local crack coordinate frame.

Next, the three remaining setups on the basis of analytical investigations from He and Hutchinson [8] were con-

sidered. The qualitative agreement between the LEFM predictions and the present numerical investigations like the

dependence of the crack pattern on the ratioGb
c/G

i
c, on Dundurs’ parameter α and the interface inclination angle ϕi are

good. Numerically, a smooth transition between different phenomena was observed, for instance for the inclined inter-

face, whereas the analytical predictions are of binary nature. A quantitative evaluation of the crack tip trajectory and

the configurational forces served as evidence for the crack driving forces of different crack patterns. Comparing the

analytically predicted switching ratios between different phenomena to the corresponding numerical simulations is not

straightforward because of the smooth transition between different phenomena, especially for the inclined interface. A

quantification is therefore impossible but the order of magnitude of the relevant ratios corresponds in principle. Com-

parative simulations with a sharp jump of the Young’s modulus revealed, that the hyperbolic tangent function which

describes the elastic heterogeneity significantly influences the results. The chosen interpolation scheme between the

Young’s moduli does not necessarily fulfil the mechanical jump conditions as outlined in [37, 20]. A remedy to this

issue is for example the partial rank-I relaxation as discussed in [19, 37, 20], which is going to be extended to be ap-

plied in the model above in the future. Despite a quantitative disagreement for certain simulation results, the presented

model already captures most effects and serves as sound basis for further development and investigations.
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Appendix A. Implementation in FEniCS

As supplementary material, we provide a Python code example which can be used as reference for the implementa-

tion of the presented model. It can be found in the online version, at https://doi.org/10.1016/j.engfracmech.

2020.107004

For the implementation of the tensile split, a UFL-compliant formulation for the spectral decomposition of second

order tensors is presented because the Unified Form Language does not provide any functionality regarding eigenval-

ues and -vectors by default.

In the following, the key aspects for the formulation of the spectral decomposition are outlined. For the eigenvalues

ei of the strain tensor, the analytical solution of the characteristic polynomial

e3
i − I1 e2

i + I2 ei − I3 = 0 (A.1)

is implemented, where

I1 = tr ε , I2 =
1

2

[

tr2
ε − tr (ε · ε)

]

, I3 = det ε (A.2)

designate the principal invariants of ε. For this purpose, Cardano’s rule is exploited, cf. Kopp [44, Equations (19) –

(34)]. Numerical difficulties arise if the weak form implemented in UFL leads to the numerical evaluation of terms

exhibiting singular or complex values. Consequently, special attention has to be paid to fractions and square roots

which are evaluated while the automatically generated code is executed. In order to avoid computational complica-

tions, small numerical perturbations are added to all radicands and denominators showing an absolute value lower

than a critical threshold, see Code snippet 1, ll. 8 – 10. As both the numerical perturbations and the threshold are set

to values in the order of 10−10, this strategy is assumed to have no remarkable impact on the simulation results.

1 nuz = 1E-10 # threshold for application of numerical perturbations

numturb = nuz # numerical perturbations applied e.g. in case of equal eigenvalues

3

# ...

5 def eval1(te): # first eigenvalue of tensor te

# ...

7

inroot1=conditional(inroot1 <nuz ,abs(inroot1)+numturb ,inroot1)

9

denom1=conditional(abs(denom1)<nuz ,conditional(denom1 <0,denom1 -numturb ,denom1+

numturb),denom1)

11

#...

13 # ...

def M1(te): # projection tensor associated to first eigenvalue

15 eva1=eval1(te)

# eva2 , eva3 = ... other eigenvalues

17

# ensure numerically different eigenvalues

19 eva1=conditional(abs(eva1 -eva2)<nuz ,eva1+numturb ,eva1)

eva1=conditional(abs(eva1 -eva3)<nuz ,eva1 +2* numturb ,eva1)

21 eva2=conditional(abs(eva2 -eva3)<nuz ,eva2 +4* numturb ,eva2)

23 denom1 =(eva1 -eva2)*(eva1 -eva3)

25 return (1.0/ denom1)*dot((te -eva2*Identity(sd)) ,(te -eva3*Identity(sd)))

Code snippet 1: Concept of numerical perturbations for the implementation of the spectral decomposition

With the eigenvalues ei at hand, the spectral decomposition

ε =
∑

i∈[1,3]

ei Mi (A.3)
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can be formulated making use of the projection tensors

Mi =
1

Di

∏

j∈[1,3]\i

(

ε − e j 1
)

with Di =
∏

j∈[1,3]\i

(

ei − e j

)

, (A.4)

which are also referred to as eigenvalue basis in the literature, cf. Miehe [45]. Since Equation (A.4) is only appli-

cable in cases of three pairwise different eigenvalues, the concept of numerical perturbations is exploited again as

demonstrated in Code snippet 1, ll. 19 – 21.
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