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ABSTRACT 

This study determines the thermophysical properties of nanofluids using ultrasonic techniques. 

Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the 

speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, dp = 

50 nm) are made at volume fractions from 1-5 vol% over the temperature range 20-90°C. The 

observed relationships between the measured parameters and speed of sound variation are 

presented. Available theoretical approaches are reviewed and applied to the data of the study. The 

speed of sound data together with measurements of density and predictions of thermal 

conductivity, derived from Lagrangian particle tracking (LPT) simulations, are used to determine 
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 2 

the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The 

results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the 

dependence of the speed of sound on temperature and particle concentration, and hence the 

influence of these parameters on the thermophysical properties of nanofluids. Using the speed of 

sound approach and LPT simulations, the predicted thermal values, which have an estimated 

accuracy of 5-10%, show good agreement with theoretical and experimental results available in 

the literature for similar operating conditions. This research forms the basis for the use of novel 

acoustic techniques for online, in situ measurement of nanofluids and their potential applications 

in solar thermal power systems. 

INTRODUCTION 

A nanofluid is defined as a dispersion of nanoparticles, typically in the size range 1-100 nm, in a 

base fluid. Nanofluids were first suggested by Choi in 19951 to improve the heat transfer properties 

of conductive fluids by doping them with small concentrations (1.0 to 5.0 vol%) of nanoparticles. 

Nanofluid research has since received increased attention, with extensive experimental, theoretical 

and computational studies being completed2. The enhancement in heat transfer characteristics 

obtained using different types of nanoparticles such as metal oxides, non-metallic and carbon 

nanotubes is described in the literature3-8, with substantial thermal properties improvements 

found9-13. The thermal conductivity ݇ of nanofluids, for example, is usually found to be much 

greater than that predicted by classical models, such as the theoretical work of Maxwell1. The most 

significant enhancement in samples containing Al2O3 in water with volume fractions ranging 

between 1 and 5% is an increase in ݇ of between 2 and 27.5%5-6. Conversely, the specific heat of 

nanofluids was reported to decrease gradually by 0.65% as the nanoparticle concentration 

increases from 0% to 5%14. 
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Wang and Mujumdar5 stated that there are no general mechanisms that explain the thermophysical 

enhancements of nanofluids, although possible reasons from a modelling perspective have been 

proposed, such as: collision of the base fluid molecules with each other; thermal diffusion of 

nanoparticles within the fluid; collisions between nanoparticles15; Brownian motion-induced nano-

convection of nanoparticles16 (as a secondary dynamic mechanism); and high particle specific 

surface area which presents a large heat transfer surface between the particles and the fluid phase. 

Additionally, there are several other possible macro-scale explanations such as particle-driven 

natural convection, convection induced by electrophoresis, and thermophoresis5. Further details of 

each of these mechanisms, and models of them, are given by Lee and Jang17. This is in addition to 

the influence of the liquid-solid interface and interactions at the molecular level; the ordered 

layering of liquid molecules near the solid particles (e.g. liquid nano-layering)18, 19. It is also 

possible that the improvement of the thermal conductivity of nanofluids occurs at an atomic-scale, 

since it can be related to the transport of electrons in a medium having negligible electrical 

resistivity caused by scattering (known as ballistic phonon transport), or surface charge state5. 

Recently, the number of industrial applications that can potentially use nanofluid technology, 

ranging from renewable energy, nuclear reactors, transportation, electronics as well as biomedicine 

and food, have received much attention, with the main focus being on increased energy efficiency. 

In these industries, nanofluids offer the following advantages as compared with conventional heat 

transfer fluids: heat transfer intensification leading to reduced fluid volumes compared to single-

phase fluids; reduced particle clogging as compared with conventional slurries, thus allowing 

system miniaturization; and adjustable parameters, including flowability, heat capacity20 and 

thermal conductivity, by varying the particle type and concentration21. On the other hand, 

nanofluids may have disadvantages such as: increases in pumping power requirements due to 
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greater pressure drop as a result of increased density relative to the base fluid; long-term particle 

settling22 and potential clogging of flow passages; possible damage to pipeline transportation 

systems by erosion; the high cost of nanoparticle suspensions; and increased axial rises in wall 

temperature due to degraded specific heat23. 

At present, little is known about the behaviour of nanofluids5 in a process plant, particularly those 

with potential use in high-temperature applications (e.g. solar thermal plants). Measurements of 

nanofluid properties are usually limited by either the ability of available instrumentation or 

material compatibility of the sensing element. This is unfortunate as such measurements can 

provide critical information about optimal operating conditions, which is required if nanofluid 

technology is to be scaled-up for practical use. The use of acoustic techniques has therefore been 

proposed since they are ideal for characterizing single- and multiphase elastic fluids24 due to the 

dependence of the speed of sound on a number of parameters such as density, compressibility and 

temperature. Furthermore, acoustic measurements provide a multitude of data such as time-of-

flight, acoustic impedance and attenuation, and variations in acoustic velocity which can be used 

to monitor particle settling25, 26, determine the particle concentration of a dispersion27, and measure 

the critical transport velocity of a particle suspension in a flow28. 

The focus of this study is on the use of an ultrasonic technique for the analysis and characterization 

of water-based nanosuspensions using the sound speed dependence on temperature and 

concentration29. This technique is promising for the characterization of multi-phase systems 

because it is flexible, cost effective, non-destructive, non-invasive and can operate in dense and 

optically opaque nanosuspensions30 with fewer restrictions than optical methods. The current study 

also demonstrates the potential of acoustic methods to determine the thermophysical properties of 

nanofluids. This is achieved by first measuring the speed of sound in nanofluids, and then using 
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this data, together with measurements of density and predictions of thermal conductivity derived 

from Lagrangian particle tracking (LPT) simulations, to determine the ratio of heat capacities of 

nanofluids using a modified version of the Bridgman equation. This in situ, online method has 

potential applications in energy storage where thermofluids such as water and molten salts dosed 

with nanoparticles are under investigation as thermal transfer fluids and storage media, with their 

application requiring that they be effectively measured and monitored. 

THEORY 

A. Speed of sound of nanofluids 

The variation of the sound speed in water is anomalous24 in that it does not vary monotonically 

with temperature31. However, the ultrasound speed in water has been widely investigated as it is 

easy to obtain, and at the same time water is a fundamental component of many products and 

reactions used in the chemical industry. Water is therefore widely used as a reference material for 

the calibration of many acoustic instruments, in manufacturing and laboratory applications32. 

The most likely explanation of these anomalous characteristics is the nature of the structure of 

liquid water molecules, which are linked together by weak hydrogen bonds to give a complex long 

range structure31. Of particular importance in this connection is the relationship between the 

compressibility and density of water molecules versus temperature (at standard atmospheric 

pressure), as given by Kell33, see Figure 1. As a result, both the compressibility and density of 

water are relatively high at low temperatures (0-10°C). However, as the temperature of water 

increases, the compressibility decreases sharply, while density shows an inverse exponential 

decline over the temperature range 10-100°C. Considering these effects in terms of the sound speed 
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formula as given by the Urick34 (Eq. (1) below), it is clear that an increase in the temperature of 

water brings an attendant increase in the sound speed. 

 
Figure 1. Compressibility and density of water with temperature at standard atmospheric pressure. 

Liquid mixtures and homogenous particle dispersions in water are treated by assuming that the 

speed of sound is mainly affected by the mean compressibility and mean density of the components 

in the system. This fundamental observation, according to Povey24, was first made in 1941 by 

Wood35, who applied it to liquid mixtures. However, the relationship between the sound velocity 

in a particle-liquid dispersion can be attributed to Urick34, hereafter referred to as the Urick 

equation: 

ܥ ൌ ͳඥߢ௦ߩ ǡ                ߢ௦ ൌ ෍ ߶௝ߢ௦௝௝ ǡ               ߩ ൌ ෍ ߶௝ ௝௝ߩ  ǡ 
(1) 

where ܥ is the velocity of a sound wave (ms-1) in the dispersion, ߢௌ the adiabatic compressibility, ߩ the density, ߶ the volume fraction of the dispersed phase and the subscript ݆ refers to the 
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constituent phases. As stated by Povey24, for one material dispersed within another, the 

compressibility and density can be written as: 

௦ߢ ൌ ௦ଶߢ߶ ൅ ሺͳ െ ߶ሻߢ௦ଵǡ ߩ ൌ ଶߩ߶  ൅ ሺͳ െ ߶ሻߩଵǡ (2) 

where the subscripts 1 and 2 refer to the continuous and dispersed phases, respectively. Eq. (1) and 

(2) can be used to determine ܥ if ߢ௦ and ߩ of both phases are known. 

Another form of the Urick equation is36: 

ܥ ൌ ඨܥ௣ሺɀ െ ͳሻȽ௣ଶܶ  ǡ           (3) 

where ܥ௣ is the specific heat at constant pressure (isobaric), Ƚ௣ the coefficient of thermal expansion 

(at constant pressure), ܶ the absolute temperature, and ߛ the ratio of heat capacities (also known 

as the isentropic index), defined as ߛ ൌ  ௩ being the specific heat at constant volumeܥ ௩, withܥ௣Ȁܥ

(isochoric). For water at atmospheric pressure ܥ௣, Ƚ௣ and ߛ vary considerably with temperature, 

the net result being an increase in the sound velocity with temperature.  

Sound waves propagate as a series of compressions and expansions that change the local kinetic 

energy of the medium that they pass through. As temperature is a measure of the internal energy 

of the system, it varies during sound wave propagation. However, the variations in density of the 

liquid medium take place rather more rapidly with temperature. As a result, the process of heat 

flow through the test cell (described below) is assumed to be adiabatic. On this basis, Eqs. (1) to 

(3) are used throughout this study to calculate the sound velocity in both pure water and water-
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based nanofluids, assuming the propagation of sound to be adiabatic24. For an adiabatic process 

involving a liquid, both the pressure and volume remain constant. 

In principle, measured values of the speed of sound and density of the medium can be used to 

calculate other thermodynamic parameters that are useful for the modelling of nanofluids. The 

variation of these parameters with temperature can be calculated from a set of thermodynamic 

relations using the equation of state (see Supporting Information -A).  

B. Predictive correlation between speed of sound and thermophysical properties 

The thermal conductivity of a liquid depends on the very rapid transmission of energy via 

molecular interaction37. This mechanism is best understood by considering the speed of sound in 

liquids, which is five to ten times larger than the speed of motion of the molecules themselves as 

determined by kinetic theory. The best way to understand the speed of sound in liquids is by 

considering two colliding molecules, where the energy is transferred instantaneously from the 

centre of one molecule to the centre of another37. 

Most semi-empirical and theoretical methods used to determine the thermal conductivity, ݇, of 

liquids (and suspensions) are based on the empirical relation of Bridgman38, which assumes that 

liquid molecules are arranged in a cubic lattice of a particular dimension, and that energy is 

transferred from one lattice plane to the next at the speed of sound for the given fluid39. According 

to Lin and Pate40, the theoretical equation of Bridgman38 was later justified by Powel et al.41 for 

the thermal conductivity of liquids. The resulting equation, which can be used for pure fluids, is 

as follows: 

݇ ൌ ʹǤͺܭ஻ݒଶȀଷܥǡ (4) 



 9 

where ܭ஻ is the Boltzmann constant and ݒ the molecular volume of the liquid, that is, the molecular 

mass divided by the density. 

The second formulation is due to Eyring37, who supposes that only the rotational and translational 

degrees of freedom are effective in transferring the energy in a polyatomic liquid (e.g. water). 

Accordingly, the empirical relation of Bridgman38 can be expressed as: 

݇ ൌ ʹǤͺܭ஻ݒଶȀଷɀିଵȀଶܥǤ (5) 

Here, the heat capacity ratio ߛ (also referred to as the Eucken correction37), should be taken as the 

predicted value from both model simulation and speed of sound measurements. In other words, it 

is used to convert the isothermal compressibility ்ߢ to the adiabatic compressibility ߢ௦ measured 

in speed of sound experiments37, 42, since sound compression waves are adiabatic in reality, rather 

than isothermal. According to Hirschfelder37, Eq. (5) applies extremely well with a mean deviation 

of around 10% for a large number of liquids. Bridgman also pointed out that his formula gives the 

correct temperature dependence of the thermal conductivity of liquids at atmospheric pressure37. 

Although most published data on ߛ are for gases, the importance of ߛ for liquids is highlighted in 

a number of studies37, 43, 44 , and it has been referred to as a fundamental physical property of fluids 

with great importance in reversible adiabatic processes. The value of ߛ typically varies from 1.30 

to 1.66 in gases42 and from 1.1 to 1.36 in liquids45, as a function of temperature and pressure. On 

account of its contribution to sound absorption in liquids, it has been suggested that Ȗ in liquids 

might be referred to as the sonic anisotropy43 (the phenomenon that determines the direction of 

ultrasonic wave propagation and its asymmetry). 
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As to the theoretical framework and the use of the Bridgman equation38 (i.e. Eq. (5)), Chebbi46 

developed a model to correlate the speed of sound and thermal conductivity in nanofluids. The 

results suggest that the enhancement of thermal energy and heat transfer were at the speed of sound 

in nanofluids (e.g. via consecutive collisions between nanoparticles). 

From this it follows that the speed of sound using the Urick equation, Eqs. (1) and (3), can be 

related to Ȗǡ  :and density as follows ்ߢ ௦ǡߢ

ܥ ൌ ͳඥߢ௦ߩ ൌ ൬ܥ௣ܥ௩ ͳߩ்ߢ൰ଵȀଶ
 (6) 

Eq. (4) can now be re-written in terms of the thermodynamic properties as: 

݇ ൌ ʹǤͺܭ஻ݒଶȀଷ ͳඥߢ௦ߩ 
(7) 

Eq. (5) can be treated similarly: 

݇ ൌ ʹǤͺܭ஻ݒଶȀଷ ൬  ൰ଵȀଶǤ (8)ߩ்ߢߛ 

Measuring the heat capacity at constant volume ܥ௩ can be extremely difficult for liquids and solids 

because small temperature changes typically produce large pressure changes, meaning that the 

containing vessel must be able to withstand very high pressure variations. Instead it was decided 

here to predict the thermal conductivity k for nanofluids at different concentrations and constant 

pressure using a numerical simulation47 together with experimental measurements of density and 

the speed of sound, C, over a range of temperatures. The modified Bridgman equation, Eq. (8), is 

then used to solve for the heat capacity ratio ߛ at constant volume, by fitting to equations of the 

form ߛ = ߛ(Ɏ,T) and ݇  = ݇ (Ɏ,T). 
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MATERIALS AND METHODS 

A. Materials 

Alumina nanoparticles (Al2O3, 80% 99.9% ,ߛ 20% /ߙ purity) were purchased as a powder from 

US Research Nanomaterials Inc. Scanning electron microscopy (SEM) of the powder (Figure 2) 

confirmed particle clusters composed of the primary particles. The supplier reported average 

particle size was dp = 50 nm and this was experimentally verified using the Zetasizer Nano ZS90 

(Malvern Panalytical Ltd.), see Figure 3. 

 
Figure 2. (Left) SEM image of Al2O3 nanoparticles (99.9% pure, dp = 50 nm). (Right) Images of Al2O3 

water-based nanofluids, from right to left: 1 water with 1 vol% nanoparticles; 2 with 3 vol%; and 3 with 

5 vol%. Samples on the top have been sonicated, samples at the bottom after settling for 4 weeks in the 

laboratory. 

The nanofluids were prepared in distilled water at pH 6.8 and sonicated (505 Sonic Dismembrator, 

Fisher Scientific) for 250 min to disperse the primary particles. Without sonication the particle size 

distribution was found to be very broad (Figure 3) with particle clusters greater than a few microns. 

To enhance particle dispersion and suspension stability, the suspension pH was set at pH = 8.5-9.2 

and the particle zeta potential = 24 mV, as measured using the Zetasizer Nano ZS90. Under these 
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conditions it was possible to disperse the particles to ~50 nm by sonication and the resulting 

particle suspension was visually assessed to remain stable during the acoustic measurements. 

Figure 2 (right) shows the results of sonicated specimens versus those at the bottom to settle for 

four weeks in the laboratory (Figure 2, samples 1, 2 and 3). Although the level of brightness is 

different between the two sets of images, the photographs clearly show the settled bed of 

nanoparticles after settling for four weeks. 

 
Figure 3. Particle size distribution of Al2O3 nanoparticles measured using the Zetasizer Nano ZS90 

without (blue) and with (red) sonication. 

 

B. Physical properties of the materials 

A detailed description of the physical properties of pure water and the particle species is given 

with sources in Table 1 and 2, respectively. 
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Table 1. Physical properties of pure water used as the base fluid. 

Parameter At T=25°C 

Sound speeda, C / ms-1 1493 

Thermal conductivityb, ݇  / W m-1K-1 0.608 

Heat capacityb, Cp / kJ kg-1K-1 4.1796 

Densityb, ȡ / kg m-3 997.1 

Compressibilityc, ߢ௦ / Pa-1 44.8×10-11 

The above parameters can be expressed as function of temperature T (in K) as follows: 

C = 1.40238744×103 + 5.03836171T – 5.81172916×10-2 T2 + 3.34638117×10-4 T3 –
1.48259672×10-6 T4 + 3.16585020×10-9 T5 (C in ms-1, 273 - 373 K)  

(9)a 

݇௅ = –0.2758 + 4.6120×10-3T – 5.5391×10-6T2 (݇ in W m-1K-1, Tmin = 273 K (݇ ௅ ൌ ͲǤͷ͹ሻ and 
Tmax = 633 K (݇ ௅ ൌ ͲǤͶʹͶሻ) (10)b 

Cp = 92.053 + −3.9953×10-2T + (−2.1103×10-4T 2) + 5.3469×10-7T 3 (Cp in J mol-1K-1, 273 - 
615 K)  

(11)b 

ȡL = 0.14395 / 0.01121+(1– (T/649.727)^0.05107 (ȡ in kg m-3, 273 - 648 K) (12)b ߢௌ = (50.88496 + 0.6163813T +1.459187×10-3T2 + 20.08438×10-6T3 – 58.47727×10-9T4 +  
410.4110×10-12T5) / (1 + 19.67348×10-3T) (ߢௌ in bar-1, 273 - 423 K) 

(13)c 

a See Ref.49 
b See Ref.50 
c See Ref.33 

  

Table 2. Physical properties of the particle species Al 2O3 (dp= 50 nm, component purity 99.9%).   

Parameter At T=25°C Remarks 
Sound speedd, C / ms-1 6420 longitudinal waves 

Thermal conductivitye, ݇  / W m-1K-1 37  

Heat capacitye, Cp / kJ kg-1K-1 0.775  

Densityd, ȡ / kg m-3 3850  

Compressibilityd, ߢ௦ / Pa-1 39.4×10-13  

The above parameters can be expressed as function of temperature T (in K) as follows: ݇ = 5.5 + 34.5 × exp.[–0.0033×(T – 273)] (݇  in W m-1K-1, 273 - 1573 K)  (14)e 

Cp =  1.0446 + 1.742×10-4T – 2.796×104T2 (Cp in kJ kg-1K-1, to 1773 K)  (15)e 

d See Ref.51 
e See Ref.52 
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C. Acoustic test cell 

A high-temperature test cell was designed to study the thermal performance of nanofluids under 

both static and dynamic conditions. It consisted of a temperature-controlled cylindrical vessel 

fitted with an axial agitator (IKA LR 1000, Germany). The cell had a flat base which acted as an 

acoustic reflector, and the ultrasonic transducers were placed at the top end of the cell facing 

downwards. The cell was fitted with temperature sensors that allowed measurements to within 

±0.01°C. The basic principle of the experimental setup is shown schematically in Figure 4.  

 

Figure 4. Schematic of the test cell experimental setup for nanofluid sound velocity and thermal 

conductivity measurements. 

An ultrasonic signal processing unit (UVP-DUO, Met-Flow, Lausanne, Switzerland) was used as 

a signal generator with two ultrasonic emitter-receiver transducers. This ultrasonic systems is 
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capable of characterizing nanofluids with high precision, with the main sources of uncertainty 

being the probe position height and the orientation accuracy of the probe giving a combined error 

of (±0.17mm), the oscilloscope peak-to-peak resolution (±0.18ȝs) and the uncertainty in 

temperature measurements (±0.1°C); for further details, see Supporting Information -B. Analysis 

of these errors demonstrates that the temperature variation is negligible compared to other sources 

of error (Supporting Information -B). 

Two types of emitter-receiver probes were used in this study, both operating at 4 MHz: standard 

(0-60°C) 4 MHz probes (Imasonic SAS, Besançon, France), active diameter 5 mm; and a high-

temperature model (Ionix, Huddersfield, UK) to operate over a wider range of temperatures (–40 

°C to +380°C), active diameter 10 mm. A backscattered pressure wave is produced by suspended 

particles which produces a voltage in the transducer. This echo signal was monitored and displayed 

on a digital oscilloscope (WaveSurfer 3024, Teledyne LeCroy, Glasgow, UK).   

D. Measurements of speed of sound  

The test cell was designed such that the transducers were in contact with the nanofluid. The cell 

operates on a time-of-flight basis over a known distance. The echo voltage signal was recorded by 

an oscilloscope through the test section of the cell in a vertical, one-dimensional profile. The test 

section and ultrasonic probe are shown in Figure 5. 
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Figure 5. (Left) High-temperature transducer used for the speed of sound measurements. (Right) 

Photograph of the test section of the nanofluid thermal cell. 

A small volume of nanofluid was used (approximately 1 litre) so that the system could be well 

controlled and all dispersions were degassed and well mixed. 

E. Distance calibration  

Pure water was used to validate the measurement method because there are reliable, high-precision 

reference data in the literature. The distance between the probe tips and the base of the cell was set 

to 100 mm using a height gauge (with accuracy including orientation of probe of ±0.17mm; see 

Supporting Information -B) as shown in Figure 4, giving a total measurement distance of 200 mm 

(after travelling through distance h=100 mm, total = 2h). Figure 6 shows the reflected single 

between the ultrasonic probe and base of the cell.  

The ultrasonic signal processing unit was used as a signal generator, and triggered the oscilloscope; 

see the left side of Figure 6. It was found most appropriate to acquire a waveform within only one 

triggering interval (the repetition frequency) and repeat the acquisition a number of times for 

multiple measurements, which were then averaged. 
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Figure 6. Screenshot of ultrasonic pulse captured by oscilloscope over test distance of 100 mm. Trigger 

signal in yellow, received signal in blue. 

 

F. Methods of determining nanofluid thermal properties 

Quoted values of the thermal conductivity through specific types of material are usually given at 

a specific temperature. However, no data exist in the literature for the thermal conductivity for this 

particular type of Al2O3 nanoparticle suspension at the required operating conditions, thus it can 

only be obtained experimentally or by using numerical simulation. Although the conductivity of 

Al 2O3-nanofluids could be measured directly via experiments, such measurements are difficult and 

so the numerical method described here is presented as an alternative approach. Simulation of 

nanofluids also has the advantage of providing some validation results, as well as enabling a more 

detailed understanding of the underlying processes, i.e. the dynamics involved in the enhancement 

of thermal properties via nanoparticle loading. 

[m
V

] 
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The simulations were performed using a numerical multiscale model which applies a Lagrangian 

particle tracking approach47, capable of detecting the dynamics of, and heat transfer mechanisms 

in, Al 2O3 based nanofluids and which is used herein to compute the thermal properties (i.e. thermal 

conductivity) at various operating conditions (temperatures and concentrations). The three-

dimensional computational region examined consisted of a 1ȝm cube filled with stagnant water. 

This volume element was composed of a collection of dp = 50 nm Al 2O3 spherical nanoparticles 

(40-2000 in number) that were injected uniformly across the domain. Other nanoparticle sizes (25 

nm and 71 nm) were also considered within the same volume element. 

The motion of the embedded nanoparticles in the fluid is treated using an Eulerian-Lagrangian 

hybrid scheme with fixed time stepping. Two directions (x and z) used periodic boundary 

conditions while the third y direction limits were treated as walls. The particle equations of motion 

were integrated using a fourth order Runge-Kutta scheme with a very small time step, ǻt = 10-11 s. 

The dynamic properties of both phases were coupled to the ambient temperature of the fluid 

suspension, that being water at 5 to 95 °C. Further details can be found elsewhere47. 

Using this LPT routine, the force on each particle, at each timestep, was calculated accounting for 

the particle contact force, electric double layer repulsive force, the van der Waals attractive force, 

the fluid force and the random Brownian motion force, as shown in the two-dimensional schematic 

given in Figure 7. 
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Figure 7. Schematic diagram of the forces acting on two spherical nanoparticles submerged in a fluid 

continuum: (i) Brownian force; (ii) contact force; the instantaneous balance of the (iii) van der Waals 

and (iv) electrostatic forces; and the resulting (v) friction and (vi) fluid drag forces. 

The model allows the magnitude of the different forces exerted on nanoparticles in a suspension 

to be predicted, given a set of nanofluid properties. Figure 8 shows the various multiscale forces 

plotted as a function of the inter-surface distance, H, normalized by the particle radius, a, at 25°C 

and 90°C. These predictions indicate the magnitude of the various forces exerted on the particles 

which drive particle collision and aggregation in the computational cell represented in the insert 

of Figure 8.  

These results illustrate that when sufficient distance is maintained between nanoparticles, the 

effects of both the fluid (drag) and Brownian random motion forces dominate over other 

contributions since these forces are dependent on the velocity of the nanoparticles and interactions 

between the particles and the fluid. As the inter-surface distance between particles diminishes, the 

electric double layer repulsive force starts to have a significant effect on particle interactions. 

When two particles are close to colliding, the attractive van der Waals forces become dominant 
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over all others. After a collision of two nanoparticles, the repulsive force increases rapidly and is 

of a similar magnitude as the attractive force. 

  

Figure 8. (Left) Magnitude comparison of colloidal and fluid forces as a function of the particle-particle 

separation distance.  The control volume is 1 µm3 with an Al 2O3 content of 1 vol% at 25oC (green) and 

90oC (red). (Right) Interaction potential energy versus distance profiles of two colliding Al2O3 

nanoparticles at three different sizes: 25 nm (orange); 50 nm (green); and 71 nm (purple). Electric double 

layer (– –), maximum or total energy barrier (—) and van der Waals () forces. The magnitude of the 

energy is proportional to the particle size (radius) or interaction area (between two planar surfaces). 

The nanofluid dynamic model was further coupled to a thermal energy model to predict the overall 

heat transfer properties of the system which works on the basis of inter-particle distances which 

are tracked at every time step in the simulation. The technique considers both aggregation kinetics 

(responsible for the formation of particle percolation pathways) and Brownian motion (responsible 

for induced micro-convection). These physical phenomena are found to be responsible for the 

effective thermal conductivity, keff, in nanofluids, and can be expressed mathematically as47: 
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݇௘௙௙ ൌ ሺͳ ൅ Re௠Pr଴Ǥଷଷଷ߶ሻܣ ቊሾ݇௔௚ ൅ ʹ݇௕௙ ൅ ʹሺ݇௔௚ െ ݇௕௙ሻ߶௔௚ሿሾ݇௔௚ ൅ ʹ݇௕௙ െ ሺ݇௔௚ െ ݇௕௙ሻ߶௔௚ሿ ቋ ݇௕௙ 
(16) 

where Re is the Brownian Reynolds number, Pr is the Prandtl number, and ܣ and ݉  are constants 

determined from experiment. Both Re and Pr are calculated from outputs of the numerical model. 

The dynamic properties of both phases were coupled to the ambient temperature of the fluid 

suspension, that being water at 25-90 °C. In the above, kag and kbf represent the thermal 

conductivity of aggregates and the base-fluid, respectively. The particle volume fraction is given 

as ߶ for a primary particle and as ߶௔௚ for aggregated particles that are characterized by their radius 

of gyration Ra, determined using the mean free path (average distance a particle travels between 

collisions) and the depth-first search method. 

The combined experimental-numerical method presented here has proven to be useful for 

generating the thermal values of Al2O3-nanofluids at different operating conditions and particle 

sizes. With the use of the speed of sound measurement that has been determined experimentally, 

the method enables the ultrasound technique to generate key thermal property date of nanofluids 

(i.e. the ratio of heat capacities). 

RESULTS AND DISCUSSION 

A. Measured speed of sound of pure fluid and nanofluids  

All sound velocity measurements were made with the acoustic test cell described in the previous 

section, the results of which are shown in Figure 9. The figure shows the change in acoustic time 

measured by the oscilloscope in pure water, over the temperature range of 25-85°C. These data 

were used to find the peak-to-peak resolution needed for the propagation of error analysis, and 
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were also used for the thermometer sensor calibration over a given temperature range (see 

Supporting Information -B). 

The influence of Al2O3 particle concentration on the speed of sound was measured up to 5 vol%, 

using both transducers, as illustrated in Figure 10. 

 

Figure 9. The change in the peak-to-peak time base of ultrasonic signals collected by the oscilloscope 

with temperature, for pure water. 
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Figure 10. Measured sound velocity in pure water and water-based nanofluids containing dp = 50 nm 

alumina (Al 2O3) as a function of temperature and concentration. Open symbols: standard transducer. 

Closed symbols: high-temperature transducer. Circles: pure water; triangles: 1 vol%; diamonds: 3 vol%; 

squares: 5 vol%. Colours indicate theoretically calculated values at various solid concentrations using 

Urick34 equation. Dashed: experimental data of Bilaniuk and Wong49. 

As shown in Figure 10, the results confirm the accuracy of the sound speed measurements for pure 

water, when compared to predictions of the Urick34 equation and the data of Bilaniuk and Wong49. 

The sound velocity increases until it reaches a maximum at about 74°C. Thus, the temperature 

coefficient dC/dT is positive up to this temperature. The velocity then decreases with increasing 

temperature >74°C, hence dC/dT is negative from this point onward.  

Figure 10 also shows the sound velocity in water-based nanofluids containing dp = 50 nm Al 2O3 

nanoparticles. The sound velocity increases with increasing temperature until, in all cases, it again 

reaches a maximum at about 74°C, similar to that shown for pure water.  
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The slight differences between the low and high temperature transducer results can be attributed 

to their different frequency of operation, since the high temperature transducer has a centre 

frequency ≈ 3.45 MHz, whereas the standard transducer has a corresponding frequency ≈ 4.0 MHz. 

The results demonstrate that the velocity of sound is frequency-dependent for this type of 

nanosuspension system. It should also be noted that very minor influences of distance 

measurements when using the two probes are likely to impact on the value of the sound velocity 

in the test mixture. Such errors are indicated by the error-bars, with the variation of ultrasonic 

velocity with probe distance discussed in detail in Supporting Information -B. 

Additionally, the standard probe was found to be more sensitive to the effect of reflection and 

attenuation of ultrasound waves caused by the presence of high nanoparticle concentrations. This 

can be seen by the minor discrepancies between the two transducer types at a solids concentration 

of 3 vol%, and then more noticeably at 5 vol%. Other potential errors could have contributed to 

differences between the two sets of measurements, although the small volumes of nanofluid tested, 

especially with the high-temperature transducer, were continuously calibrated, very well mixed, 

and fully dispersed. Accordingly, the Urick34 equation is in closest agreement with the more 

reliable high temperature transducer data. 
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Figure 11. Relation of ultrasound velocity change through dispersions of light and heavy solid particles 

in water or Turkish oil. Solid: sound velocity in alumina (Al2O3) nanofluid. Dashed: theoretically 

calculated values using Urick34 equation. Data of Piotrowska53 (Closed symbols: light solids. Open 

symbols: heavy solids). Dotted: experimental data of Kim et al.29. 

The main observation from these results is the decrease in sound velocity with increasing particle 

concentration. To describe this phenomenon, the change in sound velocity measurements at room 

temperature is plotted against the concentration of dp = 50 nm alumina particles, together with the 

results obtained by Piotrowska53 and Kim et al.29, in Figure 11. 

It should be noted that in the data of Piotrowska53 a mixture of distilled water with Turkish oil 

(stabilizer) was used as the dispersive phase for the particle species, with the exception of TiO2, 

and scarlet RN, where distilled water was used alone. The study53 reported that it was possible to 

obtain accurate results at low concentrations up to 2% using an interferometric method, whereas 

the method used here can go up to 5% and is only limited by attenuation and the thermal interaction 

at higher voltages. It is clear that the sound velocity in suspensions of lighter species (e.g. pigment 
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green B, Crimson BN, see densities Table 3), which are also partly soluble in water, was higher 

than that of suspensions of heavier species (i.e. TiO2, Fe2O2) that are not soluble either in water or 

in water with Turkish oil. The physical properties of all particle species used in the figure are 

shown in Table 3. 

Table 3. Physical properties of particle species. 

Species Density, ȡ / kg m-3 

Alumina, Al2O3 3850 

Titania, TiO2
* 3840 

Ferric oxide, Fe2O3
* 4740 

Lead chromate, PbCrO4* 4540 

Cadmium sulfide, CdS* - 

Pigment green B* 1560 

Crimson BN* 1460 

Phthalo-cyanic blue* - 

Scarlet RN* 1400 

Titania, TiO2
**  3980 

*Species used by Piotrowska53 had irregular shapes and undefined particle size in the micrometer range. **Species 
used by Kim et al.29 were spherical and had an average size of 55 nm with a secondary peak at around 200 nm. 

The data of Kim et al.29 for water-based TiO2 nanofluids shown in Figure 11 indicate that in the 

concentration range 0 to 5 vol% the velocity decreases as the concentration increases. An important 

implication of this finding in the case of low particle concentrations is the wide interparticle 

distance, which was thought by Kim et al.29 to be the cause for the reduction of ultrasound wave 

propagation (due to scattering). Kim et al.29 also showed that the sound velocity decreases until 

nanoparticle concentrations reach ~ 30%, above which the sound velocity increases due to the 

small interparticle distance and rapid wave propagation through the particles. Further details of 

this complex multiple scattering phenomena are given by Kim et al.29 

It can also be observed that the nano-sized TiO2 used by Kim et al.29 decreased the speed of sound 

more than the micro-sized TiO2 particles used by Piotrowska53 (i.e. by 30 ms-1), which is an 
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important observation supporting the effect of particle size on the speed of sound measurements 

(Figure 11). 

B. Implementation of predictive method for thermal conductivity 

In this section results of the LPT methodology used to underpin predictions of the thermal 

conductivity of Al2O3-nanofluids are validated in order to provide confidence in the accuracy and 

ability of the method. The determined thermal conductivity values were validated against 

experimental measurements and other model predictions from a number of sources54-59, with good 

agreement found, as shown in Figure 12. The model is also capable of predicting the effect of 

concentration and nanoparticle size on the overall thermal conductivity of the system, giving 

predictions (coloured) which are in good agreement with experimental data (Beck et al.54) that 

examined heat conduction in nanofluids using seven sizes of alumina nanoparticles ranging from 

8 to 282 nm in diameter. 
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Figure 12. Effective thermal conductivity of nanofluid containing 71nm spherical Al 2O3 particles as a 

function of volume fraction ĭ. Experimental data of Beck et al.54 (×), with error bars from that source. 

Theoretical work of Maxwell55 is shown for spherical particles (ڮ). Lines represent predictions of Nan 

et al.57 (– –); Yu and Choi58 (----); and Warrier et al.59 (—). Present work: predictions using numerical 

model47 at different particle sizes: 71nm (-Ŷ-); 50nm (-ؘ-); 25nm (-Ÿ-).  

Regarding size dependence, the present model predicts that the conductivity of nanofluids 

containing dp = 25 nm Al2O3 particles is greater than those containing 50 nm and 71 nm particles, 

by nearly 8% and 15%, respectively, although no systematic experimental investigation of size-

dependant conductivities has been performed. Conversely, in Beck et al.54  it is indicated that the 

thermal conductivity enhancement decreases as the particle size decreases below about 50 nm and 

they attributed this decrease in enhancement to a decrease in the thermal conductivity of the 

nanoparticles themselves (as the particle size becomes small enough to be affected by increased 

phonon scattering). Their measurements showed a clear effect of the particle size and dispersion 

method (e.g. mixing/sonication) and indicate that there is an expected limit of enhancement for 

nanofluids containing larger nanoparticles. Their results were found to be marginally within the 

predictions of the present study. It should be noted that although the results given in Figure 12 

show the effect of volume fraction on the thermal conductivity, the existing model showed more 

sensitivity to particle size in predictions of conductivity than the model of Beck et al.54. 

The theoretical values of the Maxwell55 model presented in Figure 12 were found to be slightly 

below the results of the present model. This classical model of Maxwell55 is widely used to 

determine the effective electrical or thermal conductivity of liquid-solid suspensions of 

monodisperse, low-volume-fraction mixtures of spherical particles. It involves the particle 

size/shape and volume fraction and assumes diffusive heat transfer in both fluid and solid phases. 

The model may give good predictions for micron-sized particles, but generally underestimates the 
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magnitude of thermal conductivity enhancement in nanosuspensions as a function of volume 

fraction17. 

Figure 12 also shows predictions made using the numerical model of Nan et al.57 that attempts to 

account for the effects of: particle size, shape, distribution and volume fraction; the orientation of 

inclusions; and the interfacial thermal resistance on the conductivity of nanofluids. Their model 

was developed in terms of an effective medium approach combined with Kapitza’s thermal contact 

resistance concept, suitable for the prediction of thermal conductivity of mineral matrix 

composites57. 

The predictions of Yu and Choi58 were derived using a modified version of the Maxwell equation 

that includes the effect of liquid molecules close to the solid surface of nanoparticles on the thermal 

conductivity of solid-liquid suspensions. This effect assumes the formation of layered solid-like 

structures (known as ordered nanolayers) which have a major impact on nanofluid conductivity, 

in particular when the particle diameter is less than 10 nm. Although their predictions are found to 

be slightly below the results derived from the present model, they follow the same overall trend, 

as shown in Figure 12. 

Warrier et al.59 also modelled the thermal conductivity of nanoparticle suspensions and examined 

the effect of the two phases present in the heterogeneous system. Their model takes into account 

adjustable parameters such as the temperature dependence of the thermal conductivities of the 

individual phases, as well as the size dependence of the dispersed phase. Using this modified 

version of the geometric mean model allowed the effect of a wide range of particle sizes (11 to 

302 nm), volume fractions and temperatures to be studied. It can be seen that the Warrier et al.59 

model predictions fall between the Beck et al.54 error bars. Although the predictions of Warrier et 
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al.59 are slightly above those of the present results, they show approximately the same rate of 

change in conductivity with solid volume fraction. 

It can therefore be concluded that the numerical model described is in good agreement with the 

experimental data of Beck et al.54, and the numerical model of Warrier et al.59, with all these 

showing very similar gradients in conductivity with solids volume fraction. In contrast, the models 

of Maxwell57, Nan et al.57, and Yu and Choi58 all under-predict the influence of solid volume 

fraction on effective thermal conductivity by comparison. This is in agreement with previous work 

that shows that the Maxwell equation, of which Yu and Choi58 is a variant, under-predicts this 

relationship. The Nan et al.57 simulations under-predict to a far greater degree than any of the other 

models, suggesting that the approach is not well suited to Al2O3 nanoparticle suspensions. 

In addition, and with the aim of verifying the above predictions, the normalized thermal 

conductivity, ݇ ݂݂݁/ܾ݂݇, is plotted against temperature and volume fraction in Figure 13.  
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Figure 13. Thermal conductivity of nanofluid containing spherical dp = 50 nm Al2O3 particles as a 

function of volume fraction ĭ. Experimental data of Lee et al.60 at 21oC (--×--). Lines represent the 

predictions of Das et al.61 at 25oC (–   –Ɣ), 33oC (--Ɣ--) and 51oC (–Ɣ–). The theoretical work of 

Hamilton and Crosser62 at 21oC is shown for both cylindrical (–Ƒ–) and spherical (--Ƒ--) models. Present 

work: predictions using numerical model47 at 25oC (-ؘ-). 

The predicted thermal conductivity values are found to be in good agreement with experimental 

data and predictions made by the other researchers60-62 also given in Figure 13, and particularly 

the data of Lee et al.600 and Das et al.61 at the same operating temperature (25oC). This is in addition 

to agreement with the theoretical model of Hamilton and Crosser62 for both cylindrical and 

spherical particles. It is clear from all these results that the thermal conductivity increases roughly 

linearly as concentration increases from 1 to 4 vol.%.  

C. The ratio of heat capacities 

The modified Bridgman equation is combined with experimental speed of sound measurements to 

give a very simple yet accurate semi-empirical model for the prediction of thermal properties. This 

model is used with predicted thermal conductivity values from simulations to determine the ratio 

of specific heats (using Eq. (8)) of Al 2O3-nanofluids at different temperatures and concentrations. 

Results for the specific heat ratio in the temperate region 25-90°C are shown in Figure 14 alongside 

the predicted conductivity values. 
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Figure 14. (a) Comparison of thermal conductivity values ( — predictions using numerical model47, ---- 

experimental data of Coker63). (b) Determined heat capacity ratios as function of temperature and 

concentration of nanofluids (water and spherical dp = 50 nm Al2O3 particles) using Eq. (8). 

The predicted thermal conductivity values increase with increasing temperature, supporting the 

contention that such increases are due to the increased probability of particle collisions and the 

effects of Brownian motion. The predicted values, at different volume fractions and temperatures, 

show an almost 12.5% increase for 5 vol.% of particles relative to pure water. Although these 

predictions were made over a temperature range of 25 to 90 °C, they suggest that further 

enhancement is to be expected with temperature as a result of increases in kinetic energy and hence 

in the fluid and Brownian motion forces. 

The other interesting observation from Figure 14 is that the variation of thermal conductivity with 

temperature tends to flatten at concentrations above 3 vol.%, i.e. a change in slope is indicted 

above such volume fractions, with this behaviour transitioning from pure liquid at low 

concentrations to linear behaviour beyond 1 vol.%. From the model predictions this demonstrates 

that the system is entering a different regime where particle collisions driven by Brownian motion 
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start to increase and as a result induced micro-convection starts to dominate, leading to a 

substantial increase in thermal conductivity15. The increased colloidal forces20 and aggregation 

kinetics (collisions; van der Waals forces; electric double layer forces) are also responsible for the 

formation of nanoparticle percolation pathways, generating more conductive pathways for thermal 

energy transfer. Similar results were obtained using a combined mechanism-based model of 

aggregation kinetics with Brownian motion-induced micro-convection.47 

It can be seen from Figure 14 that the ratio of the heat capacities Ȗ for pure water increases with 

temperature. Similarly, with the addition of nanoparticles the heat capacity ratio shows an increase 

with temperature that is most pronounced at 5 vol.%. The reason for this from a modelling 

perspective is that at higher particle concentrations there are more particles in a system, therefore 

there is a greater chance that the particles will collide; this in turn increases the collision frequency 

and thus increases the heat capacity ratio. Moreover, an increase in temperature will raise the 

average kinetic energy of the particles in the system. Therefore, a greater proportion of particles 

will have the minimum energy necessary for an effective collision. This ratio can therefore be used 

in the calculation of the thermal conductivity of Al2O3-nanofluids using the modified Bridgman 

equation, Eq. (8), and vice versa. 

These results emphasise the significant effect of temperature and particle concentration on the 

thermal conductivity and ratio of specific heats. In order to better represent the modification of 

these thermal parameters with temperature and concentration, the data shown in Figure 14 were 

used to construct three dimensional plots, plotting both T– k –Ɏ and T– ߛ –Ɏ surfaces, as illustrated 

in Figure 15. 
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Figure 15. (Left) Dependence of thermal conductivity k on temperature T and solid volume fraction Ɏ. 

(Right) Dependence of heat capacity ratio Ȗ on T and Ɏ, for Al 2O3 nanofluids. 

The effect of particle volume concentrations Ɏ > 3 vol.% on both k and ߛ is clear from the results. 

The enhancement of thermal properties in nanofluids at higher concentrations can be explained by 

the increased interaction of nanoparticles, as explained above. As to the temperature dependence 

of the system, which was found to be strong, previous results47 demonstrated that the 

enhancements were due to Brownian motion (induced micro-convection) and collisions between 

nanoparticles as well as aggregation kinetics (the formation of particle percolation pathways) in 

the base fluid. The increase in temperature leads to an increase in kinetic energy that intensifies 

both the Brownian motion and particle collisions of Al2O3-nanofluids. 

These new results confirm the temperature and concentration dependence of both k and ߛ and the 

influence of Brownian motion, interparticle collisions and particle size. They confirm that heat 

transfer enhancement through the use of nanoparticles is a valuable approach for a wide variety of 

industrial applications, with the use of Al2O3-nanofluids in heat exchange devices showing 
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significant promise and offering increased efficiency and significant energy savings, compared to 

conventional heat transfer fluids. 

Lastly, it may be noted that the ratio of heat capacities derived from the combined LPT simulations 

and experimental values for the speed of sound used in this study may also be used together with 

P-V-T relations as a method to obtain values of Cp or Cv for nanofluids using Eq. (S18) and Eq. 

(S19), as described in Supporting Information -A. 

CONCLUSIONS 

The limited availability of methods for measuring the thermophysical properties of nanofluids 

online calls for the development of reliable techniques. The results of a combined experimental 

and numerical investigation aimed at determining the properties of water-based Al2O3-nanofluids 

using high-temperature ultrasonic transducers, based on the time-of-flight principle, and an 

Lagrangian particle tracking model were presented. The results show that this combined technique 

can be used as a simple and reliable method of measuring the speed of sound in nanofluids up to a 

solid loadings of 5 vol%. The variation of the speed of sound with nanoparticle concentration and 

temperature was found to be large compared to that in pure water. It was also shown that use of a 

thermal conductivity model of nanofluids (using a modified version of the Bridgman equation) 

with measured speed of sound values and the heat capacity ratio gives accurate predictions. 

In addition, new data has been generated that is in line with past work on Al2O3 nanofluids. These 

data demonstrate that the addition of nanoparticles to the base liquid enhances the thermal 

conductivity, with that enhancement increasing with increasing particle concentration and 

decreasing particle size. This trend is explained by numerical considerations of two mechanisms 

responsible for thermal conductivity and heat capacity ratio enhancement: Brownian motion 
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(responsible for induced micro-convection) and aggregation kinetics (responsible for the formation 

of particle percolation pathways). Future work will extend the advances made in the current study 

to include a broader selection of thermofluids such as molten nitrate salts under a wide range of 

operating conditions, especially temperature, to cover those found in solar thermal heat storage 

systems. More specifically, we are currently extending the model described to include the role of 

oscillatory structural forces, i.e. non-DLVO forces between ceramic nanoparticles, to study their 

influence on the thermal conductivity of molten salt-based nanofluids. 
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SUPPORTING INFORMATION 

A. The derivation of thermodynamic relations between the ratio of heat capacities and the 

experimental values of the speed of sound. B. The propagation of experimental errors and 

uncertainty. 
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