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Abstract

Background Patients with coexistent chronic heart failure (CHF) and diabetes mellitus (DM) demonstrate greater exercise
limitation and worse prognosis compared with CHF patients without DM, even when corrected for cardiac dysfunction.
Understanding the origins of symptoms in this subgroup may facilitate development of targeted treatments. We therefore
characterized the skeletal muscle phenotype and its relationship to exercise limitation in patients with diabetic heart failure
(D-HF).
Methods In one of the largest muscle sampling studies in a CHF population, pectoralis major biopsies were taken from
age-matched controls (n = 25), DM (n = 10), CHF (n = 52), and D-HF (n = 28) patients. In situ mitochondrial function and
reactive oxygen species, fibre morphology, capillarity, and gene expression analyses were performed and correlated to
whole-body exercise capacity.
Results Mitochondrial respiration, content, coupling efficiency, and intrinsic function were lower in D-HF patients compared
with other groups (P < 0.05). A unique mitochondrial complex I dysfunction was present in D-HF patients only (P < 0.05),
which strongly correlated to exercise capacity (R2 = 0.64; P < 0.001). Mitochondrial impairments in D-HF corresponded to
higher levels of mitochondrial reactive oxygen species (P < 0.05) and lower gene expression of anti-oxidative enzyme
superoxide dismutase 2 (P < 0.05) and complex I subunit NDUFS1 (P < 0.05). D-HF was also associated with severe fibre
atrophy (P < 0.05) and reduced local fibre capillarity (P < 0.05).
Conclusions Patients with D-HF develop a specific skeletal muscle pathology, characterized by mitochondrial impairments,
fibre atrophy, and derangements in the capillary network that are linked to exercise intolerance. These novel preliminary data
support skeletal muscle as a potential therapeutic target for treating patients with D-HF.

Keywords HFrEF; Mitochondrial dysfunction; Atrophy; Exercise intolerance; Diabetes

Received: 3 May 2019; Revised: 7 October 2019; Accepted: 17 October 2019
*Correspondence to: T. Scott Bowen, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. Phone: (+44) 113 343 3834,
Email: t.s.bowen@leeds.ac.uk

Introduction

Chronic heart failure (CHF) and type 2 diabetes mellitus (DM)
remain two primary causes of mortality and morbidity.1 Ap-
proximately 25% of CHF patients also have coexistent DM
[i.e. diabetic heart failure (D-HF)], which is currently increasing

in prevalence.2 Patients with D-HF have worse symptoms,
exercise limitation, and mortality compared with either CHF
or DM.3,4 However, the mechanisms underlying the patho-
physiological phenotype of D-HF patients, and therefore
potential for targeted interventions, remain poorly
established. This issue is further complicated by the finding
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that cardiac function is broadly similar between D-HF and CHF
patients,5 suggesting peripheral ‘non-cardiac’ mechanisms
substantially contribute to the adverse phenotype.

Patients with CHF develop significant skeletal muscle
impairments, which impact exercise tolerance consequent
to mitochondrial and metabolic derangements, fibre struc-
tural alterations, and impaired capillarity.6 The degree of
these impairments, which are independent of cardiac func-
tion, are strongly correlated to exercise limitation and are
thought to be underpinned by various mechanisms [e.g. reac-
tive oxygen species (ROS), circulating inflammatory cytokines,
and inactivity].6 To date, however, no study has extensively
characterized the functional skeletal muscle phenotype in
D-HF and its association with exercise limitation when
compared with CHF or DM. Such data would provide strong
insight into whether a skeletal muscle pathology contributes
to the pathogenesis of D-HF and identify this as a specific
therapeutic approach.

The present study, therefore, performed skeletal muscle bi-
opsy sampling in humans with the aim of characterizing key in-
dices (i.e. mitochondrial function, fibre structure, capillarity,
and transcriptional regulators) between age-matched controls
(CON), CHF, DM, and D-HF patients. We hypothesized that
D-HF would be associated with a distinctive muscle pathology
that closely correlates to exercise limitation.

Methods

Participants

Clinical characteristics for all patients are presented in Table
1. Patients were grouped into four cohorts based upon their
underlying condition, including CON, DM, heart failure (HF),
and HF with diabetes mellitus (D-HF). CON had no clinical
evidence of CHF, a left ventricular ejection fraction (LVEF)
>50% and no previous diagnosis of left ventricular systolic
dysfunction. Patients in the DM group had a previous diagno-
sis (>3 months), as defined by a documented history of DM,
fasting plasma glucose ≥7.0 mmol·L�1, plasma glucose ≥11.1
mmol·L�1 2 h after the oral glucose tolerance test, and/or an
HbA1c ≥6.5% (≥48 mmol·L�1). CHF patients had symptoms of
stable CHF (>3 months on medical therapy), and a LVEF
<50% as confirmed by echocardiography [following current
European Society of Cardiology (ESC) guidelines].7 Patients
with D-HF met criteria for both CHF and DM groups as
outlined earlier. All participants were indicated for device
therapy with either a pacemaker, implantable cardioverter
defibrillator, or cardiac resynchronization therapy device ac-
cording to current indications.7 Patients with CHF and D-HF
performed a peak symptom-limited exercise test to volitional
exhaustion on a cycle ergometer for determination of

Table 1 Demographic, physical, and clinical characteristics of patients

CON DM CHF D-HF

Participants [% (n)] 22 (25) 9 (10) 45 (52) 24 (28)
Male [% (n)] 64 (16) �90 (9) 83 (43) 86 (24)
Age (years) 72.2 ± 2.0 74.5 ± 1.9 71.6 ± 1.6 71.4 ± 1.9
Weight (kg) 81.0 ± 3.4 105.6 ± 8.9** 81.0 ± 2.6† 88.6 ± 3.3‡

BMI 27.8 ± 1.1 33.3 ± 2.6 27.9 ± 0.8 28.8 ± 1.6
V̇O2peak (mL·kg�1·min�1) 15.3 ± 0.9 13.0 ± 0.6
Clinical factors
NYHA functional class [% (n)]
I 7.7 (4) 3.6 (1)
II 55.8 (29) 50.0 (14)
III 36.5 (19) 46.4 (13)
Ischaemic aetiology [% (n)] 61.5 (32) 64.3 (18)
DCM aetiology [% (n)] 25.0 (13) 25.0 (7)
AF [% (n)] 48.0 (12) 30.0 (3) 17.3 (9) 28.6 (8)
CABG [% (n)] 28.0 (7) 10.0 (1) 21.2 (11) 25.0 (7)
Hypertension [% (n)] 36.0 (9) 60.0 (6) 32.7 (17) 57.1 (16)
LVEF (%) 24.8 ± 1.9 30.2 ± 2.2
LVIDd (mm) 58.5 ± 1.4 58.4 ± 1.9
Haemoglobin (g·L�1) 134.1 ± 3.7 140.8 ± 4.8 138.8 ± 2.2 128.1 ± 4.6
Sodium (mmol·L�1) 138.9 ± 0.8 136.3 ± 1.4 139.4 ± 0.7 132.8 ± 5.5
Potassium (mmol·L�1) 4.7 ± 0.1 4.6 ± 0.1 4.5 ± 0.1 4.6 ± 0.1
Creatinine (μmol·mL�1) 86.9 ± 4.0 106.7 ± 9.3 101.1 ± 5.9 106.3 ± 9.4
eGFR (mL·min�1·1.73 m�2) 69.4 ± 3.2 51.8 ± 5.5** 60.8 ± 2.6* 55.4 ± 3.6**
Plasma Glucose (mmol·L�1) 9.3 ± 1.9 8.1 ± 0.6
HbA1c (mmol·mol�1) 50.5 ± 6.9 62.3 ± 3.3

Data are expressed as mean ± SEM unless otherwise stated. AF, atrial fibrillation; CABG, coronary artery bypass graft; DCM, dilated car-
diomyopathy; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin; LVEF, left ventricular ejection fraction; LVIDd, left
ventricular internal diameter at diastole; NYHA, New York Heart Association; V̇O2peak, peak pulmonary oxygen uptake.
*P < 0.05 vs. CON.
**P < 0.01 vs. CON.
†P < 0.05 vs. DM.
‡P < 0.01 vs. DM.
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pulmonary gas exchange (V̇O2 and V̇CO2) and ventilation
(V̇E).

8 Exclusion criteria included inability to provide informed
consent due to cognitive dysfunction, or the presence of
previous diagnoses with other potentially confounding
comorbidities, such as other cardiovascular conditions,
chronic obstructive pulmonary disease, or cancer. All patients
provided written informed consent, and all procedures were
conducted in accordance with the Declaration of Helsinki
after receiving local institute ethical approval (11/YH/0291).

Muscle biopsy

Skeletal muscle biopsies of pectoralis major (~50 mg) were
obtained from all participants during routine device implanta-
tion procedures. The biopsy was taken within 3 months
following study recruitment and baseline clinical data collec-
tion. There were no complications or adverse events with this
procedure. One piece of muscle sample was immediately
placed in 1 mL of ice-cold specialized preservation solution
(BIOPS) for assessment of mitochondrial respiration,9 while
two other portions were divided and rapidly frozen for subse-
quent histology and molecular analysis.

Mitochondrial function

Mitochondrial respiration was assessed in situ from saponin-
permeabilized skeletal muscle fibres using high-resolution res-
pirometry (Oxygraph-2K; Oroboros Instruments, Innsbruck,
Austria) .9 Briefly, (i) complex I leak respiration was deter-
mined by addition of glutamate (10 mM), malate (0.5 mM),
and pyruvate (5 mM) (i.e. a measure of proton leak under
non-phosphorylating conditions); (ii) adenosine diphosphate
(2.5mM) was added to provide a measure of complex I oxida-
tive phosphorylation (OXPHOS); (iii) outer mitochondrial
membrane integrity was determined by addition of 10- μM cy-
tochrome c; (iv) succinate at 10 mM as a complex II substrate
provided complex I + II OXPHOS; (v) 5-μM carbonyl cyanide
4-(trifluoromethoxy)-phenylhydrazone (FCCP) for maximal
uncoupled complex I + II respiration; (vi) complex I inhibitor ro-
tenone at 0.25 μMprovided uncoupled complex II respiration;
and (vii) 2.5-μMantimycin A as a complex III inhibitor for resid-
ual oxygen consumption (ROX) to calculate non-mitochondrial
(background) respiration, which was then used to normalize
the data. As an index of total mitochondrial ROS production,
the Amplex UltraRed assay was used to measure H2O2 produc-
tion in each respiratory state as previously described.10

Mitochondrial content was determined within the
respirometer using a complex IV activity assay,11 by the addi-
tion of 0.5-mM N,N,N’,N’-tetramethyl-p-phenylenediamine
dihydrochloride (TMPD) as an artificial electron donor to com-
plex IV in combination with 2-mM ascorbate to maintain
TMPD in a reduced state.12 Absolute mitochondrial respiration

was normalized to complex IV activity to provide an index of
mitochondrial intrinsic function. Respiratory control ratio
(RCR; ratio of complex I OXPHOS to leak respiration) and flux
control ratio (ratio of individual complex respiration to maxi-
mal uncoupled respiration) were also calculated.

Immunohistochemistry

Immunohistochemistry methods have been described in
detail previously.13 Briefly, in a subpopulation of patients,
serial cross sections (10 μm thick) of frozen muscle biopsy
samples were cut, mounted on to glass slides, and stained
with primary antibodies against myosin heavy chain type I
slow and type IIA fast oxidative (IgG2B, 1:1000; and IgG1,
1:500, respectively; Developmental Studies Hybridoma Bank,
University of Iowa), with the remaining unstained fibres
assumed as type IIx (fast glycolytic). Fibre boundaries were
detected using an anti-laminin antibody (1:200; L9393,
Sigma-Aldrich, St Louis, MO). Appropriate secondary antibod-
ies were then applied. Capillaries were simultaneously
stained with the marker for human endothelial cells,
carbohydrate binding protein (lectin) biotinylated Ulex
europaeus agglutinin I (1:200; B1065, Vector Labs, Peterbor-
ough, UK). Slides were imaged via an optical microscope
(Nikon Eclipse E600, Nikon, Japan) attached to a digital
camera (QIMAGING, MicroPublisher™ 5.0 RTV, Surrey, BC,
Canada) and analysed using digital image software (AcQuis,
Syncroscopy, Cambridge, UK). Fibre cross-sectional area
(FCSA), capillary-to-fibre ratio (C:F; # of capillaries to # of
fibres), capillary density (CD; # of capillaries per tissue area),
fibre-type specific measures of local C:F (LCFR), and capillary
density (LCD) were determined alongside heterogeneity of
capillary distribution (i.e. logarithmic standard deviation of
capillary domain area), using the automated software
package DTect as described in extensive detail elsewhere.13

The C:F and CD offer a global perspective of muscle capillar-
ity, while LCFR and LCD provide insight at the level of individ-
ual fibres. As capillarity is sensitive to changes in FCSA, LCD is
particularly useful in assessing the influence of fibre
atrophy.13

Gene expression

RNA was extracted and purified from snap-frozen muscle tis-
sue using the RNeasy® Fibrous Tissue Mini Kit (Qiagen,
Hilden, Germany). RNA concentrations (ng·μL�1) were quan-
tified and reverse transcribed to cDNA; mRNA expression
was determined using real-time quantitative PCR with SYBR®
Green ROX™ qPCR Mastermix (QIAGEN, Hilden, Germany)
and a qPCR system (Applied Biosystems Prism 7900HT, Foster
City, CA). Primers of key regulators of mitochondrial morphol-
ogy were purchased from Qiagen including peroxisome
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proliferator-activated receptor γ coactivator-1α, superoxide
dismutase 2 (SOD2), mitochondrial fission 1 (FIS1), optic atro-
phy 1 (OPA1), NADH:ubiquinone oxidoreductase core subunit
S1 (NDUFS1), and NADH:ubiquinone oxidoreductase core
subunit S3 (NDUFS3). Expression levels were normalized to
an endogenous control, beta-actin (ACTB), using the Δ-Δ-CT
method14, and then expressed relative to CON.

Statistical analysis

Outliers were identified and removed using the regression
and outlier removal method, as previously described.15 As-
sumption of homogeneity of variance was confirmed using
Levene’s test, while Shapiro–Wilk and Kolmogorov–Smirnov
normality tests confirmed normal (Gaussian) distribution.
Continuous variables were compared between cohorts using
one-way (one factor) 1 × 4 analysis of variance, with post
hoc analyses performed using Tukey’s multiple comparisons
test if significance was detected. Unpaired Student’s t-tests
was used to compare two cohorts where appropriate. Cate-
gorical variables (e.g. clinical variables) were compared using
χ2 testing (or Fisher’s exact test where appropriate). Pearson
correlations examined relationships between continuous var-
iables. Data are expressed as mean ± standard error of the
mean unless otherwise stated. Statistical significance was ac-
cepted as P < 0.05.

Results

Patients

The demographic and physical characteristics of the 115
included patients are presented in Table 1, with pharmaco-
logical and device therapies presented in Table 2. Patients
in the CHF and D-HF groups had no differences in terms of
cardiac function, disease severity (i.e. NYHA), VO2peak, or
aetiology, drug/device therapies (except furosemide dose).
Furthermore, no differences were present in terms of
glycaemic measures between the DM and D-HF patients
(i.e. plasma glucose or HbAc1).

Mitochondrial function

Mean group O2 flux for each mitochondrial respiratory state
are presented in Figure 1A. Differences were detected be-
tween groups for each respiratory state, with complex I
OXPHOS in D-HF 43% (P = 0.008; Figure 1A) and 49%
(P< 0.0001; Figure 1A) lower than DM and CHF, respectively.
For complex I + II OXPHOS, differences were seen in D-HF (P
< 0.0001 vs. CON; P = 0.007 vs. DM; P = 0.001 vs. CHF; Figure
1A). This same trend was seen for uncoupled complex I + II
respiration with D-HF being lower than each respective co-
hort (P = 0.003 vs. CON; P = 0.016 vs. DM; P = 0.004 vs.
CHF; Figure 1A). For complex II-supported ETS capacity,
D-HF was lower than both CON (P = 0.003) and DM

Table 2 Pharmacological treatments and device therapy

CON DM CHF D-HF

Pharmacological treatments
ACEi use [% (n)] 36.0 (9) 50.0 (5) 61.5 (32) 53.6 (15)
Ramipril equivalent dose (mg) 4.3 ± 1.1 8.3 ± 1.7 6.8 ± 0.9 7.0 ± 0.8
Beta-blocker use [% (n)] 32.0 (8) 60.0 (6) 86.5 (45)**† 85.7 (24)**†

Bisoprolol equivalent dose (mg) 3.0 ± 0.6 2.9 ± 0.6 5.2 ± 0.5*† 7.6 ± 0.7
Loop diuretic use [% (n)] 16.0 (4) 30.0 (3) 48.1 (25)* 64.3 (18)**†

Furosemide equivalent dose (mg) 55 ± 15 33 ± 7 45 ± 4 100 ± 20†¶

ARB use [% (n)] 21.2 (11) 32.1 (9)
Candesartan equivalent dose (mg) 15.3 ± 4.2 16.6 ± 3.1
Aldosterone antagonist use [% (n)] 44.2 (23) 57.1 (16)
Aldosterone antagonist dose (mg) 26.1 ± 1.1 1 29.7 ± 5.1
Statin use [% (n)] 48.0 (12) 90.0 (9) 63.5 (33) 67.9 (19)
Statin dose (mg) 35.0 ± 6.9 38.8 ± 7.2 46.4 ± 4.1 44.2 ± 6.2
Aspirin use [% (n)] 20.0 (5) 10.0 (1) 46.2 (24)*† 46.4 (13)*†

Metformin use [% (n)] 50.0 (5) 46.4 (13)
Insulin use [% (n)] 20.0 (2) 10.7 (3)
Device therapy
PPM [% (n)] 96.0 (24) 90.0 (9)
ICD [% (n)] 4.0 (1) 10.0 (1) 26.9 (14) 3.6 (1)
CRT [% (n)] 73.1 (38) 96.4 (27)

Data are expressed as mean ± SEM unless otherwise stated. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor
blocker; CRT, cardiac resynchronization therapy; ICD, implantable cardioverter defibrillator; PPM, permanent pacemaker.
*P < 0.05 vs. CON.
**P < 0.01 vs. CON.
†P < 0.05 vs. DM.
‡P < 0.01 vs. DM.
¶P < 0.5 vs. CHF.
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(P = 0.011; Figure 1A). The RCR (i.e. an index of mitochondrial
coupling efficiency) was 28% lower in D-HF compared with
CHF (Figure 1B), with similar trends compared with CON
(P = 0.070) and DM (P = 0.175). The O2 flux measured at

complex IV (i.e. a proxy for mitochondrial content) is pre-
sented in Figure 1C. Differences were detected, with post
hoc tests revealing that O2 flux was 33% lower in D-HF than
in CON (P = 0.001; Figure 1C).

Figure 1 Mitochondrial function is impaired in the skeletal muscle of patients with D-HF. Oxygen flux in all respiratory states (A) and the mitochondrial
coupling efficiency as indicated by the respiratory control ratio (RCR) (B) is lower in D-HF patients compared with DM and CHF. Mitochondrial content
(measured by complex IV activity) is the lowest in D-HF patients (C), and impairments at complex I remain despite normalizing for the lower mitochon-
drial content (D). These impairments corresponded to higher concentrations of mitochondrialderived reactive oxygen species (ROS) across all respira-
tory states in patients with D-HF (E). N = 25, 10, 52, and 28 for CON, DM, CHF, and D-HF, respectively. *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

0.0001. Complex I function was strongly correlated to VO2peak as a measure of whole-body exercise capacity in both patients with CHF (R
2
= 0.47; P <

0.001; solid line; N = 34) and even more so in D-HF (R2 = 0.64; P < 0.001; dashed line; N = 15) (F). EI + II, maximal uncoupled complex I + II respiration;
EII, uncoupled complex II respiration; LI, complex I leak respiration; PI, complex I oxidative phosphorylation; PI + II, complex I + II oxidative
phosphorylation.
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To account for differences in mitochondrial content, the
absolute O2 flux measures for each respiratory state were
normalized to complex IV activity (Figure 1D), which revealed
complex I OXPHOS to be the only respiratory state that
remained significantly different between the four cohorts
(P < 0.0001), where D-HF was 43% and 36% lower than
CON and CHF, respectively (P < 0.0001; Figure 1D). Mito-
chondrial dysfunction is closely linked with increased oxida-
tive stress. We therefore measured mitochondrial-derived
ROS generation and found this to be substantially higher in
D-HF (Figure 1E). Most notably, during complex I OXPHOS
(PI), H2O2 production was ~14-fold, ~12-fold, and ~4-fold
higher in D-HF compared with CON (P < 0.0001), DM (P =
0.0001), and CHF (P = 0.0009), respectively (Figure 1E). To ex-
amine the relationship between the skeletal
muscle metabolic phenotype and our clinical data, in situ
mitochondrial function was correlated to in vivo measures
of exercise capacity in CHF and D-HF patients, with complex

I OXPHOS more strongly correlated to V̇O2peak in D-HF
(R2 = 0.64; P < 0.001) compared with CHF (R2 = 0.47;
P < 0.001) (Figure 1F). We next probed for potential underly-
ing molecular regulators of mitochondrial dysfunction in D-HF
(Figure 2), which revealed that the expression of two key
genes was down-regulated in patients with D-HF. This in-
cluded the mitochondrial-located antioxidant SOD2 (Figure
2B) and the key respiratory complex I subunit NADH:ubiqui-
none oxidoreductase core subunit S1 (NDUFS1) (Figure 2C).
Overall, these data confirm that patients with D-HF have im-
pairments in skeletal muscle mitochondrial regulation that
are correlated to exercise limitations.

Fibre morphology

We next investigated whether patients with D-HF pre-
sented with gross deficits in fibre structure and

Figure 2 Gene expression of key mitochondrial-regulating proteins in skeletal muscle across all patient groups, including (A) peroxisome proliferator-
activated receptor γ co-activator 1α (PGC1α), (B) superoxide dismutase 2 (SOD2), (C) NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), (D)
NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), (E) mitochondrial fission 1 protein (Fis1), (F) mitochondrial dynamin-like GTPase/optic
atrophy 1 (OPA1). N = 13–20 per group. *P < 0.05.
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composition. Figure 3A shows representative muscle sec-
tions from patients. Mean FCSA in D-HF patients was 44%
and 30% smaller compared with CON (P = 0.001) and CHF
(P = 0.044), respectively (Figure 3B). In particular, fibre at-
rophy was type II specific, with type IIa FCSA 53% and
39% smaller in D-HF compared with CON (P < 0.0001)
and CHF (P = 0.001), respectively (Figure 3B), and type IIx
FCSA was 65% and 52% smaller in D-HF compared with
CON (P = 0.0003) and CHF (P = 0.014), respectively (Figure
3B). Type IIa and IIx FCSA was also smaller in DM com-
pared with CON (P < 0.01; Figure 3B), with a similar trend
also seen in CHF (P = 0.115). No significant differences
were found between D-HF and DM groups, despite fibres
in D-HF showing a consistent trend to be smaller across
all fibre types (Figure 3B). No muscle fibre type shifts were
observed among groups; however, CHF had a higher areal
density of type IIx fibres compared with DM (P = 0.040)
and D-HF (P = 0.035), respectively (Figure 3D). D-HF also
had a higher areal density of type I fibres compared with
CHF (P = 0.014; Figure 3D).

Fibre capillarity

No differences in the global C:F existed between groups
(Figure 3E); however, fibre-type specific C:F (i.e. LCFR) was
lower in D-HF patients by 34% in type IIa fibres (P = 0.011;
Figure 3G) and 55% (P = 0.0003) in IIx fibres compared with
CON. Additionally, the LCFR was lower in DM compared with
CON for type IIx fibres (P = 0.023; Figure 3G). In contrast, a
global index of CD was 63% and 37% higher in D-HF com-
pared with CON (P = 0.007) and CHF (P = 0.034), respectively
(Figure 3F). Fibre-type specific CD (i.e. LCD) was also higher in
D-HF compared with CON across all fibre types (Figure 3H),
and also 41% (P = 0.0499) and 45% (P = 0.0174) higher in
D-HF compared with CHF for type IIa and type IIx fibres, re-
spectively (Figure 3H). However, there were no differences
in the spatial heterogeneity of capillary distribution between
cohorts, with logarithmic standard deviation averaging 0.16 ±
0.01 for all groups.

Discussion

This study has confirmed that patients with D-HF demonstrate
a severe skeletal muscle phenotype, manifesting as distinct
mitochondrial impairments, fibre atrophy, and capillary
remodelling. Notably, our data revealed an intrinsic
mitochondrial complex I dysfunction specific to D-HF, which
corresponded to higher levels of mitochondrial ROS produc-
tion and lower gene transcripts of complex I. Clinically, skeletal
muscle mitochondrial impairments were closely correlated to
whole-body exercise limitations, providing potential evidence

of a novel therapeutic target in the treatment of patients with
D-HF.

Mitochondrial dysfunction in heart failure and
diabetes

Many studies have investigated skeletal muscle mitochon-
drial function in either CHF or DM patients; however, the
combined impact in D-HF remains poorly investigated. This
may have important implications given that D-HF patients
have poorer outcomes compared with either CHF or DM
alone in terms of exercise intolerance, quality of life, and
mortality.4,5,16–18 A lower mitochondrial content (rather
than intrinsic function) is most often reported in patients
with either CHF19–21 or DM22–24 compared with matched
CON. Here, we show for the first time that patients with
D-HF have decrements in not only mitochondrial content
but also functional impairments that particularly resided
at the complex I. Interestingly, we demonstrated that abso-
lute mitochondrial O2 flux is lower in both CHF and DM pa-
tients compared with CON, and this effect was exacerbated
in patients with D-HF. Importantly, we showed the de-
pressed mitochondrial respiration could be largely explained
by a lower mitochondrial content in patients with CHF or
DM (following appropriate normalization). In contrast, how-
ever, D-HF patients still presented with lower complex I
respiration (i.e. intrinsic dysfunction) compared with other
groups, even after correcting for mitochondrial content.
This was confirmed by the mitochondrial coupling efficiency
ratio (i.e. the RCR) also being impaired in the D-HF group
only. Thus, while the lower values of mitochondrial oxygen
flux fits with the common observation of reduced mito-
chondrial content in CHF19–21 or DM22–24, the lower intrin-
sic flux through complex I in D-HF highlights a greater
problem in this specific cohort of patients that goes beyond
simply a mitochondrial content issue. Moreover, our data
show that the complex I specific impairment in the D-HF
patients is strongly correlated to exercise capacity (i.e.
V̇O2peak), linking the pathophysiology of whole-body exer-
cise intolerance to skeletal muscle mitochondrial dysfunc-
tion in D-HF and suggesting this could be a potential
therapeutic target. Of note, these indices were more
strongly correlated in patients with D-HF compared with
CHF alone (Figure 1F), suggesting complex I dysfunction
may provide a mechanism to explain why V̇O2peak is lower
in D-HF compared with CHF patients, likely by impairing
muscle O2 extraction.

The underlying factor(s) driving the mitochondrial com-
plex I dysfunction in D-HF remains unclear. However, our
data implicate a potential role for mitochondrial-derived
ROS. Mitochondrial ROS production was substantially ele-
vated and proportionally greater at complex I in patients
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with D-HF compared with other groups, while the gene ex-
pression of the mitochondrial antioxidant SOD2 was lower
which may have compromised ROS clearance. Regarding

the latter, recent data have shown levels of SOD2 are able
to modulate mitochondrial ROS and dysfunction alongside
atrophy in an animal model of mechanical ventilation.25

Figure 3 Representative composite images of stained muscle sections from the CON, DM, CHF, and D-HF patient groups (A). Type I MHC fibres are
stained red; type IIA MHC fibres are stained green; type IIX unstained/black; and the basal membrane is stained blue. Scale bar represents 200 μm.
Mean fibre cross-sectional area (FCSA) across each cohort according to fibre type shows greater atrophy in patients with D-HF (B), with fibre-type pro-
portion (C) also presented. For fibre areal density (D), CHF resulted in a higher type IIX compared with DM or D-HF. Global (E, F) and localized (G, H)
indices of capillarization were also assessed, with D-HF associated with a lower local capillary: fibre ratio (LCFR; G) yet higher global capillary density
(CD; F) and local CD (LCD; H). N = 5–8 per group. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Taken together, the current data indicate a shift towards a
pro-oxidant state in D-HF26 consistent with the observation
that treatment with antioxidant therapies such as
mitochondrial-specific drugs or whole-body exercise training
can ameliorate oxidative stress in skeletal muscle and im-
prove mitochondrial function, insulin sensitivity, and exer-
cise capacity in CHF27–29 and DM.30,31 A further reason
may also be related to changes in the quality of mitochon-
drial complex I.32 NDUFS1 is the largest (75 kDa) subunit of
complex I and forms a component of the eight iron-sulphur
chains involved in transferring electrons from NADH oxida-
tion at the flavin mononucleotide to the ubiquinone bind-
ing site where the electron acceptor, ubiquinone, is
reduced to ubiquinol.33 We found transcription of NDUFS1
was down-regulated in D-HF, and this may help explain,
at least in part, a mechanism for impaired mitochondrial
complex I respiration. Additional factors that may have
caused the mitochondrial dysfunction also include insulin
resistance, chronic hyperglycaemia, elevated inflammatory
cytokines, substrate overload, and accumulation of intracel-
lular lipids, although further studies are required to estab-
lish their contribution.

Fibre atrophy and capillarity

Loss of muscle mass is common in many diseases and limits
both exercise tolerance and quality of life.6 Patients with
D-HF demonstrated a severe muscle fibre atrophy, which
tended to be greater when compared with the other groups.
The mechanisms mediating greater fibre atrophy in D-HF re-
mains unclear; however, elevated mitochondrial ROS has
been shown to directly induce atrophy and treatment with
mitochondrial-specific antioxidants can prevent this, at least
in animal models.34 Thus, a higher production of mitochon-
drial ROS in D-HF may drive the greater fibre atrophy
observed. Our findings also identified that D-HF causes a pref-
erential atrophy of type II fibres, with type I fibres largely un-
affected, which are in line with the type II isoform being more
susceptible to atrophy across various chronic diseases.35

To assess potential O2 delivery limitations in D-HF, the cur-
rent study also quantified skeletal muscle capillarity, using
both global and local measures of capillarity, which allowed
us to gain greater insight compared with the standard ap-
proach.13,36 Consistent with allometric scaling, we observed
an increase in capillary density (CD) in D-HF patients, which
was matched by comparable increases in the local fibre-type
specific CD measures, that is, explained by the severe fibre at-
rophy seen in D-HF compared with the other groups. This
could even be interpreted as a shift towards improved capil-
lary supply in D-HF, for example, as part of a compensatory re-
sponse to maintain O2 delivery. In contrast, when we applied
the scale-independent measure of local C:F (i.e. LCFR),13 we
were able to detect fibre-type specific reductions in potential

O2/substrate supply from capillaries surrounding both type
IIa and IIx fibres to be greatest in D-HF patients. It is interesting
to note that these differences were not evident when the
global measure of C:F was quantified, highlighting the in-
creased sensitivity of the LCFR method when muscle atrophy
is present.13 Previous studies looking at global capillarity in
CHF or DM have produced variable conclusions, with reports
of either an increase37,38 or decrease39–41, with such dispar-
ities likely explained by differences in the evaluation methods
employed, disease severity, and/or degree of fibre atrophy.
Another possibility is that capillary rarefaction may have pre-
ceded fibre atrophy42, such that earlier impairments to the
capillary network in D-HF went undetected. Overall, therefore,
the current data suggest alterations to both microvascular O2

transport (indicated by our capillary measures) in addition to
O2 utilization (indicated by our mitochondrial measures) may
combine with a reduced muscle mass to exacerbate whole-
body exercise intolerance in patients with D-HF. Of note, our
data indicate that fibre atrophy was proportionally greater
than the capillary rarefaction in patients with D-HF (while
proportional in CHF), which seems to further reinforce greater
impairments in the maintenance of muscle mass (due, e.g. to
insulin resistance) occur in the combination of both CHF
and DM.

Limitations

This study was limited by the observational design, which
allowed characterization of variables and their relationships
rather than prove causality. Further mechanistic studies are
therefore warranted. All patients were referred for device im-
plantation and whether our findings apply to the wider popu-
lation is unknown. We also did not have a measure of exercise
intolerance (i.e. V̇O2peak) in CON and DM groups to evaluate
their current levels of aerobic fitness, while we cannot com-
ment on whether current levels of physical activity may have
influenced our results.20 However, detraining does not fully
explain mitochondrial deficits in HFrEF43, and our data were
from the pectoralis major which is likely not impacted to the
same degree as the lower limbs by detraining. However, a fur-
ther study comparing upper vs. lower limbs muscle alterations
(e.g. pectoralis major and vastus lateralis) in the current pa-
tient groups would be worthy of future investigation.

Conclusions

This study provides novel evidence that patients with D-HF suf-
fer severe skeletal muscle mitochondrial dysfunction, fibre at-
rophy, and capillary remodelling when compared with CHF or
DM patients. The mitochondrial dysfunction is the result of
both qualitative and quantitative alterations at complex I,
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which was well correlated to exercise intolerance and was
paralleled by elevated mitochondrial-derived ROS and im-
pairedmitochondrial gene transcription. Targeting the skeletal
muscle may therefore represent a novel therapy for the treat-
ment of exercise intolerance in patients with D-HF.
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