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Abstract 

The present paper deals with the problem of assessing the fatigue lifetime of high-strength steel 

wires containing corrosion pits, with this investigation being based on a large number of 

experimental data selected from the technical literature. To evaluate the stress concentration 

phenomena characterising corroded metallic wires, according to the state-of-the-art knowledge, 

pits were modelled either as semi-ellipsoidal cavities or as hemispherical notches. The stress 

concentration factors, Kt, associated with these simplified pit geometries were calculated 

numerically by solving numerous three-dimensional FE models. Subsequently, the Kt values 

being determined according to this standard numerical procedure were post-processed 

systematically to derive simple analytical solutions suitable for estimating, in situations of 

engineering interest, the stress concentration factors associated with pitting corrosion. Finally, 

after making some assumptions to derive the necessary fatigue properties, the Theory of Critical 

Distances was used in the form of the Point Method and the Line Method to re-analyse the 

literature data being collected. This systematic validation exercise allowed us to prove that the 

Theory of Critical Distances is successful also in assessing the fatigue lifetime of high-strength 

metallic cables containing corrosion pits, with the obtained estimates falling within an error factor 

of 3. Therefore, as far as wires weakened by corrosion pits are concerned, it was demonstrated 

that the Theory of Critical Distances can be used to post-process the local linear-elastic stress 

fields when they are not only determined numerically, but also estimated by using those standard 

analytical solutions which are strictly valid solely for conventional notches. 
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Nomenclature 

d  pit depth 

k  negative inverse slope 

l  pit length 

w pit width 

A, B  fatigue constants in the LM vs Nf relationship 

D  wire diameter 

E  Young’s modulus 

KIc  plane strain fracture toughness 

Kt  stress concentration factor 

L  critical distance value in the high-cycle fatigue regime 

LM  critical distance value in the medium-cycle fatigue regime 

N0  reference number of cycles to failure in the high-cycle fatigue regime 

Nf  number of cycles to failure 

Nf,e  estimated number of cycles to failure 

NS  reference number of cycles to failure in the low-cycle fatigue regime 

O, r,   polar coordinates 

XYZ external coordinates 

R  load ratio (min/max) 

  Poisson’s ratio 

a  stress amplitude 

max  maximum stress in the fatigue cycle 

min  minimum stress in the fatigue cycle 

UTS  ultimate tensile strength 

Kth  threshold value of the stress intensity factor range 

eff  range of the effective stress 

nom  axial nominal stress 

y  range of the local linear-elastic stress parallel to axis y 

0  fatigue limit range or endurance limit range at N0 cycles to failure 

1  range of the local linear-elastic maximum principal stress 
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1. Introduction 

High-tensile steel cables are widely used in the construction of large structures such as, for 

instance, long-span bridges. However, the mechanical properties of steel wires are very sensitive 

to corrosion as well as to the presence of those defects that are usually introduced during 

manufacturing. In particular, the overall fatigue strength of metallic cables is seen to decrease as 

a consequence of the fact that corrosion and pre-existing superficial defects can not only reduce 

the cross-sectional area significantly, but also cause very severe localised stress concentration 

phenomena1. 

As far as corrosion is concerned, local pits are seen to act as sharp geometrical features that reduce 

markedly the strength of steel cables. This explains the reason why pitting corrosion is usually 

considered to be more detrimental than uniform/general corrosion. 

If attention is focussed on pitting, the presence of an aggressive environment leads to the 

formation on the steel wires’ surfaces of cavities having different shape2. In this context, the 

simplest assumption that can be made to assess the detrimental effect of corrosion pits is 

modelling them as hemispherical notches3, 4. More realistic geometrical configurations may also 

include bullet shapes5, 6 and hemi-ellipsoidal cavities7, 8. However, independently of their profile, 

the reference parameters that are commonly used to characterise the geometry/shape of corrosion 

pits are depth, width, and aspect ratio (which is defined as the ratio between depth and width). 

As mentioned earlier, the presence of pits results in localised stress concentration phenomena 

that can be quantified accurately provided that geometry and dimensions of the specific type of 

pits being analysed are described and modelled correctly. In this context, examination of the state 

of the art shows that, in recent years, systematic analytical and numerical work has been done to 

quantify, under uniaxial loading, the stress concentration factor (SCF) associated with three-

dimensional hemispherical and semi-ellipsoidal pits (see, for instance, Huang et al.9 and 

references reported therein). From a practical point of view, the interest in modelling both 

hemispherical and semi-ellipsoidal pits is due to the fact that these are the most common shapes 

being observed in situations of practical interest10. Clearly, in this specific ambit, hemispheres and 

semi-ellipsoids are geometrical models that are used to attempt to capture and model in a 

simplified way a reality which is, by nature, far more complex. 

In this context, Cerit11, 12 quantified the stress concentration effect as a function of depth, diameter, 

and orientation of semi-ellipsoidal pits and proposed an empirical equation that correlates the 

SCF, Kt, with the pit size. This empirical relationship was obtained by post-processing 

systematically numerous Finite Element (FE) models. The most relevant conclusion from this 

investigation was that, in the presence of semi-ellipsoidal pits, the aspect ratio is the main 
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parameter influencing the value of the SCF. Huang et al.9 determined the SCFs in a cylindrical 

shaft containing pits, with this being done by numerically modelling the pits as three-dimensional 

semi-ellipsoidal cavities. These numerical analyses allowed them to show that, in the presence of 

semi-ellipsoidal pits, the SCF value varies as depth and diameter of the pit change. In a similar 

way, Ji et al.13 assessed the effect of depth, width, and aspect ratio on the SCFs associated with 

elliptical pits, with this being done again by post-processing a large number of 3D FE models. An 

et al.14 focussed their attention instead on plates containing corrosion pits. Their stress analyses 

showed that the pit aspect ratio and the pit depth/plate thickness ratio are the two key factors 

affecting the value of the SCFs associated with this specific geometrical configuration. 

This brief review of the state of the art suggests that much work has already been done to quantify 

the values of the SCFs in large structural components/details containing corrosion pits. In 

contrast, very little research work has been carried out so far to quantify the stress concentration 

phenomena resulting from corrosion pits in steel wires. This represents one of the novel aspects 

that are addressed in the present paper. 

Turning to the mechanical behaviour of structural components subjected to in-service time-

variable loading, it is well known that the overall fatigue performance of metallic materials is 

markedly affected by those stress concentration phenomena arising from conventional notches. 

To model the detrimental effect of geometrical features of all kinds on the fracture and fatigue 

behaviour of metallic materials, in his well-known book15 David Taylor recommends using the so-

called Theory of Critical Distances (TCD). One of the key advantages of the TCD is that it assesses 

the presence of stress raisers by directly post-processing simple linear-elastic FE analyses. Thanks 

to its specific features, the TCD is suitable for predicting fatigue lifetime of notched components 

not only in the high-cycle15, but also in the medium-cycle fatigue regime16, 17. Further, it can be 

used also to perform the fatigue assessment of notched metallic components at elevated 

temperatures, with this being done by keeping performing the required stress analysis by 

adopting a simple linear-elastic constitutive law18. The TCD has been proven to be capable of 

quantifying also the detrimental effect of other small features such as, for instance, surface 

roughness19, 20 and manufacturing defects22-24. By taking as a starting point the pivotal work done 

by Susmel and Taylor24-27, Liu and Yan28 proposed a new multiaxial notch fatigue life prediction 

method based on the TCD, with the accuracy of this approach being checked against a large 

number of experimental results. Zhou et al.29 used the TCD to perform the fatigue assessment of 

orthotropic steel decks, whereas Gorouhi30 investigated the accuracy of the TCD in assessing the 

fatigue strength of those riveted structural details that are commonly employed in bridges. In 

parallel, Taylor et al.31, Susmel et al.32-34 and Karakaş et al.35 demonstrated that the TCD is also 
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successful in estimating fatigue damage in welded joints made of steel, aluminium alloys, and 

magnesium alloys. 

Given the complex scenario as described above, in the present paper, initially a large number of 

fatigue results generated by testing high-strength steel wires containing not only corrosion pits, 

but also semi-elliptical cracks were collected from the technical literature36-43. Subsequently, the 

SCFs in wires weakened by semi-ellipsoidal and hemispherical corrosion pits were determined 

numerically, with this being done by varying the ratio both between depth and width and between 

depth and wire diameter. An empirical equation suitable for estimating SCFs in pitted wires was 

determined by using the least squares method to post-process the numerical results being 

obtained. Finally, the accuracy and reliability of the TCD applied in the form of the Point Method 

and the Line Method in estimating fatigue lifetime of steel wires containing both semi-elliptical 

cracks and corrosion pits were checked systematically against the literature data being collected. 

To conclude, it should be pointed out here that the TCD was applied by determining the required 

local linear-elastic stress fields both by post-processing FE models solved using commercial code 

ANSYS® and by taking full advantage of the analytical solution proposed by Glinka and 

Newport44. Such a validation exercise allowed us to demonstrate that the TCD is successful also 

in predicting the fatigue lifetime of high-strength wires weakened either by corrosion pits or by 

superficial defects by always reaching a remarkable level of accuracy. 

 

2. Stress concentration factors in steel wires containing corrosion pits 

Examination of the state of the art36-40 shows that the shapes of corrosion pits (Fig. 1a) are usually 

simplified by modelling them either as semi-ellipsoids (Fig. 1b) or as hemispheres (Fig. 1c). Given 

these two reference geometries, in the present investigation depth is denoted as d, length as l, and 

width as w, with length l and width w being parallel and perpendicular, respectively, to the 

direction along which the loading is applied (see also Fig. 1). 

By performing a systematic data mining exercise, we selected from the technical literature a large 

number of fatigue results generated by testing high-strength steel wires containing corrosion pits. 

The data being collected are summarised in Tables 1 to 4, with the meaning of the used symbols 

being explained in Fig. 1. For the stress analysis exercise being performed, these experimental 

results were used to define the ranges of interest for the reference dimensions (i.e., l, d, w, and D) 

characterising those corrosion pits that are usually found in metallic wires. In particular, for the 

hemispherical cavities the considered values for the d-to-D ratio ranged from 0.026 up to 0.109, 

with d/l being clearly invariably equal to 0.5. For the semi-ellipsoids instead, ratio d/D ranged 

from 0.026 up to 0.12 and ratio d/l from 0.041 up to 0.276. 
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The reference chemical composition for those high-strength steels that are commonly used to 

manufacture wires is as follows40, 41: C (0.85~0.90%), Si (0.12~0.32%), Mn (0.60~0.90%), Cr 

(0.10~0.25%), S, and Cu. Given this standard chemical composition, the mechanical behaviour of 

high-strength steel for wires was modelled numerically by setting Young’s Modulus, E, equal to 

210000 MPa and Poisson’s ratio, , to 0.3. 

FE simulations were run using commercial software ANSYS®. Steel wires with a length of 100 

mm and containing cavities of various shape (i.e., hemispherical or semi-ellipsoidal) and 

dimensions were modelled by employing three-dimensional 10-node tetrahedral structural solid 

elements (Fig. 2a). In the linear-elastic FE simulations, the pitted wires being analysed were 

loaded by applying a nominal gross tensile stress equal to 1 MPa. In any of the FE models being 

solved the mesh was gradually increased until convergence occurred. Figure 2 shows some 

examples of the stress distributions that were obtained according to the FE based procedure 

briefly described above. In total, we solved 32 different FE models and the obtained solutions 

were used to determine how Kt varies as profile and size of the corrosion pits change. 

According to the examples reported in Fig. 2, in the hemispherical pits the maximum stress was 

seen to be on the wire surface at the edge of the pit mouth (Fig. 2b). In contrast, in the presence 

of semi-ellipsoidal pits the maximum stress was seen instead to be invariably at the bottom of the 

cavities (Fig. 2c). 

In order to check whether other existing tools could be used to somehow estimate Kt in pitted 

wires, initially, the FE models being solved were employed to assess the accuracy of some existing 

analytical solutions that were obtained by considering different geometrical configurations. 

According to the symbols used in the present paper, the SCF for a spherical cavity in a finite-radius 

cylinder under uniform remote tension can be estimated as follows45: 

 𝐾𝑡 = (27−15𝜈) (14−10𝜈)⁄1−4−5𝜈7−5𝜈∙(2𝑑)3𝐷3 − 37−5𝜈∙(2𝑑)5𝐷5                   (1) 

 

According to the diagram reported in Fig. 3a, the use of Eq. (1) resulted in estimates that were 

surprisingly accurate, with a maximum error (in the considered dimensional interval) of about 

6%. 

As far as semi-ellipsoidal pits are concerned, initially the associated SCF values were attempted 

to be estimated by using the following relationships that are strictly valid for the case of an 

elliptical notch in a plate loaded in tension8, 46: 
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𝐾𝑡 = 1 + 4 𝑑𝑙                     (2) 

𝐾𝑡 = 1+6.6𝑑𝑙1+2𝑑𝑙                     (3) 

 

As per the chart of Fig. 3b, the use of Eq. (2) and Eq. (3) to model the case of semi-ellipsoidal pits 

returned very poor results, with the predictions being systematically non-conservative. Thus, an 

ad hoc formula was derived in order to devise a tool suitable for estimating analytically the SCFs 

in the presence of semi-ellipsoidal cavities. This formula was obtained by assuming a non-linear 

relationship between d/D and d/l, i.e.: 

 𝐾𝑡 = 𝐶1 + 𝐶2 𝑑𝐷+𝐶3 (𝑑𝐷)2
                 (4) 

 

where 

 𝐶1 = 1+5.4𝑑𝑙1+1.7𝑑𝑙                    (5) 

𝐶2 = 1+862.7𝑑𝑙1+278.2𝑑𝑙                    (6) 

𝐶3 = 1+37.3𝑑𝑙1−4.6𝑑𝑙                    (7) 

 

The constants in Eqs (5) to (7) were determined by post-processing the FE solutions being 

calculated numerically by employing a conventional least-squares fitting procedure. Tab. 5 

confirms that this simple approach allowed us to derive a very effective and simple analytical tool 

suitable for estimating Kt in metallic wires weakened by semi-ellipsoidal pits. According to Tab. 

5, the correlation coefficient between Eqs (4) to (7) and the numerical simulations was seen to be 

equal to 0.995 (with a standard deviation of 0.024), this returning an absolute value of the error 

well below 4%. 

In what follows, the analytical tools being reviewed and derived in the present section – i.e., Eq. 

(1) and Eqs (4) to (7), respectively -will be used in conjunction with the TCD to attempt to estimate 

fatigue lifetime of high-strength metallic wires containing corrosion pits. 
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3. Fundamentals of the Theory of Critical Distances 

The different formalisations of the TCD are based on the assumption that fatigue damage in 

notched metallic components can be quantified accurately provided that a specific material length 

scale parameter is somehow incorporated into the stress analysis15, 47-49. In this setting, this critical 

distance is treated as an intrinsic material property and its value is closely related to the size of 

the dominant source of microstructural heterogeneity47. Another important aspect is that, in its 

simplest formulation, the TCD performs the fatigue assessment of notched/cracked ductile metals 

by directly post-processing the local stress fields determined by using a linear-elastic constitutive 

law15, 47. 

Historically, the TCD was first devised to estimate fatigue strength in the high-cycle fatigue 

regime47-53, with the required critical distance being calculated - after the advent of Linear Elastic 

Fracture Mechanics (LEFM) - according to the following well-known formula54: 

 𝐿 = 1𝜋 (∆𝐾𝑡ℎ∆𝜎0 )2
                  (8) 

 

In Eq. (8) Kth is the threshold value of the stress intensity factor range and 0 is the range of 

the plain material fatigue (endurance) limit. 

Taking as a starting point this classic formulation of the TCD, in 2007 Susmel and Taylor16 

extended the use of this powerful theory back to the medium-cycle fatigue regime. This was done 

by forming the hypothesis that, for a given material, the material critical length increases as the 

number of cycles to failure, Nf, decreases. According to this assumption, the way the critical 

distance changes with Nf was proposed to be modelled via a simple power law, i.e.16, 47: 

 𝐿𝑀(𝑁𝑓) = 𝐴 ∙ 𝑁𝑓𝐵                 (9) 

 

In Eq. (9) A and B are material fatigue constants to be determined either by using conventional 

material fatigue properties or by running appropriate experiments16, 47. 

In situations of practical interest, the TCD can be applied in different forms15, 53 as schematically 

shown in Fig. 4. The Point Method (PM) assumes that the effective stress, eff, to be used to 

perform fatigue assessment is equal to the range of the linear-elastic stress determined at a given 

distance from the assessed stress concentrator (Fig. 4b). According to the LM instead, eff is 

calculated by averaging the local linear-elastic stress over a line radiating from the notch tip (Fig. 

4c). It is important to highlight here that, to apply both the PM and LM, the reference straight-
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line used to estimate eff (i.e., the so-called focus path15) is assumed to emanate from the crack 

initiation point, with this direction being perpendicular to the component surface at the hot-spot 

itself49. According to this simple and intuitive geometrical rule, in the presence of conventional U- 

and V-notches loaded either in cyclic tension or in cyclic bending, obviously, the focus path 

invariably coincides with the notch bisector (as for the notches sketched in Fig. 4). 

Turning back to the different formalisations of the TCD, the Area Method (AM) postulates instead 

that the effective stress range can be calculated also by averaging the local linear-elastic stresses 

over a semi-circular area centred at the tip of the crack/notch under investigation (Fig. 4d). 

According to the above definitions, eff can then be determined mathematically as follows15, 47, 53: 

 ∆𝜎𝑒𝑓𝑓 = ∆𝜎𝑦(𝜃 = 0°, 𝑟 = 𝐿𝑀(𝑁𝑓)/2) – Point Method (PM, Fig. 4b)          (10) 

 ∆𝜎𝑒𝑓𝑓 = 12𝐿𝑀(𝑁𝑓) ∫ ∆𝜎𝑦2𝐿𝑀(𝑁𝑓)0 (𝜃 = 0°, 𝑟) ∙ 𝑑𝑟 – Line Method (LM, Fig. 4c)         (11) 

 ∆𝜎𝑒𝑓𝑓 = 4𝜋[𝐿𝑀(𝑁𝑓)]2 ∫ ∫ ∆𝜎1𝐿𝑀(𝑁𝑓)0 (𝜃, 𝑟) ∙ 𝑟 ∙ 𝑑𝑟 ∙ 𝑑𝜃𝜋 2⁄−𝜋 2⁄  – Area Method (AM, Fig. 4d)        (12) 

 

To conclude this brief overview of the different definitions suitable for determining the effective 

stress, it is worth observing here that there is also a three-dimensional version of the TCD - known 

as the Volume Method (VM) - that calculates eff by averaging the local linear-elastic stresses in 

a hemisphere centred at the tip of the stress concentrator being assessed55. 

These different definitions for the range of the effective stress make it evident that employing the 

AM and VM is very laborious, while using either the PM or LM is instead very straightforward. 

This explains the reason why when it comes to performing the fatigue assessment of real 

notched/cracked components, the PM and LM are always preferred over the other two methods. 

Having said that, with the aim of proposing a simple approach suitable for rapid fatigue design of 

pitted/cracked/damaged metallic wires, in what follows the TCD will then be used solely in the 

forms of the PM and the LM. 

In order to use the TCD in situations of practical interest to estimate fatigue lifetime of notched 

metals, the first problem to be addressed is the determination of material fatigue constants A and 

B in Eq. (9). Owing to the specific nature of the design problem being addressed in the present 

paper, for the fatigue assessment of metallic wires containing cracks/corrosion pits, the LM vs. Nf 

relationship will be calibrated by using both static and fatigue material properties. 
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To understand how this calibration procedure works in practice, consider the SN curve for a 

standard structural steel reported in Fig. 4e. This curve is assumed to be determined 

experimentally by testing, under a given value of the load ratio, R, plain (i.e., un-notched) 

specimens. As per the standard log-log schematisation that is usually adopted to describe the 

fatigue behaviour of engineering metals47, this SN curve can be expressed mathematically as: 

 𝜎𝑎𝑘 ∙ 𝑁𝑓 = 𝜎0𝑘 ∙ 𝑁0                (13) 

 

where 0=0/2 is the amplitude of the endurance limit at N0 cycles to failure and k is the negative 

inverse slope. 

According to the schematic SN diagram of Fig. 4e, it is also possible to determine the amplitude 

of the stress, S, at which the parent material breaks statically. This reference stress amplitude is 

a function of the material ultimate tensile strength, UTS, and can be estimated for different values 

of the load ratio, R, via the following trivial relationship56: 

 𝜎𝑆 = (1−𝑅)2 ∙ 𝜎𝑈𝑇𝑆                (14) 

 

As soon as S is known, it is straightforward to determine from Eq. (13) the corresponding number 

of cycle to failure, NS, that is (Fig. 4e): 

 𝑁𝑆 = 𝑁0 ∙ (𝜎0𝜎𝑆)𝑘
                 (15) 

 

This simple mathematical framework allows the following calibration conditions to be written 

explicitly16: 

 𝐿𝑀(𝑁0) = 𝐿 = 1𝜋 ∙ (∆𝐾𝑡ℎ∆𝜎0 )2
               (16) 

 𝐿𝑀(𝑁𝑠) = 𝐿𝑆 = 1𝜋 ∙ ( 𝐾𝐼𝑐𝜎𝑈𝑇𝑆)2
               (17) 

 

where L is determined according to definition (8), whereas LS is the critical distance under static 

loading which is estimated via the ultimate tensile strength, UTS, and the plane strain fracture 

toughness, KIc
16, 57-60. 
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Conditions (16) and (17) can then be used to directly derive constants A and B in the LM vs. Nf 

relationship, Eq. (9), obtaining16:  

 𝐵 = −𝑙𝑜𝑔 (𝐿𝑆𝐿 ) ∙ [𝑙𝑜𝑔 (𝑁0𝑁𝑆)]−1
               (18) 

 𝐴 = 𝐿 ∙ 𝑁0−𝐵                 (19) 

 

As soon as constants A and B are known, the TCD can be employed to estimate fatigue lifetime of 

notched components provided that a recursive procedure is used to solve this simple design 

problem. In particular, initially a first attempt value for the number of cycles to failure, Nf,i, can 

be assumed arbitrarily, so that, according to Eq. (9), the associated critical distance value takes 

on the following value: 

 𝐿𝑀(𝑁𝑓,𝑖) = 𝐴 ∙ 𝑁𝑓,𝑖𝐵                (20) 

 

The value for the critical distance estimated according to Eq. (20) can then be used together with 

one of the strategies reviewed above to determine the corresponding range of the TCD effective 

stress, eff – see Eqs (10) to (12). By so doing, the calculated value for eff allows the number of 

cycles to failure to be obtained directly from the SN curve that models the fatigue behaviour of the 

parent material, Eq. (13), i.e.: 

 𝑁𝑓,𝑗 = 𝑁𝐴 ∙ ( ∆𝜎0 2⁄∆𝜎𝑒𝑓𝑓 2⁄ )𝑘
                (21) 

 

If Nf,j is different from Nf,i, then this simple procedure has to be reapplied by taking Nf,i=Nf,j, with 

this recursive process being iterated until the design problem reaches its convergence. 

In what follows, it will be demonstrated that this particular formalisation of the TCD can be used 

successfully also to estimate fatigue lifetime of metallic wires containing either corrosion pits or 

pre-existing defects. 

 

4. Estimating fatigue lifetime of metallic wires containing corrosion pits 

As briefly reviewed in the previous section, determining constants A and B in the LM vs. Nf 

relationship is the first necessary step that must be taken to use the TCD to estimate fatigue 

lifetime of notched/cracked metallic materials. In what fallows, this will be done by calibrating 
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Eq. (9) through same reference experimental material properties that, according to the state-of-

the-art knowledge, can be used to assess reliably both the static and the fatigue strength of those 

high-strength steels that are commonly used to manufacture wires. 

Starting from the static properties, as far as KIc and UTS are concerned, Jiang et al.40 (see also the 

other relevant references listed therein) recommend to take the plane strain fracture toughness 

equal to 65.7 MPa·m1/2 and the ultimate tensile strength equal to 1835 MPa. 

Turning to the fatigue behaviour, as reported by Llorca and Sanchez-Galvez61, the threshold value 

of the stress intensity factor range can be estimated under R≥0 via to the following linear 

equation: 

 ∆𝐾𝑡ℎ = 5.54 − 3.43 ∙ 𝑅  [MPa·m1/2]            (22) 

 

with the validity of this simple relationship being well-supported also by the Kth values collected 

by Petit et al.62 

From the experimental results generated by Li, Song and Liu63 under R>0.4, for those standard 

steels that are commonly used to fabricate high-strength metallic cables the amplitude of the plain 

endurance limit, 0, at N0=2·106 cycles to failure can be taken equal to 128 MPa and the negative 

inverse slope, k, to 3.7. Therefore, by setting 0=128 MPa, k=3.7, UTS=1835 MPa and R=0.5 in 

Eq. (14), it is straightforward to obtain S=459 MPa, with Eq. (15) returning NS=17∙103 cycles to 

failure. 

These reference materials properties can now be used directly to estimate (under R=0.5) the 

critical distance value both in the high-cycle, Eq. (16), and in the low-cycle fatigue regime, Eq. 

(17), obtaining: 

 𝐿𝑀(𝑁0 = 2 ∙ 106) = 𝐿 = 1𝜋 ∙ [(5.54−3.43∙0.5)∙10000.52∙128 ]2 = 0.07 mm          (23) 

 𝐿𝑀(𝑁𝑠 = 17 ∙ 103) = 𝐿𝑆 = 1𝜋 ∙ (65.7∙10000.51835 )2 = 0.41 mm          (24) 

 

Finally, by taking full advantage of Eqs (18) and (19), it is straightforward to derive material 

fatigue constants A and B. In particular, the LM vs. Nf relationship, Eq. (9), for those high-strength 

steels that are commonly used to manufacture metallic wires can be expressed as follows (for 

R=0.5): 
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𝐿𝑀(𝑁𝑓) = 13.0 ∙ 𝑁𝑓−0.36 [mm]               (25) 

 

The data listed in Tables 1 to 4 were produced by testing pitted wires under load ratios ranging 

from 0.4 up to 0.667, with the average value of R being equal to 0.48. Considering such a limited 

variation for the load ratio, the experimental results being collected were then post-processed by 

simply applying the TCD along with the fatigue constants derived/estimated for R=0.5 according 

to the procedure summarised above. It is important to observe here also that a load ratio equal to 

about 0.5 is considered to be representative30, 40, 42 of the mean stress effect as it is observed in 

situations of practical interest (such as, for instance, in bridges). 

Having derived the necessary reference material properties, the second aspect to be considered is 

the definition of a reference error band suitable for assessing the accuracy and reliability of the 

TCD based approach being proposed in the present paper. To this end, the SN diagram of Fig. 5a 

summarises all the results that are listed in Tabs 1 to 4, with these results being therefore treated 

as a homogenous population of experimental data. The scatter band reported in Fig. 5a is 

delimited by two straight lines corresponding to a probability of survival, PS, equal to 90% and 

10%, respectively. The fatigue curves for PS equal to 10%, 50% and 90% were determined under 

the hypothesis of a log-normal distribution of the number of cycles to failure for each stress range 

level and assuming a confidence level equal to 95%64, 65. The estimated, Nf,e, vs. experimental, Nf, 

number of cycles to failure diagram reported in Fig. 5b shows the accuracy of the PS=50% curve 

determined by post-processing all the results being considered (see Fig. 5b) in predicting the 

fatigue lifetime of the experimental tests listed in Tabs 1 to 4. This chart shows that the data points 

fall within an error band of 4. Accordingly, an error band of 3 will be adopted in what follows to 

quantify the accuracy of the TCD based approach being proposed. This will be done to 

demonstrate that the use of the proposed methodology results in a higher level of accuracy than 

the one which is reached by applying the conventional nominal stress based approach as shown 

in the SN diagram of Fig. 5a. 

Before considering pitted cables, to check the validity of the hypotheses that were formed to 

estimate the calibration constants in the TCD’s governing equations, initially the PM was used to 

estimate the lifetime of wire containing semi-elliptical cracks. The literature data41, 42 that were 

used for such a preliminary validation exercise are listed in Tab. 6. The PM was applied by post-

processing the linear-elastic stress fields determined analytically along the radial focus path 

emanating from the apices of the semi-elliptical cracks (i.e., from point A in Fig. 6a). In more 

detail, by assuming that all the considered defects acted as long-cracks, the necessary stress 

distributions were determined through the classic LEFM equations66. To this end, the required 
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shape factors were estimated by using the values recommended by Astiz67 and by Shin & Cai68. 

The experimental, Nf, vs. estimated, Nf,e, number of cycles to failure diagram reported in Fig. 6b 

confirms that the assumptions made to estimate the required fatigue properties resulted in 

estimates falling, on the non-conservative side, well within an error factor of 3. 

Having performed this initial check, attention was then focussed on those fatigue results listed in 

Tabs 1 to 4 and generated by testing metallic wires containing corrosion pits. 

As far the stress analysis problem is concerned, initially, the necessary local linear-elastic stress 

fields were determined numerically by using commercial code ANSYS®. This was done by 

adopting the same numerical strategy as the one described in Section 2 and used to calculate the 

SCFs in pitted wires. 

As shown in Fig. 7a, the focus path in the presence of semi-ellipsoidal cavities was assumed to 

emanate radially from the bottom of the cavities themselves. In other words, for this specific pit 

configuration, the stress-distance curve used to determine eff according to both the PM and LM 

was hypothesised to radiate from that material point experiencing the largest value of the local 

linear-elastic stress. Turning to the hemispherical cavities, as mentioned earlier, the point 

experiencing the maximum stress was seen to be, on the surface of the wire, at the edge of the pit 

(see Fig. 1c). Therefore, for this specific case, according to our previous experience49, the focus 

path was assumed to radiate from the hot-spot, with its direction being at about 45° to the surface 

of the wire. To be precise, according to Fig. 7b, the focus path was taken coincident with the 

bisector of the angle between the surface of the wire and the flank of the hemispherical cavity. 

Using the stress-distance curves determined numerically along the focus paths as defined in Fig. 

7, the TCD was then applied together with Eq. (25) in the form of both the PM, Eq. (10), and the 

LM, Eq. (11). The experimental, Nf, vs. estimated Nf,e diagrams reported in Fig. 8 summarise the 

overall accuracy that was obtained by re-analysing the results listed in Tabs 1 to 4. These charts 

make it evident that the use of both the PM and the LM resulted in a satisfactory level of accuracy, 

with the estimates falling within an error factor of 3. 

The high level of accuracy obtained by applying the TCD suggests also that fatigue damage in 

metallic wires containing corrosion pits could be attempted to be quantified by taking full 

advantage of Neuber’s fictitious radius concept69. To this end, a possible alternative strategy could 

be treating corrosion pits as equivalent sharp notches where such stress concentrators are 

modelled by taking a suitable value for the fictitious root radius. However, while this approach is 

certainly very appealing from a philosophical point of view, certainly more systematic research 

work should be done in this area to check the accuracy and reliability of such a design 

methodology based on the fictitious radius idea. 
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As briefly discussed above, the estimates summarised in Fig. 8 were obtained by post-processing 

the local-linear elastic stress fields determined numerically by schematising the corrosion pits 

either as hemispherical or as semi-ellipsoidal cavities36-40. Unfortunately, the real shape of 

corrosion pits is much more complex than these simplified reference geometries, so that, although 

very laborious, even the use of complex three-dimensional FE models leads in any case to 

approximate stress analysis solutions. Further, in situations of practical interest, the stress 

distributions in the critical regions of the corroded wires could be affected by the presence of 

multiple pits interacting with each other. However, as observed experimentally41, 42, in pitted wires 

cracks are seen to initiate from those pits resulting in the largest localised stress concentration 

effect. Therefore, in light of the complexity of the local geometries of real pitted wires, it is 

reasonable to assume that, in any case, accurate estimates can be obtained by simply considering 

the most damaging pit, with this critical pit being treated as an isolated stress concentrator. 

Bearing in mind this important limitations, an attempted was then made to propose a simplified 

methodology based on the use of one of the equations derived by Glinka and Newport44. In 

particular, according to their well-known analytical approach, the linear-elastic stress field along 

the bisector of a blunt (Kt≤4.5) notch having root radius equal to  can be expressed as follows 

(see also Fig. 4a): 

 ∆𝜎𝑦(𝑥) = 𝐾𝑡∆𝜎𝑛𝑜𝑚 [1 − 2.33 (𝑥𝜌) + 2.59 (𝑥𝜌)1.5 − 0.907 (𝑥𝜌)2 + 0.037 (𝑥𝜌)3]        (26) 

 

Owing to its simplicity, this equation can be used directly along with definitions (10) and (11) to 

estimate the effective stress range, eff, according to the PM and LM, respectively, obtaining: 

 ∆𝜎𝑒𝑓𝑓 = 𝐾𝑡∆𝜎𝑛𝑜𝑚 {1 − 2.33 [𝐿𝑀(𝑁𝑓)2𝜌 ] + 2.59 [𝐿𝑀(𝑁𝑓)2𝜌 ]1.5 − 0.907 [𝐿𝑀(𝑁𝑓)2𝜌 ]2 + 0.037 [𝐿𝑀(𝑁𝑓)2𝜌 ]3}       (27) 

 ∆𝜎𝑒𝑓𝑓 = 𝐾𝑡∆𝜎𝑛𝑜𝑚2𝐿𝑀(𝑁𝑓)   {2𝐿𝑀(𝑁𝑓) − 2.33∙[2𝐿𝑀(𝑁𝑓)]22𝜌 + 2.59∙[2𝐿𝑀(𝑁𝑓)]2.52.5𝜌1.5 − 0.907∙[2𝐿𝑀(𝑁𝑓)]33𝜌2 + 0.037∙[2𝐿𝑀(𝑁𝑓)]44𝜌3 } (28) 

 

The key advantage of these equations (which can easily be solved numerically) is that the elastic 

peak stress being required can be derived directly from the Kt values estimated according to Eq. 

(1) for hemispherical pits and according to Eqs (4) to (7) for semi-ellipsoidal pits. 

The results obtained by using the PM in the form of Eq. (27) and the LM in the form of Eq. (28) 

are summarised in the error charts of Fig. 9. The required material properties being used were 
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again those derived according to the assumptions/reasoning summarised above and used to build 

also the charts of Figs 6 and 8. The experimental, Nf, vs. estimated, Nf,e, fatigue lifetime diagrams 

of Fig. 9 demonstrate that this simplified way of using the TCD is highly successful, with its 

systematic usage returning estimates that fall mainly within an error factor of 3. In particular, it 

can be noticed that a larger level of accuracy (and, therefore, conservatism) was reached by 

applying the TCD in the form of the PM, i.e., by using the simplest formulation of this powerful 

fatigue assessment theory. 

To conclude, it is worth observing that the level of accuracy shown in Figs 8 and 9 was obtained 

by using material fatigue properties that were either derived from different sources or somehow 

estimated – see Eqs (22) to (25). Having highlighted this, it is logical to presume that the use of 

calibration mechanical properties determined experimentally in a rigorous way would have 

resulted in a higher level of accuracy. However, in spite of this obvious limitation, certainly the 

obtained level of accuracy (see Figs 8 and 9) is certainly satisfactory, with this confirming that the 

TCD can be used with confidence also to assess fatigue damage in metallic wires containing 

corrosion pits. 

 

5. Conclusions 

In the present paper, the fatigue behaviour of high-strength steel wires containing corrosion pits 

was investigated based on a large number of experimental results taken from the literature. 

According to the state-of-the-art knowledge, the pits were modelled either as semi-ellipsoidal or 

as hemispherical cavities. The SCFs associated with these pit geometries were determined by 

solving three-dimensional FE models through commercial software ANSYS®. The Kt values being 

calculated according to this standard numerical procedure were then post-processed in order to 

propose simple analytical solutions suitable for being used in situations of engineering interest. 

Finally, after making some assumptions to derive the necessary fatigue properties, the TCD was 

used in the form of the PM and the LM to estimate the fatigue lifetime of high-strength metallic 

wires containing corrosion pits. 

The key outcomes and conclusions from this research work are summarised in the bullet points 

reported below. 

 According to Eq. (1), the SCFs in hemispherical pits can be estimated accurately by simply 

using those analytical solutions obtained by considering spherical cavities in finite-radius 

cylinders subjected to remote tension. 
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 According to Eqs (4) to (7), the SCF in the presence of semi-ellipsoidal pits is a non-linear 

function of aspect ratios d/l and d/D, with dimensions d, l, and D being defined as shown 

in Fig. 1. 

 Independently of the strategy being adopted to perform the stress-analysis, the linear-

elastic TCD applied in the form of the PM and the LM is seen to be successful in estimating 

fatigue lifetime of steel wires weakened by corrosion pits, with the obtained estimates 

falling within an error factor of 3. This result is certainly satisfactory, especially in light of 

the fact that the material properties needed to calibrate the TCD were taken from different 

sources. 

 Fatigue strength of high-strength steel wires containing corrosion pits can be assessed 

according to the TCD by simply estimating the necessary local stress fields via well-known 

analytical solutions. For instance, in the present investigation, the classic equation 

proposed by Glinka & Newport44 was used. This allows the time and resources needed to 

estimate fatigue damage in metallic cables containing pits to be reduced markedly. 
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Tables 
 

Code Pit type 
nom

R 
Nf d l w D 

[MPa] [Cycles] [mm] [mm] [mm] [mm] 

H1 

Hemisphere 

290 

0.5 

3.48×105 

0.364 0.728 0.728 4.9 
H2 360 2.14×105 

H3 500 9.15×104 

H4 640 4.83×104 

S1 

Semi-ellipsoid 

360 

0.5 

359857 

0.246 0.89 0.89 5 S2 440 168571 

S3 520 104861 

S4 

Semi-ellipsoid 

360 

0.4 

472341 

0.184 4.06 3.36 7 
S5 450 217172 

S6 600 85446 

S7 750 51900 

S8 

Semi-ellipsoid 

360 

0.4 

263066 

0.403 9.93 5.68 7 
S9 450 140634 

S10 600 73688 

S11 750 37848 

 
Table 1. Fatigue results generated by testing corroded steel wires under uniaxial tension 

loading – data taken from Lan36, Zheng37, and Hou38. 
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Code Pit type 
nom

R 
Nf d l D 

[MPa] [Cycles] [mm] [mm] [mm] 

A1-1-1 

Semi-ellipsoid 

320 

0.55 

141177 

0.5 8 5 
A1-1-2 395 75599 

A1-1-3 494 25008 

A1-1-4 626 14247 

A1-2-1 

Semi-ellipsoid 

422 

0.44 

75056 

0.5 8 5 
A1-2-2 521 23780 

A1-2-3 672 17900 

A1-2-4 840 9921 

A1-3-1 

Semi-ellipsoid 

520 

0.35 

385115 

0.5 8 5 
A1-3-2 640 135483 

A1-3-3 840 66102 

A1-3-4 1040 26089 

A2-1 

Semi-ellipsoid 

422 

0.44 

74268 

0.5 3 5 
A2-2 521 38124 

A2-3 672 19518 

A2-4 840 10037 

A3-1 

Semi-ellipsoid 

422 

0.44 

78318 

0.5 5 5 
A3-2 521 46700 

A3-3 672 25597 

A3-4 840 11351 

A4-1 

Semi-ellipsoid 

422 

0.44 

57669 

0.6 5 5 
A4-2 521 25279 

A4-3 672 11815 

A4-4 840 8597 

A5-1 

Semi-ellipsoid 

422 

0.44 

115798 

0.4 5 5 
A5-2 521 60300 

A5-3 672 33921 

A5-4 840 24300 

 
Table 2. Fatigue results generated by testing corroded steel wires under uniaxial tension 

loading – data taken from Sun39. 
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Code Pit type 
nom

R 
Nf d l w D 

[MPa] [Cycles] [mm] [mm] [mm] [mm] 

A-1 

Hemisphere 

520 

0.4 

162711 

0.18 0.36 0.36 6.84 A-2 450 220664 

A-3 360 464954 

B-1 

Hemisphere 

520 

0.4 

132464 

0.26 0.52 0.52 6.7 B-2 450 185447 

B-3 360 366536 

C-1 

Hemisphere 

520 

0.4 

73560 

0.39 0.78 0.78 6.6 
C-2 450 123274 

C-3 360 230367 

C-4 270 1072495 

D-1 

Hemisphere 

520 

0.4 

59111 

0.54 1.08 1.08 6.4 
D-2 450 103675 

D-3 360 163443 

D-4 270 586464 

E-1 

Hemisphere 

520 

0.4 

57457 

0.6 1.2 1.2 6.36 
E-2 450 83697 

E-3 360 159810 

E-4 270 510750 

F-1 

Hemisphere 

520 

0.4 

47727 

0.68 1.36 1.36 6.24 
F-2 450 67622 

F-3 360 127807 

F-4 270 306577 

 
Table 3. Fatigue results generated by testing corroded steel wires under uniaxial tension 

loading – data taken from Jung et al.40. 
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Code Pit type 
nom

R 
Nf d l w D 

[MPa] [Cycles] [mm] [mm] [mm] [mm] 

N1 

Semi-ellipsoid 400 0.667 

443812 0.48 3.66 1.32 

7 

N2 417042 0.41 3.28 1.54 

N3 452636 0.41 2.88 1.28 

N4 451311 0.37 2.84 1.48 

N5 536748 0.36 2.86 1.28 

N6 451869 0.34 2.54 1.34 

N7 422880 0.34 2.16 1.24 

N8 513352 0.34 2.3 1.08 

N9 416224 0.33 2.18 1.3 

N10 589836 0.32 2.46 1.06 

N11 450168 0.6 6.26 1.32 

N12 

Semi-ellipsoid 500 0.6 

206565 0.3 1.86 2.06 

7 

N13 215685 0.53 4.64 1.86 

N14 245478 0.47 4.16 1.66 

N15 245928 0.46 3.76 1.48 

N16 248607 0.37 2.54 1.48 

N17 250104 0.3 1.96 1.38 

 
Table 4. Fatigue results generated by testing corroded steel wires under uniaxial tension 

loading – data taken from Yan43. 
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Finite Element Analyses Eqs (4) to (7) 
Error 

d l 
d/D d/l 

D 
Kt C1 C2 C3 Kt,e 

[mm] [mm] [mm] [%] 

0.246 0.89 0.049 0.276 5 1.73 1.696 3.074 
-

41.663 1.75 1.1 

0.184 4.06 0.026 0.045 7 1.21 1.156 2.947 3.399 1.24 2.1 

0.403 9.93 0.058 0.041 7 1.30 1.140 2.930 3.091 1.32 1.8 

0.5 8 0.100 0.063 5 1.59 1.209 2.987 4.675 1.55 2.5 

0.5 3 0.100 0.167 5 2.07 1.481 3.057 30.929 2.10 1.0 

0.5 5 0.100 0.100 5 1.75 1.316 3.028 8.759 1.71 2.5 

0.6 5 0.120 0.120 5 1.93 1.369 3.040 12.223 1.91 1.2 

0.4 5 0.080 0.080 5 1.58 1.261 3.011 6.304 1.54 2.4 

0.48 3.66 0.069 0.131 7 1.63 1.397 3.045 14.851 1.68 2.5 

0.41 3.28 0.059 0.125 7 1.58 1.381 3.042 13.324 1.61 1.5 

0.41 2.88 0.059 0.142 7 1.65 1.424 3.049 18.283 1.67 0.9 

0.37 2.84 0.053 0.130 7 1.59 1.395 3.045 14.623 1.60 0.5 

0.36 2.86 0.051 0.126 7 1.57 1.384 3.043 13.528 1.58 0.5 

0.34 2.54 0.049 0.134 7 1.59 1.403 3.046 15.596 1.59 0.3 

0.34 2.16 0.049 0.157 7 1.69 1.459 3.054 24.903 1.67 1.3 

0.34 2.3 0.049 0.148 7 1.65 1.437 3.051 20.356 1.63 1.0 

0.33 2.18 0.047 0.151 7 1.66 1.445 3.052 21.887 1.64 1.4 

0.32 2.46 0.046 0.130 7 1.57 1.394 3.045 14.571 1.56 0.6 

0.6 6.26 0.086 0.096 7 1.56 1.305 3.025 8.183 1.62 3.7 

0.3 1.86 0.043 0.161 7 1.69 1.468 3.055 27.188 1.65 2.6 

0.53 4.64 0.076 0.114 7 1.59 1.354 3.037 11.085 1.65 3.4 

0.47 4.16 0.067 0.113 7 1.56 1.351 3.036 10.856 1.60 2.7 

0.46 3.76 0.066 0.122 7 1.59 1.375 3.041 12.724 1.63 2.4 

0.37 2.54 0.053 0.146 7 1.65 1.432 3.050 19.500 1.65 0.1 

0.3 1.96 0.043 0.153 7 1.66 1.449 3.053 22.672 1.62 2.4 

 
Table 5. Accuracy of Eqs (5) to (7) in estimating Kt in wires containing semi-elliptical pits. 
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Code 
 a b D 

R 
Nf 

[MPa] [mm] [mm] [mm] [Cycles] 

M1 690.1 

0.1 1 7 

0.061 109810 

M2 578.1 0.069 164120 

M3 387.1 0.52 334620 

M4 490.2 0.52 158590 

M5 527.1 0.18 171450 

M6 583.1 0.49 84780 

M7 346.3 0.66 343380 

M8 400.8 0.34 328080 

M9 570.4 0.49 92100 

M10 356.5 0.64 376080 

M11 441.8 0.47 253800 

M12 579.3 0.38 133550 

M13 598.4 0.52 103050 

M14 446.9 0.49 194330 

M15 357.8 0.64 270770 

 
Table 6. Summary of the experimental results41, 42 generated by testing high strength wires 

containing semi-elliptical cracks (see also Fig. 6a). 
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Figures 
 

 

 
Figure 1. Simplified shapes used to model corrosion pits. 
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(a) 
 
 

 
 

Hemisphere with d=0.18 mm - (b) 
 
 

  

Semi-ellipsoid with d=0.246, l=0.89 mm and w=0.89 mm - (c) 
 
 
 

Figure 2. Examples of FE models being solved using commercial software ANSYS® and 
calculated stress distributions. 
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(a) 

 
(b) 

 
Figure 3. Accuracy of some existing analytical solutions derived by considering other 

geometrical configurations in estimating Kt in pitted wires. 
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Figure 4. Notched component subjected to fatigue loading (a); the TCD applied in the form 
of the PM (b), LM (c), and AM (d); plain material fatigue curve (e). 
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(a) 

 
 

 
(b) 

 
 

Figure 5. SN curve determined by post-processing the experimental results listed in Tables 

1 to 4 in terms of nominal stress range, nom (a) and associated error band (b). 
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(a)  

(b) 
 

Figure 6. Accuracy of the PM in estimating the fatigue lifetime of high-strength steel 
metallic wires containing semi-elliptical cracks. 
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Figure 7. Local linear elastic stress-distance curves determined numerically and 

used to apply the TCD. 
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Figure 8. Accuracy of the PM (a) and LM (b) in estimating fatigue lifetime of corroded 
metallic wires when the required stress fields are determined numerically. 

 
 
 

  
 

Figure 9. Accuracy of the PM (a) and LM (b) in estimating fatigue lifetime of corroded 
metallic wires when the required stress fields are determined using Glinka & Newport’s 

analytical solution44. 
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