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Abstract

Geographical variable distributions often exhibit both macro-scale geographic smoothness and 

micro-scale discontinuities or local step changes. Nonetheless, accounting for both effects in a 

unified statistical model is challenging, especially when the data under study involves a multi-

scale structure and non-Gaussian response variables. This study develops a locally adaptive 

spatial multi-level logistic model to examine binomial response variables, which integrates an 

innovative locally adaptive spatial econometric model with a multi-level model. It takes into 

account global spatial auto-correlation, local step changes, and vertical dependence effects 

arising from the multi-scale data structure. Another appealing feature is that the spatial 

correlation structure, implied by a spatial weights matrix, are learned along with other model 

parameters via an iterative estimation algorithm, rather than being presumed to be invariant. 

Bayesian Markov chain Monte Carlo (MCMC) samplers are derived to implement this new 

spatial multi-level logistic model. A data augmentation approach, drawing upon recently 

devised Pólya-Gamma distributions, is adopted to reduce computational burdens of calculating 

binomial likelihoods with a logit link function. The validity of the developed model is 

evaluated by a set of simulation experiments, before being applied to analyse self-rated health 

for the elderly in Shijiazhuang, the capital city of Hebei province, China. Model estimation 

results highlight a nuanced geography of self-rated health, and identify a range of individual- 

and area-level correlates of health for the elderly.

Key Words: Spatial auto-correlation, local spatial modelling, spatial econometrics, multi-

level models, geography of health
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Introduction

Distributions of many geographical variables over space exhibit clear global patterns, 

most often, spatial clusters—attributes in nearby areas tend to be similar, implying positive 

spatial dependency or auto-correlation. Accordingly, statistical modelling of such variables 

requires a careful treatment of spatial correlation, leading to a wide use of spatial statistics and 

econometrics models in social and environmental science research (Anselin 1988; Griffith 

2003; Haining 2003; Banerjee, Carlin, and Gelfand 2014). Meanwhile, locally abrupt changes 

are also often observed in the distributions of geographical variables, i.e., moving from one 

side of a geographic border to the other is however associated with contrasting attribute values 

(e.g. Mitchell and Lee 2014). Local step changes might reflect distinct socio-economic 

processes in the effect of interest, even for areas of close geographical proximity. Therefore, 

ideally we would want to capture the co-existing global auto-correlation and local step change 

effects in a unified statistical methodology when modelling spatial data. A further complication 

rises when the data under investigation has a multiple-scale structure such as individuals 

nesting into census geographies or cities into regions. This multi-scale data structure tends to 

induce group dependency effects or vertical spatial dependency effects (Dong and Harris 2015). 

If they were ignored, model parameter estimates and the associated statistical inferences would 

be adversely affected (Raudenbush and Bryk 2002; Goldstein 2010). A simultaneous treatment 

of global spatial auto-correlation, local step changes and multi-scale data structure in a unified 

spatial statistical model poses methodological challenge. Developing such a statistical model 

is the primary objective of this study.

Capturing global spatial auto-correlation and local step changes

In a single-scale spatial modeling context, an innovative proposal has been put forward 

by Lee and Mitchell (2013), in which spatial auto-correlation is conceptualised as a global 
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process but adjusted locally in the presence of step changes. This is achieved by learning and 

updating the correlation structure of spatial units (i.e. the spatial weights matrix W) through 

data, rather than assuming it to be invariant and exogenous to the outcome variable under 

examination. Local step changes are inferred by comparing the empirical distributions of 

spatially dependent random effects (i.e. model residuals) of bordering areas. Should a step 

change be identified between two neighbouring areas, the (conditional) correlation between 

them is set to be zero by disconnecting them in W. The rationale is that if significant differences 

were detected (net of covariate effects) when crossing the border of two areas, it would make 

little sense to impose a global spatial smoothing mechanism between them. The approach is 

termed as a locally adaptive spatial modelling approach (Lee and Mitchell 2013, 2014; Dean 

et al. 2019). 

A small number of localised spatial statistical models explicitly treat entries of W as 

unknown random quantities, which are modelled via a logistic regression model (Lu et al. 2007; 

Ma, Carlin, and Banerjee 2010). However, issues of over-parameterisation and poor 

identification of individual entries of W in such approaches have been recognised (Lee and 

Mitchell 2013). Rushworth, Lee, and Sarran (2017) estimate the vector of adjacency elements 

of W (on the logit scale) by using a Gaussian Markov Random Field (GMRF) prior. In their 

proposal, the connection structure of areas is regarded as a graph where areas are represented 

by vertices and an edge linking two vertices is presented if these two areas are adjacent. As a 

GMRF prior is assumed for the adjacency structure of edges and the number of edges are 

usually much larger than that of areas, the implementation of such approach is computationally 

expensive and can be impossible in the presence of large spatial dataset. This study, therefore, 

adopts the proposal in Lee and Mitchell (2013) to simultaneously model spatial auto-

correlation and local step change effects. We refer to Lee, Rushworth, and Sahu (2014) for a 
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thorough review on localised spatial structure estimation in a single-scale spatial modelling 

context.   

Multi-level modelling and spatial auto-correlation

Multi-level modeling has been well-recognised as a rigorous statistical modelling 

framework to deal with data with a multiple-scale structure and geographically clustered survey 

or census data in particular (Raudenbush and Bryk 2002; Goldstein 2010). It simultaneously 

models the outcome variable of interest at different scales or levels, thus with great potentials 

to address the scale effects such as the individualistic and ecological fallacies (Jones 1991; 

Subramanian, Jones and Duncan 2003; Subramanian et al. 2008). Nonetheless, what standard 

multi-level models capture is a vertical dependence effect arising from the group membership 

structure of data, while a horizontal dependence effect among units due to geographical 

proximity (i.e. spatial auto-correlation) tends to be left unmodelled.  

Scholarship on an integrated multi-level and spatial auto-correlation modelling 

approach is nascent but expanding. The key idea is to conceptualise the higher-level (or area-

level) random effects as spatially dependent by using a simultaneous auto-regressive model 

(SAR, Anselin 1988; Haining 2003) or a conditional auto-regressive model (CAR, Banerjee et 

al. 2014; Congdon 2014). The former is seen in Smith and LeSage (2004), Savitz and 

Raudenbush (2009), Lacombe, Holloway and Shaughnessy (2014), and Dong et al. (2018, 

2019). The latter-type extension has been proposed in Arcaya et al. (2012), Ma et al. (2017), 

Ma, Chen, and Dong (2018), and in Dong et al. (2016) where regression coefficients are further 

allowed to be spatially varied. In the so-called hierarchical spatial auto-regressive models 

proposed in Dong and Harris (2015), SAR models are integrated into each level of a 

geographically hierarchical data. The usefulness of a spatially explicit multi-level model in 

dealing with multi-scale geographical data has been assessed via Monte Carlo simulation and 
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empirical studies (Dong et al. 2015; Owen, Harris, and Jones 2016; Bivand et al. 2017). 

However, these spatial extensions on the multi-level models only consider global spatial auto-

correlation, thus ignoring the possibility of local step change or boundary effects in the 

distributions of geographical variables. A recent model proposed by Dong, Wolf, Alexiou, and 

Arribas-Bel (2019) deals with global spatial auto-correlation and local step changes in a multi-

level modelling context, but is designed only for Gaussian response variables. Moreover, their 

approach to calibrate a spatial weights matrix W is based on the distributions of estimated 

outcomes at a higher (or more aggregated) spatial scale rather than the distributions of 

differences in genuine areal effects (discussed below). It thus risks the potential conflation of 

covariate effects and areal effects when estimating the spatial correlation structure of units.

Innovation of this study

This study develops a new class of multi-level model to investigate geographically 

hierarchical binomial data where individuals nest into geographical units. It is termed as a 

locally adaptive spatial multi-level logistic model and differs from previous spatial extensions 

on multi-level models in a few important aspects. Foremost, it integrates a locally adaptive 

spatial auto-correlation model with a multi-level logistic model, thus being able to capture both 

global spatial auto-correlation and potential local step change effects. This can lead to a more 

realistic modelling of spatial effects at the ecological scale. Secondly, it separates effects of 

covariates at different levels on an outcome variable, so the interpretations of regression 

coefficients are intuitive. This resonates with the idea that different processes might be 

operating at different scales, and that outcomes at different scales could be affected by different 

sets of predictor variables. With an adaptive SAR model, rather than a CAR model used in Lee 

and Mitchell (2013), specified for the areal level latent outcomes, spatial spillover or feedback 

effects are allowed (discussed below). Thirdly, it permits the links between individuals and 
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geographical contexts to be learned through data in the sense that the model identifies a set of 

areas (through estimates on W), by which each individual is affected. This, to some extent, 

alleviates the uncertain geographic context problem (Kwan 2012) by moving beyond the 

restrictive assumption that individuals are only affected by areas where they live. Lastly, we 

demonstrate that the Mundlak correction (Mundlak 1978) can be easily incorporated into the 

proposed model to deal with potential correlations between individual-level covariates and 

unobservable areal level random effects.

The locally adaptive spatial multi-level logistic model is implemented by using an 

iterative algorithm following Lee and Mitchell (2013). Overall, it cycles between estimating 

model parameters via a Bayesian global spatial multi-level logistic model, and updating W 

based on estimated areal level random effects (net of covariate effects to avoid conflation), 

until a convergence criterion is met (detailed below). Bayesian MCMC samplers have been 

derived to implement the global spatial multi-level logistic model, which constitutes the core 

component of the overall algorithm. To reduce computational cost, we derive MCMC samplers 

by exploiting a new class of Pólya-Gamma distribution specifically devised to deal with 

binomial likelihoods with a logit link function (Polson, Scott, and Windle 2013). 

The methodology is applied to explore the social and spatial disparity of self-rated 

health for the elderly in Shijiazhuang, the capital city of Hebei province in China, using a 

unique individual census record data. These census records are further linked to the finest-

resolution census geographical units publicly available in China, for which a range of social, 

environmental and industrial development variables are extracted. With the linked dataset, we 

aim to understand the individual- and area-level correlates of self-rated health for the elderly 

in the study area. 

The remainder of this paper is structured as follows. Section 2 describes our 

methodological development and model estimation strategy. In Section 3, we conduct a 
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simulation study to assess the validity of the developed methodology. We then describe the 

data and variables used in our empirical study in Section 4, and model estimation results are 

presented in Section 5. The final section concludes with a brief summary of our findings and a 

discussion of future work.

Methodological development  

A standard non-spatial multi-level logistic model

Consider a two-level data where surveyed (or census) individuals (Level-1 units) nest 

into J non-overlapping areal units (Level-2 units) that constitutes a study region 𝐷 = {𝐴1,…,𝐴𝐽
. There are nj individuals in Aj. A standard random intercept multi-level logistic model is }

expressed as (e.g. Goldstein 2010),

𝑌𝑖𝑗~Binomial (1,𝑝𝑖𝑗);   𝑖 = 1,2,…,𝑛𝑗;  𝑗 = 1,2,…, 𝐽
log

𝑝𝑖𝑗
1 ― 𝑝𝑖𝑗 = 𝜂𝑖𝑗 = 𝒙′𝑖𝑗𝜷 + 𝜍𝑗

                            (1)𝜍𝑗 = 𝒛′𝑗𝜸 + 𝜇𝑗;      𝜇𝑗 ~ 𝑁(0, 𝜎2)

where i and j are individual and areal (sub-district in this study) indicators. pij is the probability 

of success, e.g., the probability of the ith individual living in the jth sub-district reporting good 

health status, which is related to a set of predictors via a logit link function. Individual outcome 

Yij then follows a Binomial distribution with probability of pij. The logit link function is chosen 

over the cumulative Normal distribution function because of its intuitive and straightforward 

interpretation of covariate effects in terms of odds ratios.  measures the effect of spatial unit 𝜍𝑗
j on individuals located within it or the average outcome of area j on the logit scale, with mean-

centred individual-level covariates x (Raudenbush and Bryk 2002). 
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At the areal level,  is a linear model of the areal level covariates (z) and a 𝝇 = [𝜍1,…, 𝜍𝐽]
vector of independent area-level random residuals   = [1,…, J]. Elements of  are assumed 

to be independent, each of which follows a Normal distribution, N(0, 2).  and  are vectors 

of fixed regression coefficients of x and z, respectively. We note that cross-level interaction 

terms between individual- and area-level covariates can also be added into the individual-level 

equation.

Developing a global spatial multi-level logistic model

The independence assumption imposed on  has been questioned in a spatial context 𝝇
on the basis that the areal effects are likely to be correlated because of geographical proximity 

(e.g. Dong and Harris 2015; Bivand et al. 2017). Spatial auto-correlation or dependence is a 

critical issue to deal with when modelling geographical data (Ver Hoef et al. 2018). In the 

multi-level logistic modelling context, Ma et al. (2017) capture spatial auto-correlation in  by 𝝇
specifying a CAR model for ,

𝜇𝑗 | 𝝁―𝑗, 𝑊,𝜌,𝜏2 ~ 𝑁(
𝜌∑𝑗~𝑙𝜇𝑙

1 ― 𝜌 + 𝜌𝑤𝑗 +
,

1𝜏2(1 ― 𝜌 + 𝜌𝑤𝑗 + )) (2)

where  includes random effects other than area j. The 𝝁―𝑗 = [𝜇1,…,𝜇𝑗 ― 1,𝜇𝑗 + 1,…,𝜇𝐽]
neighbourhood structure or spatial weights matrix is presented by W, with elements defined on 

the basis of geographical contiguity: wjl = 1 if areas j and k share a border (denoted by j ~ l) 

and 0 otherwise. wj+ records the total number of geographical neighbours of area j. The scalars 

2 and  are precision and spatial correlation parameters, respectively. Equation (2) is a specific 

CAR model, developed by Leroux, Lei, and Breslow (1999) and widely used in the spatial 

statistics literature (e.g. Lee 2011). The whole set of full conditionals for all J areas form a 
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unique GMRF,   ~ MVN (0, CAR) with a J by J precision matrix CAR = 2 (LW  W) where 

LW = diag (1    + w+).

  Alternatively, a SAR model, common in the spatial econometrics literature, can be 

used to capture potential spatial dependence in  (but has not been employed to our knowledge 𝝇
in the multi-level logistic modelling context), which is specified as (e.g. Anselin 1988; Haining 

2003),

𝝁 = 𝜌𝑊𝝁 + 𝜺;    𝜺 ~ 𝑁(𝟎,𝑰𝐽𝜎2) (3)

In SAR, the spatial weights matrix W is usually row-normalised so that the maximum possible 

value of  is constrained to less than one. The distribution of  is also a multivariate Normal 

distribution, MVN (0, SAR) with a precision matrix SAR = (2)1(IJ  W)T(IJ  W).1

Substituting the formulation of  in Equation 2 or 3 for the independently distributed  

in Equation 1 gives a baseline global spatial multi-level logistic model. However, an 

unfavourable feature of both types of spatial multi-level model specification is the absence of 

substantive spatial spillover effect arising from changes in the areal level covariate effects ( ). 𝒛′𝜸
In other words, the effect of changes in a covariate zp at area j will only affect the outcome of 

area j (j), and subsequently, the outcomes of individuals belonging to this area; it cannot be 

passed on to surrounding areas. This is due to the fact that spatial dependence is included in 

the areal level residual term () so the partial derivatives of the areal level outcome variable  

with respect to zp is simply the corresponding regression coefficient p.

To model spatial dependence in a substantive way that allows for spillovers and 

feedbacks among Level-2 areal units, we formulate Level-2 outcomes  as a SAR model 

(written as succinct matrix-vector form),

𝜼 = 𝒙𝜷 + ∆𝝇
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,                                                (4)𝝇 = 𝜌𝑊𝝇 + 𝒛𝜸 + 𝝁
where the linear predictor vector  is of dimension N  1 with N =  nj;  is a random effect 𝜼
design matrix of dimension N  J, linking Level-2 outcomes or effects to individual outcomes; 

x and z are individual- and area-level covariate design matrices; elements of  are assumed to 𝝁
be independent, each of which follows a Normal distribution, N(0, 2). Under Equation 4, the 

effect of a Level-2 (or sub-district level) predictor variable (e.g. zp) on  will not be equal to 𝝇
estimated regression coefficient of this variables ( ) because of spatial spillover effects. This 𝛾𝑝
is a result well-established in the SAR or spatial econometric modelling literature (LeSage and 

Pace 2009; Elhorst 2010). Thus, we interpret Level-2 covariate effects in terms of direct, 

indirect and total impacts following the parameter interpretation convention in the spatial 

econometrics literature (LeSage and Pace 2009).

Developing a locally adaptive spatial multi-level logistic model

The key issue of the global spatial multi-level logistic model (Equation 4) is the global 

conceptualisation of spatial correlation (or auto-correlation), ignoring potential step change or 

boundary effects in distributions of spatial outcomes often observed in real-world data. In the 

locally adaptive spatial multi-level model, the spatial weights matrix W is calibrated based on 

estimates of differences in the paired areal effects  (net of the covariate effects ) so that the 𝝇 𝒛𝜸
spatial auto-correlation structure among areas is learned through data. The model is formulated 

as,

𝑌~Binomial (1,𝒑)

log
𝒑𝟏 ― 𝒑 = 𝜼 = 𝒙𝜷 + ∆𝝇

                                            (5)𝝇 = 𝜌𝑊𝝇 + 𝒛𝜸 + 𝝁,
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in which  is the final estimate of W.  In the model, whilst the parameter  controls the strength 𝑊
of global spatial correlation in the areal random effects ( ),  specifically defines whether 𝝇 𝑤𝑙𝑘
sub-districts l and k are correlated or not (conditionally or at least in terms of the first-order 

correlation structure). In the case that wlk is estimated as 0, converted from 1 in W, a boundary 

or step-change between (l, k) is detected. Comparing W with  reveals the locations of 𝑊
boundaries in the areal random effect surface and the shapes of clusters of high and low values.

On model specification, we finally note that an implicit assumption underlying 

Equation (5) is the independence between individual-level covariates x and Level-2 residuals 

 (or Level-2 outcomes ). The presence of correlation between x and , a standard 𝝁 𝝇 𝝁
endogeneity issue, can lead to inconsistent estimates of . The well-studied Mundlak 𝜷
correction approach (Mundlak 1978) can be adopted to deal with this issue. Re-writing an 

individual-level covariate  where  is the area-wise (or group-wise) mean of  𝑥𝑘 = 𝑥 + 𝑥𝑘 𝑥 𝑥𝑘
and,  the remaining within-area part, the source of correlation between  and  is the 𝑥𝑘 𝑥𝑘 𝝁
possible relation between the  and  because cov( , )  0.2 Therefore, an auxiliary 𝑥 𝝁 𝑥𝑘 𝝁
regression for  can be expressed as:  where  is assumed to be independent of x. 𝝁 𝝁 = 𝒙𝜙 +  𝝂 𝝂
Plugging this expression into Equation 5 yields a locally adaptive spatial multi-level logistic 

model that would further deal with potential dependence between x and . This offers an 𝝁
advantage for applied researcher who are interested in identifying causal effects of area-level 

covariates on individual outcomes (Bell and Jones 2015).

Before discussing estimation algorithms for the proposed locally adaptive spatial multi-

level logistic model, we briefly summarise some key new features of the methodology. First, 

specifying the Level-2 equation as a SAR model allows for an investigation of substantive 

spatial dependency effects, i.e., feedbacks and spillovers between areas arising from changes 

in area-level covariate effects. Second, it conceptualises that an individual’s outcome is 

affected not only by the immediate neighbourhoods—the areas where she/he lives, but also by 

Page 12 of 47Annals of the American Association of Geographers



For Peer Review
 O

nly

13

surrounding neighbourhoods. In doing so, the correlation or dependency between individuals 

(Level-1 units) is permitted to move beyond Level-2 areal boundaries (or group-membership 

structures). Lastly, with a more realistic geographical correlation structure revealed by , the 𝑊
latent Level-2 outcomes ( ) and the associated uncertainty measures can be more reliably 𝝇
estimated in the locally adaptive spatial multi-level model than in its counterpart global model. 

In relation to this, uncertainties of estimates on  can also be propagated to the estimates of 𝝇
Level-2 covariate effects. 

An iterative estimation algorithm is devised to implement the locally adaptive spatial 

multi-level logistic model. A similar algorithm was proposed by Lee and Mitchell (2013) to 

estimate a locally adaptive spatial CAR model, applied to single-level spatial data. Here we 

prove its usefulness to deal with multi-scale data. In the locally adaptive spatial multi-level 

logistic model, model parameters were divided into two sets:  and binary 𝜽 = [𝜷, 𝜸,𝜌,𝜎2,𝝇]

entries of W. Only entries of 1s in W (areas sharing common borders) are to be estimated, with 

entries of 0s being fixed. The iterative algorithm cycles between estimating  given W, f( | W, 

Y, x, z), and a deterministic updating of W given , f(W | , Y, x, z), until a convergence criterion 

is met. f( | W, Y, x, z) represents posterior distributions of parameters   from a global spatial 

multi-level logistic model. Details on the derivation of MCMC algorithms for f( | W, Y, x, z) 

are provided in the Appendix. A deterministic method is used to update W based on the posterior 

distributions of Level-2 model residuals , obtained by ( For geographically 𝝁 𝑰 ― 𝜌𝑊)𝝇 ― 𝒛′𝜸.  

adjacent areas l and k, wlk is set to 0 if the 95% credible intervals of  and  do not overlap, 𝜇𝑙 𝜇𝑘
and kept to 1 otherwise. The pseudo-code of the iterative algorithm is presented in Figure 1. 

The model implementation algorithm is coded by using the open-source R language. The R 

codes and a demonstration are made publicly available on the Open Science Framework 

platform (https://osf.io/6pzcm/?view_only=83315448dabf42dda4c600602174c9ed). 

Statistical inferences on parameters are based on two MCMC chains, each of which consists of 
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10,000 iterations with a burn-in period of 5,000 in the following analyses. Convergence of 

samplers is checked by both visual inspection of trace plots of parameters and the Brooks-

Gelman-Rubin scale reduction statistics (Brooks and Gelman 1998; Gelman et al. 2014).

[Figure 1 about here]

Simulation study

This section presents a small-scale Monte Carlo simulation study to assess the validity 

and performance of the locally adaptive spatial multi-level logistic model and its global 

counterparts. In the two global models that are included, spatial auto-correlation is represented 

by either a SAR model (as in Equation 4) or a CAR model in Ma et al. (2017). The Level-2 

units are census geographical units (sub-districts) in Shijiazhuang, the capital city of Hebei 

Province, China (the study area in our empirical analysis). In total, there are 276 sub-districts, 

and for each area we randomly generate a number of individuals (ranging from 5 to 100) to 

mimic sample size distributions often observed in real-world data sets. This leads to a 

hierarchical data structure with 5,773 individuals nesting into 276 sub-districts. The linear 

predictor (  in Equation 5) includes an intercept term and a single covariate at each scale. The 𝜼
regression coefficients of covariates at each level are fixed to 1 and 1. The covariates are 

drawn randomly and independently from a standard Normal distribution. The variance of 

Level-2 residuals is set to 0.2 while the spatial auto-correlation parameter is set to 0.9, 

reflecting relatively strong spatial correlations in the Level-2 random effects. The Level-2 

equation (Equation 5) is used to generate spatially dependent random effects. The boundary 

location template is depicted in Figure 2, which delineates the city into four hypothetical 

clusters (in grey colour) and one main (or comparison) area (in white colour). 

Page 14 of 47Annals of the American Association of Geographers



For Peer Review
 O

nly

15

Two sets of simulation experiments are conducted. The first evaluates the performance 

of the three models in retrieving true regression coefficient parameters under scenarios of with 

and without boundaries in the true data generating process. In the scenario where the 

hypothetical boundary locations are presented in Figure 2, the true spatial weights matrix 

implied by the map is used to generate areal level random effects . Individual outcomes are 𝝇
then generated by using a Binomial distribution. In the scenario where boundaries are absent, 

contiguity-based W is used to generate Level-2 random effects. The second set of simulation 

experiments are designed to test the performance of the locally adaptive spatial multi-level 

model in terms of retrieving the hypothetical boundary locations under the above two scenarios. 

Following Lee and Mitchell (2013), in the second set of simulation study we only include two 

intercept terms in the data generating process and add a value of one to the spatial random 

effects of grey areas (Figure 2) to reflect local step changes.

Under each scenario, 100 data sets are generated, and results from the first sets of 

experiments are presented in Table 1. The bias and root-mean-squared error (RMSE) of 

regression coefficients of covariates are presented as percentages of their true values. Under 

the scenario where boundaries are present, biases of the Level-2 covariate coefficient estimates 

are higher in the two global spatial multi-level models than in the locally adaptive model. This 

is expected as the latter model is the true data generating process. It seems that, with respect to 

estimate bias, the global spatial multi-level CAR model is relatively less sensitive to the issue 

of local step change effects than the SAR model. However, the RMSE of estimates on  is the 

highest in the spatial multi-level CAR model among the three models. The biases of Level-1 

covariate coefficient () estimates are small (less than 2%) in all three models and the RMSEs 

are also comparable. Under the scenario where boundaries are absent, i.e., the true data 

generating process is a global spatial multi-level SAR model (Equation 4), biases of estimates 

on  are all small (less than 2%) and comparable between the locally adaptive and global spatial 
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multi-level logistic models. Similarly, with respect to the biases of Level-1 covariate effects, 

they are again small and comparable across the three models. These results show the validity 

of the locally adaptive spatial multi-level model in retrieving true covariate effects. 

The second set of experiments evaluate whether the locally adaptive spatial multi-level 

model can correctly identify hypothetical boundary locations (dotted lines in Figure 2). Again, 

100 data sets are generated under the two scenarios. Following Lee and Mitchell (2013), two 

summary statistics are calculated: sensitivity which measures the percentage of true boundaries 

identified by the proposed model; and specificity which measures the percentage of non-

boundaries correctly identified by the model. In the first scenario, the sensitivity and specificity 

are 96.1% and 97.9% respectively, indicating that the proposal model can accurately estimate 

locations of boundaries and non-boundaries. The specificity is 98.1% in the second scenario, 

suggesting again that the model does not tend to falsely identify boundaries when they do not 

exist. 

[Figure 2 about here]

[Table 1 about here]

Data and Variables

The empirical study primarily draws upon a unique individual census data, containing 

about 130,000 records of individuals aged above 60 in Shijiazhuang, the capital city of Hebei 

province, China. Hebei province surrounds Beijing and is the main component of the Beijing-

Tianjin-Hebei urban cluster, the largest urbanised region in North China. It is also one of the 

most heavily polluted regions in China partly because of the sitting of a large number of heavy 

industries such as mining, cement and steel industries. Moreover, due to its immediate 

geographic proximity to Beijing, Hebei province has been gradually undertaking polluting 

heavy industries transferred from Beijing. The population of Hebei province was about 71.9 
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million, of which 10.2 million lived in Shijiazhuang according to the Sixth population census 

in 2010 (National Bureau of Statistics of China, NBSC 2010). The elderly accounted for about 

13% of the total population in Hebei province (NBSC 2010). The individual census records 

consist of approximately 10% of randomly selected households in the capital city. These 

household members were required to fill in a long census form that records individual socio-

demographic and economic characteristics. In addition, the elderly people were further 

required to report their self-rated health status. We therefore select all elderly samples to 

investigate the social and spatial disparity of self-rated health. This leads to a data set of 

130,051 elderly samples out of more than one million individual census records in Shijiazhuang. 

To prevent potential residential mobility effects, we focus on the long-term local resident 

samples—the elderly whose household registrations are at the current sub-districts where they 

reside and who never lived in other areas for more than six months. Given our key interest in 

the areal level covariate effects on health outcomes, it is important to control for potential 

residential selection effect, i.e. healthy people self-sort themselves into areas with observable 

and unobservable characteristics that promote good health (e.g. Chen, Chen, and Landry 2013).   

The final elderly samples are located in 276 sub-districts (or Jiedao), which are the 

basic census spatial units in China with geographical boundary data publicly available. The 

average population of sub-districts is about 38,000 with a relatively large standard deviation of 

about 26,000. The relative location of Shijiazhuang in Hebei province as well as the sub-district 

boundaries in the city are depicted in Figure 3. 

[Figure 3 about here]

The outcome variable is the self-rated health status for the elderly. It is quantified on a 

4-point Likert scale from 1 (very bad) to 4 (very good). About half of the elderly reported very 
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good health status, followed by more than a third reporting good health status and 16% of the 

elderly reporting poor or very poor health statuses (Table 2). To facilitate model 

implementation and allows for comparability with prior health studies focusing on the elderly 

in China (e.g. Feng et al. 2012; Chen, Chen, and Landry 2013; Ma et al. 2017), self-rated health 

status is recoded into a binary variable: 1 for good and very good health, and 0 otherwise. 

Through aggregating individual records to sub-districts, the spatial distribution of self-

rated health is illustrated in Figure 3, with the breaking points being quintiles of the variable. 

It shows an overall northwest-southeast divide with the southeast of the city showing better 

health outcomes than the northwest on average. A relatively strong positive spatial auto-

correlation in the sub-district level health outcome is found, as indicated by a statistically 

significant Moran’s I of 0.592 with a p-value <0.001. 

The independent variables are measured at the individual and sub-district scales, 

respectively. The individual-level covariates include: individual socio-demographics such as 

age, gender, educational achievement and marital status; poverty; settlement type; and physical 

living environment. Poverty is measured by whether a person lives on minimum living 

allowance or unemployment insurance. Minimum living allowance provides residents with the 

basic safety net under China’s social security system (Besharov and Baehler 2013). It is mean-

tested, and only offers help according to local minimum living standards. The settlement type 

is divided into urban and rural categories to test potential urban-rural divide in health outcomes. 

This information is extracted from an individual’s household registration status, either being 

agricultural hukou (nong-ye hukou, usually living in rural areas) or non-agricultural hukou (ju-

min hukou, usually living in urban areas).3 The physical living environment of the elderly 

includes living space per capita, the presence of tap water, and shower facilities. Physical living 

environments of households are often excluded in previous studies on the elderly’s health in 

China (Feng et al. 2012), but are deemed important to health. 
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At the sub-district scale, we focus on the impacts of environmental pollution, poverty 

concentration, industrial development, and climatic conditions on health. Real-time air 

pollution data from monitoring stations are recorded by the Ministry of Environmental 

Protection of China, but they are only available from 2013, thus not compatible with the time 

frame of our individual census data. Instead, we use model-based estimates on ground annual 

concentrations of PM2.5, provided by the Atmospheric Composition Analysis Group (van 

Donkelaar et al. 2016, public available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=140). 

The key features of this dataset are its relatively long temporal span (from 1998 to 2015), fine 

spatial resolution (about 1.1  1.1 km) and global coverage. It allows for an aggregation of 

PM2.5 concentrations to sub-districts with a standard GIS areal weighting approach (Lloyd et 

al. 2017), and for the calculation of cumulative air pollution concentrations from 2000 to 2010 

for each sub-district. This is a more reasonable proxy variable for pollution exposures of 

individuals residing in an area than a snapshot transient pollution concentration measure. 

Poverty concentration is measured by the proportion of individuals living on minimum living 

allowance or unemployment insurance in a sub-district. Moreover, drawing upon the industrial 

unit census data in 2010 published by NBSC, we geocoded each industrial economic unit in 

Hebei province, aggregated revenues of each unit to the sub-district scale, and calculated the 

proportions of revenue for each sub-district by industry type. The aim is to explore industrial 

development and structural impacts on individual self-rated health. Lastly, climatic factors and 

land vegetation conditions are further included in our health model. Climate factors include 

changes in maximum and minimum daily temperatures from 2000 to 2010. Land vegetation 

condition is measured by the Normalised Difference Vegetation Index (NDVI), a popular 

indicator quantifying the greenness and amount of vegetation of an area (Curran 1980). Both 

temperature and NDVI data are collected from the Resource and Environmental Data Cloud 

Platform, Chinese Academy of Sciences (http://www.resdc.cn) and mapped to sub-districts in 
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the study area (Lloyd et al. 2017). Summaries on variables are provided in Table 2. In the 

analyses that follow, continuous predictor variables are standardised by using the approach in 

Gelman (2008) to facilitate comparisons of covariate effects. The method subtracts a variable 

from its mean and further divides it by two standard deviations so that a one unit change in the 

variable means a change of  one standard deviation from the mean.

  [Table 2 about here]

Results

Level-2 covariate effects on health 

 Both the global and locally adaptive spatial multi-level logistic models developed 

above are applied to explore the social and spatial health disparity in the study area. Deviance 

information criterion (DIC, Spiegelhalter et al. 2002), the common model fit index in Bayesian 

inference that penalises model complexity, is used for model comparison with smaller value of 

DIC indicating better model fit. Moving from a global model to a locally adaptive one is 

associated with a significant increase in model fit, as indicated by a substantive decrease in 

DIC values (about 37.5). We also implemented a locally adaptive model with the Mundlak 

correction terms, however, none of the correction terms are statistically significant at the 95% 

credible interval and the increase in model fit is only marginal (the decrease in DIC is about 

1.14). This suggests that the correlations between individual-level covariates and the sub-

district level residuals are negligible in this particular study. As such, we rely on estimation 

results from the locally adaptive model without the Mundlak correction terms to interpret 

health inequality in Shijiazhuang (Table 3). With the posterior samples of regression 

coefficients and the spatial auto-regressive parameter, the impacts of sub-district level 
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covariates and the associated 95% credible intervals are also calculated and reported in Table 

4.

[Tables 3 and 4 about here]

The direct, indirect and total impacts of poverty concentration are all statistically 

significantly associated with the self-rated health of the elderly, net of the individual covariate 

effects. The direct impact of a one unit increase in poverty concentration (i.e. a change from 

one standard deviation below the mean to one standard deviation above the mean) is associated 

with a 15.7% decrease in the odds of reporting good health while the total impact is a 39.9% 

decrease in the odds (Table 4), ceteris paribus. The difference between the direct and total 

impacts of poverty concentration is attributable to the spillover or feedback effects among sub-

districts. In terms of industrial development effects on health inequality, individuals living in 

sub-districts with higher levels of concentration of mining industry are associated with lower 

odds of reporting good health. Manufacturing and electricity industry concentrations are, 

however, not statistically significantly associated with health status of the elderly in the study 

area. Whilst different industrial sector impacts on health are clear, the results highlight the 

relatively severe detrimental effects of mining-related economic activities on the health status 

of the elderly. This detrimental effect might come from the adverse in-situ and diffusive 

pollution impacts on environments (e.g. water resources, air quality and soils) of mining 

processing activities in China (e.g. Zhang et al. 2012).

Air pollution is found to be negatively associated with self-rated health, but this 

association is not statistically significant. It might be attributable to two reasons. The first is 

related to the poor public awareness and concern of air pollution and its hazardous health 

effects, a situation that does not change until 2013 when long spells of toxic haze blanketed 

most inland areas of China (Ma et al. 2017). The health survey was conducted as a component 
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of the 2010 population census so that the lack of public awareness might contribute to the 

insignificant association between air pollution and self-rated health. Secondly, the measure of 

pollution exposure might entail measurement errors, for instance it does not consider seasonal 

changes in air pollution and individual daily mobility (Kwan 2012; Park and Kwan 2017). Thus, 

the insignificant impacts of air pollution upon health found in this study needs to be interpreted 

with caution. 

With respect to climate change factors, changes in the maximum daily temperature 

during 2000 and 2010 are found to be statistically significantly associated with health. A one 

unit increase in maximum temperature (i.e. about 0.6 oC) appears to be associated with a direct 

impact of 31.3% decrease in the odds of reporting good health (Table 4), ceteris paribus. 

Taking into account the spillover effects between sub-districts, the total impact of maximum 

temperature change amounts to about a 67.4% decrease in the odds of reporting good health 

status. Increasing empirical evidences of the adverse effects on mental health imposed by 

climate change (primarily increases in temperature) have been documented at the global and 

national scales (Obradovich et al. 2018). Our results suggest that climate change effects on 

health could also manifest at a relatively local scale. The impacts of changes in minimum daily 

temperature and land vegetation conditions during the same period on self-rated health is, 

however, not statistically significant. To check the robustness of the sub-district level covariate 

effects on health, we also estimated a model with additional spatial lag terms of these covariates, 

formed by using the original spatial weights matrix. However, none of the regression 

coefficients of spatial lag terms are found statistically significant at the 95% credible level. 

DICs of the two models with and without lagged predictor variables differ only marginally (full 

estimation results are available upon request).

Page 22 of 47Annals of the American Association of Geographers



For Peer Review
 O

nly

23

Level-1 covariate effects on health 

All Level-1 covariates are statistically significantly associated with self-rated health of 

the elderly. Age is related to self-rated health in a nonlinear way, indicated by the statistically 

significant coefficients of the linear and quadratic age variables, holding other variables 

constant. Females tend to be associated with lower probabilities of reporting good health than 

males. The elderly people with compulsory educational qualification are less likely to report 

good health status than those with secondary education or with degree, ceteris paribus. Family 

structure also makes a difference—the elderly who live alone (being single, divorced or 

widowed) tend to report poor health status than those living with spouse, everything else equal.

Poverty is found to be a very significant correlate of self-rated health for the elderly. 

Being in poverty is associated with a 71.7% decrease in the odds of reporting good health, 

ceteris paribus. This highlights the substantive detrimental impact of poverty on health for the 

elderly and suggests that tackling the elderly poverty seems to be an effective policy tool to 

promote health among the elderly in Shijiazhuang. Despite being a capital city, the level of 

economic development of Shijiazhuang substantively lags behind other prosperous mega-cities 

such as Beijing and Shanghai. With respect to the urban-rural divide in health, the elderly with 

agricultural hukou tend to report poorer health status than those with non-agricultural hukou 

do, net of the poverty effect. The urban-rural health divide might reflects the strong disparity 

in healthcare provision and its quality between urban and rural areas (e.g. Feng et al. 2012). A 

favorable everyday living environment, one with spacious living space, tap water and shower 

facility, tends to promote good health for the elderly, everything else equal.

Geographies of health at the sub-district scale

The estimated sub-district level health outcomes  ( , to be precise) are mapped in 𝝇 𝑒𝝇
Figure 4 with breaking points being the quintiles of the variable. Estimated boundary locations 

Page 23 of 47 Annals of the American Association of Geographers



For Peer Review
 O

nly

24

are superimposed on the distribution of . The strength of global spatial autocorrelation of  is 𝝇 𝝇
about 0.725, implying a relatively smooth pattern of health outcomes. The variance of  is 𝝇
about 0.122, accounting for about 3.7% of the total variation of health at the log-odds scale. Of 

753 borders that geographically separate 326 sub-districts, about 16.3% of them are found to 

be boundaries or local step changes. Figure 4 reveals a complex geography of health in the 

study area: visible local step changes scattering on a globally smoothing surface. Another 

feature is that most of the identified boundaries are open—one area’s health outcome 

significantly differs from the health outcomes of a subset of its geographical neighbours (Lee 

and Mitchell 2013). Open boundaries consider potential directionality in the spatial inequality 

of health by allowing for the possibility that one area could differ from some of its neighbours 

in certain directions but blends into others in other directions (Figure 4). This differs from 

geographies of health that would be identified by conventional clustering methods (e.g. the k-

means algorithm).

[Figure 4 about here]

Conclusion and future work

A suitable treatment of spatial auto-correlation is a long-standing challenge in the 

spatial analysis and modelling literature. The difficulty partly arises from the potential co-

existence of global spatial auto-correlation and local step changes, and partly from the multi-

scale structure of spatial data. We addresses this challenge by developing a Bayesian locally 

adaptive spatial multi-level logistic modelling approach. It integrates an adaptive spatial 

econometric model, in which both global spatial smoothness and local step change effects are 

captured, into a multi-level logistic model. Bayesian MCMC samplers are derived to 

implement the global spatial multi-level logistic model, which constitutes the core component 

of the devised iterative estimation algorithm for implementing the locally adaptive model. 
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Computational burden of calculating Binomial likelihoods with a logit link function is reduced 

by the use of a data augmentation approach, drawing upon the recently proposed Pólya-Gamma 

distribution (Polson, Scott, and Windle 2013). 

Results from our Monte Carlo simulation experiments show the validity of the locally 

adaptive spatial multi-level model in retrieving regression coefficients and locations of 

boundaries under the hypothetic scenario when both global spatial auto-correlation and local 

step change effects are present. It also produces low chances of false positive identification of 

boundaries when the true data generating process only entails a global spatial auto-correlation 

effect. Nonetheless, in the presence of a localised spatial dependence structure the global 

spatial multi-level models tend to produce moderately biased and imprecise estimates on 

regression coefficients of Level-2 covariates. These results together suggest that the proposed 

methodology can be a useful complement to the existing spatial analytics tools. 

The empirical study provides insights into the individual- and area-level correlates of 

self-rated health for the elderly in the study area. The geography of self-rated health, net of 

individual-level covariate effects, shows a complex pattern including both large-scale 

smoothness and local step changes. A range of correlates of self-rated health are identified. At 

the sub-district scale, the concentrations of poverty, mining economic activity and climate 

change are adversely associated with self-rated health for the elderly. At the individual scale, 

poverty seems to be the most important correlate of self-rated health for the elderly. Age, 

education, family structure, settlement types (urban versus rural), and physical living 

environments are all found to be significant correlates of self-rated health for the elderly. 

However, we note that given the cross-sectional nature of our data, effects of covariates on 

self-rated health estimated from the model should not be interpreted as causal effects.

Although the identification of health boundaries is interesting and meaningful on its 

own, an important avenue for future research is to explore potential mechanisms of boundary 
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formation. This could include spatial differences in social welfare systems, quality of 

healthcare provision, and physical environments. Another important future extension to the 

model developed here is a full stochastic estimation of W (Rushworth, Lee, and Sarran 2017) 

so that the uncertainties associated with the estimated spatial correlation structures W could be 

measured. However, the practical issue to solve is the vastly increased computational burden. 

We shall explore the possibility of applying various machine learning algorithms (e.g. 

stochastic gradient descent) to implement the complex and computationally intensive locally 

adaptive spatial multi-level models. 
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Notes

1 Although SAR and CAR models have been used almost in parallel in different fields (e.g. spatial econometrics 

and geographical analysis in general versus spatial statistics), they are closely linked, and detailed descriptions on 

the similarities between the two models are provided in Assunção and Krainski (2009).

2  is an area-wise mean-centered variable so the expectation of the product between  and  E[ ] = 0. 𝑥𝑘 𝑥𝑘 𝝁 𝑥𝑘𝝁
Originally, the Mundlak correction is proposed in the panel data modelling context and deals with potential 

dependence between time-variant predictors and individual random effects. However, this approach is readily 

applicable to general multi-level models (Raudenbush and Bryk 2002; Bell and Jones 2015) and spatial panel 

econometrics models (Debarsy 2012).

3 The urban-rural divide here is more of institutional than physical landscape separation of the population, 

although the vast majority of people with agricultural hukou live in rural areas. This hukou system, implemented 

in 1958, has supported and strengthened a rural-urban dual structure in China which results in unequal distribution 

of resources (e.g. health services and facilities), and thus large gaps in terms of health outcomes in rural and urban 

areas (e.g. Chan 2009).
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Figure Captions

Figure 1. The pseudo-code of the iterative algorithm to implement a locally adaptive spatial 

multi-level logistic model. 

Figure 2. Locations of hypothetical boundaries in the sub-district level random effects.

Figure 3. The study area of the capital city of Hebei province and the spatial distribution of 

self-rated health status, measured by percentages of good and very good health status reported 

by the elderly in 2010.

Figure 4. Estimated boundary locations of self-rated health in the study area, superimposed by 

the sub-district level random effects presented at the odds scale.
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Appendix

In this appendix, we derive the Bayesian MCMC algorithm to implement the global spatial 

multi-level logistic model (Equation 4). At its heart, Bayesian estimation is based on the joint 

posterior distribution of all model parameters, which is the product of data likelihood, denoted 

by f(Y|.), and prior densities specified for model parameters, denoted by p(.) as below,

       (A1)𝑓(𝜷, 𝜸,𝜌,𝜎2,𝝇│𝑌, 𝑊) ∝ 𝑓(𝑌│𝜷, 𝜸,𝜌,𝜎2,𝝇, 𝑊)𝑝(𝝇│𝜌,𝜎2,𝜸)𝑝(𝜌)𝑝(𝜎2)𝑝(𝜷)𝑝(𝜸).

The prior distributions for (, , , 2) are assumed to be independent. To be specific, p() and 

p() are both set to a multivariate Normal distribution with mean M0 and variance matrix T0, 

MVN (M0, T0). An uniform distribution over (-1, 1) is assigned to , allowing for the possibility 

of a negative spatial auto-correlation (Griffith 1980). Inverse gamma distribution (IG) is used 

for the variance parameter 2: p(2) ~ IG(a0, b0) with a0 and b0 being the shape and scale 

parameters. The above prior distributions are commonly used in the Bayesian multi-level and 

spatial econometrics literature (e.g. LeSage and Pace 2009; Gelman et al. 2014).

The likelihood function for the model is,

𝑙(𝜷, 𝜌,𝜎2,𝝇) =∏𝑝𝑦𝑖𝑗𝑖𝑗 (1 ― 𝑝𝑖𝑗)1 ― 𝑦𝑖𝑗 =∏ {exp (𝑥′𝑖𝑗𝜷 + 𝜍𝑗)}
𝑦𝑖𝑗

1 + exp (𝑥′𝑖𝑗𝜷 + 𝜇𝑗) (A2)

The posterior distribution of regression coefficients  is not a standard density function in a 

logistic model, usually leading to the use of a Metropolis-Hastings (M-H) sampling method to 

draw inferences parameters (Gelman et al. 2014). Based on their devised Pólya-Gamma 

distribution, Polson, Scott, and Windle (2013) proposed a computationally effective data-

augmentation strategy to conduct posterior inferences on regression coefficients in logistic 

models. This innovation is important and useful as it enables Gibbs samplers to be derived for 
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posterior distributions of other model parameters. Theorem 1 in their study established the 

critical link between a logistic likelihood function (Equation A2) and a Pólya-Gamma 

distribution. The likelihood contribution of an individual (i, j), lij(.), is expressed as (Polson, 

Scott, and Windle 2013, p. 1342),

𝑙𝑖𝑗(𝜷, 𝜌,𝜎2,𝝇) =
{exp (𝑥′𝑖𝑗𝜷 + 𝜍𝑗)}

𝑦𝑖𝑗
1 + exp (𝑥′𝑖𝑗𝜷 + 𝜍𝑗)

∝ exp {𝜅𝑖𝑗(𝑥′𝑖𝑗𝜷 + 𝜍𝑗)}∫+∞
0

exp { ―𝜔𝑖𝑗(𝑥′𝑖𝑗𝜷 + 𝜍𝑗)2
/2}𝑝(𝜔𝑖𝑗│1,0), (A3)

where ij = yij – 0.5, and p(ij|1,0) is the density of a Pólya-Gamma random variable PG(1,0). 

With Equation A3 it is readily seen that conditioning on the Pólya-Gamma latent variable ij, 

lij(.|ij) is proportional to

𝑙𝑖𝑗(𝜷, 𝜌,𝜎2,𝝇|𝜔𝑖𝑗) ∝ exp {𝜅𝑖𝑗(𝑥′𝑖𝑗𝜷 + 𝜍𝑗) ―𝜔𝑖𝑗(𝑥′𝑖𝑗𝜷 + 𝜍𝑗)2
/2}. (A4)

This simplifies the overall likelihood function, conditioning on a vector , to

𝑙(𝜷, 𝜌,𝜎2,𝝇|𝝎) ∝ exp { ― 0.5(𝝃 ― 𝒙′𝜷 ― ∆𝝇)′Ω(𝝃 ― 𝒙′𝜹 ― ∆𝝁)} (A5)

where  =  / and  is a diagonal matrix with entries of .  is the random effect design 

matrix as described above. The vector  now serves as a working response variable and is used 

to derive Gibbs samplers for other model parameters. 

Combining Equation A5 and prior distributions gives the joint posterior distribution for 

model parameters. The full conditional posterior distribution for regression coefficients of 

Level-1 covariates x,  f( | Y, W, , 2, , ) is a multivariate Normal distribution, MVN (M, 𝝇
) with
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𝑀𝜷 = Σ𝜷[𝒙′Ω(𝝃 ― ∆𝝇) + T―1
0 M0];   Σ𝜷 = (𝒙′Ω𝒙 +  T―1

0 )
―1

(A6)

Based on Equation 4 and using the Jacobian method that transforms the spatially dependent 

vector  to an independent vector (e.g. Anselin 1988), the prior distribution of  is,𝝇 𝝇
𝑝(𝝇 |𝜌,𝜎2,𝜸) = |B|(2𝜋𝜎2)

― 𝐽
2exp { ―0.5𝜎―2(𝐵𝝇 ― 𝒛𝜸)′(𝐵𝝇 ― 𝒛𝜸)} (A7)

where B = IJ  W and |B| is the absolute value of the determinate of B. Combining Equations 

A5 and A7 gives the full conditional distribution of , which is a multivariate Normal 𝝇
distribution, MVN ( , ) with𝑀𝝇 Σ𝝇

.𝑀𝝇 = Σ𝝇[∆′Ω(𝝃 ― 𝒙′𝜷) + 𝐵′𝒛𝜸/𝜎2];   Σ𝝇 = (B′B/𝜎2 +  ∆′Ω∆)―1
(A8)

The posterior distribution of  (regression coefficients of Level-2 covariates) is a multivariate 

Normal distribution, MVN (M, )) with

.𝑀𝜸 = Σ𝜹[𝒛′B𝝇/𝜎2 + T―1
0 M0];   Σ𝜸 = (𝒛′𝒛/𝜎2 +  T―1

0 )
―1

(A9)

The posterior distribution for 2 is an Inversed Gamma distribution IG(a1, b1) where

.𝑎1 = 𝐽/2 + 𝑎0;   𝑏1 = (𝐵𝝇 ― 𝒛𝜸)′(𝐵𝝇 ― 𝒛𝜸)/2 + 𝑏0 (A10)

The conditional posterior distribution for the spatial autoregressive parameter  is 

𝑓(𝜌│.) = |𝐼J ― 𝜌𝑊| exp { ― 0.5𝜎―2(𝐵𝝇 ― 𝒛𝜸)′(𝐵𝝇 ― 𝒛𝜸)} (A11)

which is not a commonly-recognised probability density function, thus a Gibbs sampler is not 

directly applicable (Gelman et al. 2014). Following Smith and LeSage (2004) and Dong and 

Harris (2015), an inversion sampling approach is employed to update . In short, two steps are 

involved. In the first step, the log-posterior density function of , log f(), is evaluated 
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empirically based on the updated values of ( (k), 2(k), (k), (k)) in the kth MCMC iteration. log 𝝇
f() is evaluated as,

𝑓(𝜌│.) = log |𝐼𝐽― 𝜌𝑊| ― (𝑒(𝑘)
0 ― 𝜌𝑒(𝑘)𝑑 )′((𝑒(𝑘)

0 ― 𝜌𝑒(𝑘)𝑑 )/2𝜎2(𝑘) + 𝐶 (A12)𝑒(𝑘)
0 = (𝐼𝐽― 𝒛(𝒛′𝒛)―1𝒛); 𝑒(𝑘)𝑑 = 𝑊𝝇(𝑘)(𝐼𝐽― 𝒛(𝒛′𝒛)―1𝒛). (A13)

C is a constant. e0 and ed are two vectors of residuals when regressing (k) and (k) on the 𝝇 𝑊𝝇
areal level covariates z. In the second step, we numerically integrate logf() on  over the range 

of (-1, 1) and draw (k) from its empirical cumulative distribution.

In the last step, we update the Pólya-Gamma latent variable  to calculate our working 

response variable . As proved by Polson, Scott, and Windle (2013), the posterior distribution 

of , f(|Y, W, , , 2, ) is also a Pólya-Gamma distribution, PG(1, ).𝝇 𝒙′𝜷 + ∆𝝇

Page 39 of 47 Annals of the American Association of Geographers



For Peer Review
 O

nly

Table 1. Summary of Monte Carlo simulation results. 

Metrics Model Scenario 1: 

With boundary

Scenario 2:

Without boundary

% Bias () Locally adaptive spatial multi-level 4.94 1.40

Global spatial multi-level SAR 9.01 1.46

Global spatial multi-level CAR 5.94 1.78

% RMSE () Locally adaptive spatial multi-level 6.42 5.89

Global spatial multi-level SAR 6.38 5.94

Global spatial multi-level CAR 7.11 6.07

% Bias () Locally adaptive spatial multi-level 1.63 1.17

Global spatial multi-level SAR 1.32 1.19

Global spatial multi-level CAR 1.32 1.46

% RMSE () Locally adaptive spatial multi-level 3.96 4.07

Global spatial multi-level SAR 3.99 3.99

Global spatial multi-level CAR 4.01 4.09

% Bias () Locally adaptive spatial multi-level 0.55 -1.48

Global spatial multi-level SAR -2.28 -1.44
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Table 2. Descriptive summaries on variables used in the study.

Variables Definitions
Mean/proportions

(Std.dev)

4 = Very good 47.3%

3 = Good 36.7%

2 = Bad 12.8%
Self-rated health

1 = Very Bad 3.2%

Individual-level variables

Age Continuous age variable 69 (7.4)

Gender Males as base category 53.4%

Education Compulsory education 88.5%

Secondary education 6.7%

College and above 4.7%

Family structure Single 2.1%

With spouse 71.1%

Divorced 0.5%

Widowed 26.3%

Poverty
Living on minimum living allowance or 

unemployment insurance
1.7%

Rural household Agricultural hukou holders 68.4%

Living area per capita 40.6 (29.2)

With tap water 31.2%Living environment

With shower facilities 48.8%

Sub-district level variables

Poverty concentration
Proportions of people receiving minimum living 

allowance or unemployment insurance
0.5% (0.4%)

Cumulative air pollution Cumulative air concentrations during 2000 to 2010 780.2 (274.2)

Mining industry proportion Proportion of mining industry revenue 8.4% (26.1%)

Manufacturing industry 

proportion
Proportion of manufacturing industry revenue 51.7% (48.1%)

Electricity industry 

proportion
Proportion of electricity industry revenue 3.1% (13.8%)

Land vegetation condition 

change

Changes of land vegetation conditions from 2000 to 

2010 measured by NDVI 
-0.047 (0.041)

Maximum daily 

temperature change 

Changes of maximum daily temperature from 2000 

to 2010 (unit: oC)
2.793 (0.307)

Minimum daily 

temperature change 

Changes of minimum daily temperature from 2000 

to 2010 (unit: oC)
-6.739 (1.033)
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Table 3. Estimation results from the locally adaptive spatial multi-level model.

Variables Posterior distributions of regression coefficients

Median 2.5% 97.5%

Individual-level covariates 

Age 0.225* 0.215 0.236

Age squared 1.301* 1.231 1.373

Gender 0.881* 0.85 0.915

Compulsory education 0.797* 0.722 0.874

College or above 1.182* 1.002 1.385

Single 0.887* 0.791 0.985

Divorced 0.833* 0.706 0.964

Widowed 0.806* 0.775 0.839

Poverty 0.283* 0.257 0.314

Rural household 0.675* 0.615 0.743

Living area per capita 1.107* 1.069 1.147

With tap water 1.302* 1.211 1.387

With shower facilities 1.221* 1.171 1.275

Sub-district level covariates

Cumulative air pollution 0.988 0.941 1.008

Poverty concentration 0.868* 0.780 0.958

Electricity industry proportion 1.007 0.926 1.103

Manufacturing industry proportion 1.041 0.936 1.153

Mining industry proportion 0.848* 0.769 0.938

Land vegetation condition change 0.666 0.223 1.941

Maximum daily temperature change 0.734* 0.596 0.907

Minimum daily temperature change 0.952 0.890 1.024

 0.725* 0.614 0.828

Marginal variance of ( )𝝇 0.122 0.089 0.172

Number of individuals 129,809

Number of sub-districts 276

DIC 88630

Note: the symbol “*” presents a 95% significance level and a regression coefficient is 

statistically significant if its 95% credible interval does not contain zero. DIC indicates the 

deviance information criterion. Odds ratios (the exponentials of estimated regression 

coefficients) are reported in the table.
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Table 4. Estimation results of the direct, indirect and total impacts of sub-district level covariates.

Variables Direct impacts Indirect impacts Total impacts

Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5%

Poverty concentration 0.843 0.731 0.950 0.715 0.205 0.924 0.601 0.159 0.875

Mining industry proportion 0.818 0.717 0.926 0.665 0.189 0.892 0.545 0.145 0.824

Maximum daily temperature change 0.687 0.519 0.894 0.481 0.034 0.834 0.326 0.017 0.730

Note: Odds ratios are reported in the table. Reported estimates on the impacts of the sub-district level variables in the table are all statistically significant at the 

95% credible interval. The direct, indirect and total impacts of individual-level covariates are all equal to their regression coefficients so that they are omitted 

in the table.
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Figure 1. The pseudo-code of the iterative algorithm to implement a locally adaptive spatial multi-level 

logistic model. 
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Figure 2. Locations of hypothetical boundaries in the sub-district level random effects. 

148x102mm (300 x 300 DPI) 

Page 45 of 47 Annals of the American Association of Geographers



For Peer Review
 O

nly

 

Figure 3. The study area of the capital city of Hebei province and the spatial distribution of self-rated health 

status, measured by percentages of good and very good health status reported by the elderly in 2010. 
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Figure 4. Estimated boundary locations of self-rated health in the study area, superimposed by the sub-

district level random effects presented at the odds scale. 
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