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I nter pretable Fuzzy Modeling using Multi-Objective Immune-
I nspired Optimization Algorithms

Jun Chen, Mahdi Mahfouf

Abstract—In this paper, an immune inspired multi-objective
fuzzy modeling (IMOFM) mechanism is proposed specifically
for high-dimensional regression problems. For such problems,
high predictive accuracy is often the paramount requirement.
With such a requirement in mind, however, one should also put
considerable efforts in making the elicited model as
inter pretable as possible, which leads to a difficult optimization
problem. The proposed modeling approach adopts a multi-
stage modeling procedure and a variable length coding scheme
to account for the enlarged search space due to the
simultaneous optimization of the rule-base structure and its
associated parameters. IMOFM can account for both Singleton
and Mamdani Fuzzy Rule-Based Systems (FRBS) due to the
carefully chosen output membership functions, the inference
and the defuzzification methods. The proposed algorithm has
been compared with other representatives using a simple
benchmark problem, and has also been applied to a high-
dimensional problem which models mechanical properties of
hot rolled steels. Results confirm that IMOFM can dlicit
accur ate and yet transparent FRBSs from quantitative data.

|I. INTRODUCTION

TRADITIONALLY, modeling tasks involve the building of

generalize reasonably well foany previously ‘unseen’
situations. The prevalence of these nonlinear regression
techniques is largely attributed to the breakthrough in the
nonlinear optimization techniques, such as the Back-Error
Propagation (BEP) algorithm [2, p. 246-252] and the bio-
inspired optimization [3]-[4]

Since the first introduction of ‘fuzzy logic’, FRBSs have
been widely used in systems and control engineering [2].
However, the predominant approach in the traditional design
of FRBS highly relies on human experts. Although learning
components can be further incorporated into the procedures
of coarse model inducement [5] and its further refinement
[2, p. 246-252], it may suffer from two serious problems
viz. the deterioration of the model’s interpretability and the
over-fitting to the training patterns. Taking this into account,
one can find that bio-inspired optimization, in particular
Generic Algorithms (GAs), has a long history of being
incorporated into fuzzy logic [6] and demonstrate a possible
route to the remedy for the mentioned two problems.

The main aim of this paper is to present a systematic
immune-inspired multi-objective fuzzy modeling approach

mathematical equations which can best describe t%ich can simultaneously account for the interpretability of

underlying process. Such a modeling practice normal
requires a deep understanding of the systems un
investigation, hence the reason why it is often referredto

I(%ée rule-base and its predictive accuracy for regression

bblems. The paper is organized as follows: Section Il
fiscusses the formation of the multi-objective fuzzy

knowledge-Driven Modeling. On the contrary, Data'Drive%odeIing problems and the FRBSs used in this work:

Modeling (DDM),

inspired principally from artificial
intelligence techniques, is based on limited knowledge of th
modeling process and relies on the data describing the in

and output mapping. DDM is able to make abstraction arfgsues will be introduced in Section IV:

Section 1l shortly reviews the existing evolutionary based
roaches for improving FRBS’s interpretability; IMOFM

ich represents an alternative tactic to solve interpretability
in Section V, in

generalizations of the process and plays often &yar 16 evaluate the performances of IMOFM, the algorithm

complementary role to knowledge-based models.

. ;  "¥tested using a simple benchmark problem and is applied to
complex systems, the linear regression may not be sufﬂuem

which leads to the need of the non-linear regressiq
techniques. Among many of these techniques, Artificia
Neural Networks (ANN), fuzzy rule-based systems (FRBS)”_
and Neural-Fuzzy Systems (NFS) have been receiving more

e prediction of the mechanical properties of alloy steels;
[ﬁally, conclusions are given in Section VI.

Fuzzy RULE BASED SYSTEMS AND THEFORMATION OF
THE MULTI-OBJECTIVE FUZZY MODELING PROBLEM

attention during the last two decades due to the facts of not
only being able to approximate practically any given A Fuzzy Rule Based Systems (FRBS)
function to an arbitrary accuracy [1], but also being able to Two fuzzy modeling paradigms, viz. Singletor] [@nd
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Mamdani [8] FRBS, are employed in this work due to their
abilities of expressing linguistic meanings in both of their
antecedents and consequents. Generally speaking, a FRBS

can be formulated as follows:
Ri:If xy is A} and x, is A, ... ,and x; is Al Theny; = Z;

where,A{ is the ith linguistic value (fuzzy set) for the jth



linguistic variablex; defined over the universe of discourserequires certain interpretability (transparency) of the FRBS
along with its good predictive accuracy the middle circle

could be the one that fulfils the user’s need. As already

[0,1] is the corresponding membership function; Rstated in [1], this should result in a ‘minimal’ human
represents the ith rule in the rule base, gnig the output of jhtervention during the modeling process.

the ith rule. TypicallyZ; can be the function of the inputs or
the |inguiStiC Value Of the Output, Wh|Ch diﬁerentiate FRBS ||| LlTERATURE REVlEW OFPREV|OUSWORKS
into Singleton (the former) and Mamdani (the latter) FRBS.

EIESIT(V\Ilzoétgsnc[);']ns\/:e]itzS:ggtlﬁéorzle'??%? dlesr ?uirc)figlr?l o(;atshee ?ufzzy systems was initially utilized to adjust the parameters
: of membership functions, which leads to no significant

Inputs. -In_some Sense, Smglgton FRBS §hares -the ba&ﬁerence when compared to other learning paradigms. The
feature of Mamdani FRBS if one considers singleton

consequents as a special tvoe of fuzzy sets real significance of employing evolutionary algorithms
q P yp y ' (EAs) for optimizing FRBSs comes from EAs’ flexibility in

B. Formation of the Multi-objective Fuzzy Modeling terms of being able to encode and evolve almost every
Problem component of the FRBS [12]. Such a flexibility offers a
As Casillas et al. pointed out in [9], modeling is the tasRolution so that one can take into account the interpretability
that simplifies a real system or complex reality with the airfstructure) and the predictive performance of the FRBS in a
of easing its understanding. Hence, the development @Pre coherent way. Broadly speaking, there currently exist
reliable and comprehensible models must be the main thef#® different EA-based streams to tackle the interpretability
of any modeling tasks. By ‘reliable’ it is meant the model’s ~ ISSUES!
capability of faithfully representing the real systems, in other 1) The first stream is mainly concerned with the linguistic
words ‘the model accuracy’. By ‘comprehensible’ it is meant ~Modeling using a Mamdani type of FRBSs, in which a set of
the model’s capability of expressing the behavior of the real ~ Pre-specified fuzzy partitions (linguistic terms) are gien
systems im comprehensible way, in other words ‘the model ~ Priori by experts or users (grid partition). These linguistic
interpretability’. However, as Zadeh conjectured in his terms are fixed during the course of the evolufib8]-[15]
Principle of Incompatibility [10], it is very likely that SO that their physical meanings are retained. Only the fuzzy
accuracy and interpretab”ity may well be exc|usivéU|eS are subject to the selection via GAs so that a compact
requirements in a modeling process. The reflection of the#e-base can be evolved from a large number of candidate
in a fuzzy modeling scenario represents a dilemma 611|€S, which should lead to a more interpretable FRBS. Since
designing FRBS. the selection process removes irrelevant and inconsistent
The ‘accuracy vs. interpretability’ issue in a fuzzy rules, the accuracy is also improved. Further relevant

modeling context can also be formulated as a multi-objectiv@searches include those in [16F], apart from the rule
optimization problem. Fig. 1 shows the Pareto front in a bgelection, these works also tuned the linguistic terms by a
objective fuzzy modeling scenario where two competingiodified GA. However, such tuning is only operated in a
objectives, viz. the predictive error (accuracy) and the rur@strained space in order to maintain their original semantics.
base complexity (interpretability), are minimized 2)the second stream generally uaespproximate fuzzy
simultaneously. The aim is to fing set of ‘approximate ~Model as the starting point (in such a case, fuzzy partitions

Pareto FRBSs’ as close to the true Pareto front as possible. are extracted via some automatic learning procedures; hence,
there is not a global data-base a priori); the task is then to

improve the model’s explanatory ability, which may have
o been lost during the automatic learning process, through a
% set of similarity-driven simplification and parameter
adjusting operations 1B]-[21]. Under this stream, a
N » similarity measure is taken so that similar fuzzy sets can be
s i 4 - merged. Consequently, similar rules are merged as well.
h.,n.“..nh' [ Hence, the distinguishability of membership functions and
. 4 the compactness of the rule-base are improved.
Comparing the two streams leads to the following: 1) in
the linguistic modeling stream, the target problems are
T —— normally associated with classifications and low-
Fig. 1. Pareto front in a bi-objective fuzzy modglicase. dimensional regression problenthis is because that, for

Bv finding a set of solutions. human can understand tﬁuCh problems, the effect of the ‘curse of dimensionality’
y 9 ' Ue to the grid partition and the need for the parameter

underlying problem in a much greater depth, and finally Bini L .
. . X " R uning due to the predictive accuracy requirement are not
single optimal solution to a specific scenario is finally

: - .. ’serious issues; only very recentbyich a linguistic modelin
selected and applied. In the case shown in Fig. 1, if ORe ework  has ybeer)lladopte?a for hgi]gh-dimensionagl

Uj; the functionuA{(xj) associated Witm{ that mapsU; to

Originated from Karr’s work [6], the GA approach in

r

Objective 2: Predictive error
N
s
Q>

v



regression problend 7]; 2) for high-dimensional regression Reselection selects good candidate solutions from the
problems, an approximate FRBS may represent a bettermbined parents and clones to provide selection pressure to
choice to start with due to the accuracy and compactnesféectively drive the candidate solutions towards the Pareto
requirement. However, to the best of our knowledgdront. The Network Hypothesis states that antibodies can be
majority of the works within the second modeling streamstimulated by recognizing other antibodies, and for the same
were using TSK FRBS, which breach the original intentioreason can be suppressed by being recognized. Such a
of eliciting an interpretable FRBS suppression mechanism allows the regulation of the over-

It is rather ‘tricky’ to decide which modeling stream isstimulated antibodies to maintain a stable memory. The
more suitable. Both modeling streams have their limitationseflection of this in AIS is the so-called Network
1) although linguistic modeling often leads to wellSuppression which is used to regulate the population so that
distributed membership functions more rules are required itois adaptive to the search process. By synergizing all the
adhieve similar predictive performances as those provideabove components, PAIA is proposed in [Z2B]. In [24],
by the second modeling stream with fewer rules, this beiribe authors further proposed a multi-stage optimization
due to the restriction imposed on the membership functiggrocedure by incorporating the concept of vaccination. The
search space; 2) although the second modeling stream ofidea is to first use a single objective optimization stage
leads toa compact rule-base and higher predictive accuracgcting as the vaccination process, to efficiently find any one
the membership functions are not well distributed even aftef the solutions resting on the Pareto front. Then, PAIA can
interpretability improvement; furthermore, if TSK FRBS isact as a post-processing procedure to expandassalhution
employed the transparengythe consequents will be lost. along the Pareto front. For fuzzy modeling, small

In the light of the above considerations, the proposedodifications of the Activation step are needed and will be
algorithm sits in the middle of the two modeling streams bgtiscussed accordingly in Part B. Details regarding PAIA and
using a compact FRBS with certain interpretability for highmulti-stage optimization are referred to [22] and [24, ¢h. 3
dimensional regression problems. Although a -
Singleton/Mamdani FRBS is used in this work, unlike thoseB' lMOFM for Obtaining a Set Of_FRBSS ]
which use similar types of FRBS within the first modeling 'MOFM is a three-stage modeling procedure. The first
stream, the membership functions of the proposed methB¥ Stages are equivalent to the vaccination process in the
can move freely within the variable intervals. Hericeis firSt stage of the multi-stage optimization procedure. The
still within the second modeling stream. However, it greati§}iMm iS 1o first extract an initial approximate FRBS and then
improves the interpretability of the elicited FRBS, and ca |'re’f|'ne it in terms of its _pred|ct|ve accuracy. By doing so,
be viewed as a complement to [17] due to the fact that mdainitial ‘vaccine model” with the over-estimated number of

compact and higher accurate FRBSs can be elicited. rules can efficiently be elicited. Another reason of including
the first two modeling stages, especially the second one
IV. AN IMMUNE INSPIREDMULTI-OBJECTIVE FUZZY (refinement), is that by doing so the most complex rule-base
MODELING (IMOFM) MECHANISM can survive under the pressure of ‘Pareto’ selection. Without

including the refining step, the rule-base with a complex

An immune inspired multi-objective fuzzy modeling o
(IMOFM) procedure consists of three stages which follo structure may be regarded inferior to the less complex rule-
P 9 se in a ‘Pareto’ sense even if both them are inaccurate in

. . . . a
prmmples of vaccination and the second_ary response of thee early evolutionary stages. Hence, one may lose the
'mmune systems.. Furtherrr_lore, the third mpdelmg esta%hance of evolving the most accurate FRBS, which normally
utilizes a Population Adaptive Immune Algorithm (PAIA)

[22], [23 as the search engine in search of the Optimg?mes with a complex structure. The ‘vaccine model’ is then

' . ... . used in the third stage to seed the initial population of PAIA
structure and parameteds the following space, Artificial in order to obtain a set of Pareto fuzzv models with
Immune Systems (AIS), in particular PAlAare first y

) - improv interpr ility. T ki h roblem of
introduced followed by the description of IMOFM. npro ed interp etgb_ t_y 0 tackle the problem o
simultaneously optimizing the rule-base structure and

A AIS for Multi-objective Optimization parameters, a variable length coding scheme is adopted, and

The basic idea of using AIS for optimization is emanate@ New distance index is proposed to cope with the variable-
from the Clonal Selection Principle and Network Hypothesi€ngth individuals, which should improve the efficiency of
[4]. The Clonal Selection Principle describes the basf®e search. For model structure optimization, a Model
features of an immune response to an antigenic stimulus, apiPlification module is added after the Affinity Maturation
establishes the idea that only those antibodies that recogrized bid to find transparent FRBSs. Fig. 2 represents a
the antigen are selected to proliferate. The analogies of tg@hematic diagram of such a modeling framework.

in AIS are composed of the followings: 1) Activation 1) Ejicitation of the Initial Singleton/Mamdani FRBSs
calculates the affinity (fithess) for gaantibody (solution) . . .
Firstly, an evolutionary based K-means clustering

so that an adaptive number of clones can be selected a%rl]éjorithm [25] is used to group the available data into a

produced; 2) Affinity Maturation mutates the selected goo '

predefined number of clusters. In order to convert the
clones so that more search space can be explored,; . . . .

obtained clusters into FRBSSs, a certain mechanism has to be



For Singleton FRBSZ; is equal toC?. If Centroid of
Area (COA) defuzzification method is employed, the crisp
output of the initial Singleton FRBS can be computed as

First Stage:
Extracting The
Initial FRBS
Thelnitial

- FRBS | below:
o T . Zk= Z"H.'(X) o .
e Tee yerir = Bl yerioxlg)  (4)
Initial FRBS ﬁ Immune Algorithm Based ELFzy\ ) ) . )
il PredfflviModellng Mechanism where, wi(Xp) = Hal (em) - M2 (x2) ot #A{l(xm) = [T}, exp <_E .
Third Stage: ) o el 2 . - . .
Multi-objective J (i"—]‘]) >, andd = (¢/,c/,6]li=1,..,k;,j =1,..,n) is the
Fuzzy ] _ % . i . . .
Mf’de“[g variable Length Coding parameter vector which is subject to further tuning in the
<~ — second modeling stage. For Mamdani FRBS, the bell-shape
/ @I;» ;@ membership functions are used #r
A Set of F [ 1
el | RER RER ) = —— 5)
'Lo <Affinity Maturation ) 1+(y_;i >
\\ Model Simplification y . . . O_i .
\ C . S where,o;” is obtained by using (1) and (2) but in the output
Reselection . .. .
\\ — space. Unlike traditional Mamdani FRBS where
L’Y\?M"'ksupﬂ'feisf} defuzzification is normally applied on the overall implied
\ T~ — .
/ fuzzy set [2, p. 64], IMOFM employs the center of gravity

(COGQG) defuzzificaiton on the implied fuzzy set as below:
Fig. 2. The proposed IMOFM framewaork.

.Uﬁi(ym) = pi(Xm) * MBi(ym) (6)

. . , Instead of using minimum and maximum, IMOFM chooses
(refer to Section Il) can be linked with the extracted cluster§. . g ) ,
) . ; . 0. use ‘product’ and ‘plus’ for the T-norm and S-norm
Gaussian membership functions are used for the mputsrgf

FRBSS. | h he ith identified cl i spectively. All these modifications are done to ensure
s. In such a case, the ith identified cluster cefjtren computational efficiency, and more importantly, to ensure

the input space corr(_asponds_ directly to t_he centroidgmf tthat an analytical solution described in (7) can be deducted.
Gaussian membership functions responsible for the ith rule.

The spreads of the corresponding Gaussian functions are orisp _ T, up,Nay T w0f, up,ay
obtained by first calculating thHé matrix as follows: = = =

established so thatAj(x,-) and the corresponding outpiit

- S )y up, ) dy T i), wp () dy
U(i,m) — (2521 ”Xm—Ci ”) (1) ycrisp(X|9) (7)

lxm =l
where C¥, X, ...,C¥ are k cluster centers in the input spaceNhere,ciy is the center of area of the membership function
Il Il is the Euclidean distance, at{i,m) specifies the up (y) and is the peaky) if up, (y) is symmetric y<? is
degree of data point belonging to the ith cluster. Spreadihe  final  defuzzified output of the FRBS

o/is thus deduced as follows: 0 = (¢!, 07,c/,0/) is the parameter vector which is subject

1 [ —cd 2 ) to further finetuning in a bid to improve the model’s

exp|—=+|—5=+] |=U@Gm) L

2 Oim predictive performancd.y ug;(¥) dy denotes the area under

} < #-C{)Z m=1,..,N (2) pug(y) over the output intervat: [y,, yy] andfy s, (¥) dy

= %im = |2 log(utm) is calculated using (8).
J = j iy -
=0 =P maXme[i,N](ai_rrl) . w0 dy =a [arctan (yU A ) — arctan (YL L )] (8)
where, j indicates the dimension of the spread in the inpit % 9

space for the ith cluster, N is the total number of data points.pence, after the first stage, a Singleton/Mamdani FRBS
The maximum value of; is picked to ensure a certainwith the pre-specified number of rules is extracted from the
degree of overlap between different clusters. This alsmmerical data, which is analytical and can be refined
ensures a smooth transition of the predictions over differefurther using the second modeling stage.

regions.p is gsed to at_jjust the degree of overlap, and is set 2) Refinement of Initial FRBSs
to 0.95 in this work without any loss of generality. Hence, ) )

the Gaussian membership function on each dimension cari" the second modeling stage, a BEP with momentum

be specified using (3): terms algorithm [2, p. 246-252] is developed to first improve
‘ i\2 the accuracy of the initial FRBS by adjusting the parameters
MAi(xr]n) = exp <_§ (xm;ci) ) (3) in 8 so that the rule-base with the over-estimated number of
t % rules can also survive under the pressure of ‘Pareto’



selection. By taking the partial derivatives of (4) and (7) (s '_m}zum [ e | we i

with respect to each parameter included jrone can obtain \

a set of parameter updating lafsie to the space, interested S tioziciaic0; |b,

readers are referred to [24]). One problem associated with ¢ cjoiicioiicio ] |byo)

the BEP updating formulas is that they include no , I ]
constraints with respect to the update mechanism of these '—m?‘“lel | wie [ hiag [ ra [ s ful
parameters. Hence, during the course of the optimization, the ( )
centers of the membership functions are likely to be placed """ €:03i¢50 4 ici0 3 |by )

outside the boundaries. Hence, in this work a simple Vemeifes cioiicioficio ) |byo

constraint handling scheme is added, which checks theig. 3. Variable length coding scheme for: (a) a three-t
boundary violation for centers during each iteration step angingleton/Mamdani FRBS; (b) a six-rule Singleton/Mamd:
drives any violated centers back to the boundaries. FRBS.

original vaccine FRBS extracted from the first two
modelling stagesCyaccine? andavaccmel?’ are the centre and
a) Forming Objective functions the Spread Of the |th ruECOnsequent. randn |S a random

Two conflicting objective functions are formulated with thg'umPer within [0, 1]:range” defines the minimum interval
first focusing on the prediction accuracy and the second gfftween the centre and its corresponding uphgy;, and

the structure simplification as described in B)eaiction m lower L, limits of the input (or the output) variable,

andy,.q  aremth predicted and real outputs; Nrule is thewh|chever is smallera and g are the user specified

number of fuzzy rules in FRBS; Nsistthe total number of parameters which define how ”_‘“_Ch differ_ent the newly
fuzzy setsRL is the summation7 of the rule length of eacH;enerated FRBSs are from the original vaccine one, and are

rule (‘Don’t care’ is not included in the rule length). sett0 0.2 and 0.1 respectively.

3)  Multi-objective Fuzzy Modeling

= j j
Cinitiali =a- TangeJ -randn + Cvaccinei

j j
2 Oinitial: = B randn + 0y,4ccine;

o Yin=1(Vprediction m = Yrearm) mitiali ‘ (10)
Objectivel: RMSE = \/ e lotn_m - C) Cinitially = a-range” - randn + Cvaccine?/
Objective2: Complexity = Nrule + Nset + RL O-initially = p -randn + O-Uaccine?/

b) Variable Length Coding Scheme and Initial range = min(|Caccine = Viimit|s |Craceine = Luimie)  (11)
Population

Such a ‘forming’ approach only acquires the knowledge

As far as the multi-objective fuzzy modeling is concernedbout the maximum allowable number of rules (i.e. the pre-
different encoding schemes have been proposed and carspecified number of clusters) and the data so that emphasis
broadly divided into two categories: 1) encoding based asf the third modeling stage is placed on the automatic
the global data-base; 2) encoding based on the effective reliitation ofa set of FRBSs in the ‘Pareto’ sense. The size
parameters. The former is mainly found in the linguistief the initial population in this work is set to 7.
modeling stream [13]15], in which a string or a rule matrix
is formed as the chromosome in order to select the effective «c) Variation Operators and a New Distance Index
rules and linguistic terms from the candidate d&f] The variation operator used in PAIA is Affinity
represents the variant of the first encoding scheme, in whighyturation which mutates the selected good solutions
the encoding comprised the structure coding and thgcording to their affinity valuesif f_val) as described in
parameter (data-base) coding. Key to the first encodingp). Such a variation operator is used in IMOFM to

scheme is that the global data-base is usually keggtimize the associated parameters encoded in q (see Fig. 3)
unchanged or only varied in a constrained search space. The

latter is mainly found in the approximate modeling stream Gnew(k) = Goa(k) +a-N(O, D) k=1, ..., ¢
due to the lack of global data-base. Since only the effective a= % (12)

rule parameters are included in the coding, a variable length
coding scheme is inevitable and is used in this weig. 3 Wwhere N(O, 1) is a Gaussian random variable with zero mean
gives an example of how to encode FRBSs. As shown &nd standard deviation k.is a dimension index within the
Fig. 3, the increase of the code length is only linear to thength ofg that has been chosen to mutate.
variable’s dimension, which effectively tackles the One problemin using (12) is associated withf f_val
efficiency of the search and the curse of dimensionality. ~ which is originally calculated based on the distance between
The initial population is obtained with all individualstwo fixed-length individuals. Given the variable length
generated around th@accine model” using (10) and (11). coding scheme and the unconstrained optimization used in
Where Cvamnelj and ammnelj are the centre and spread ofthis work, a concomitant effect of the sailed ‘unordered

the ith rule and the jth input membership function in th&tS of rules’ [26] may occur As pointed in [26], variations



over ‘unordered’ individuals are equivalent to combing themodeling stage using (10) and (11). The initial population
mother’s gen for good vision and father’s gen for curly hair,  size is set to 7. The number of iterations in the third stage is
which does not make much sense. To tackle this problemset to 1200. Table | summarizes such comparative results
new distance index is proposed for the calculation décusing on their predictive performances (RMSE) and the
af f_val. The basic idea is to align the closest rules fromumber of rules. The results in Table | include the average
different individuals in order to have a meaningful variationvalues of 30 runs. Fig. 4 shows the membership function
dist(R]-, Rk) = distribution of input2 (¥ through the three modeling stages.

Z{'{ll=1 eril ab S(Rﬁl(l)_leil(l))+Z{'{22=1 eril ‘ZI’S(R’LCZ(I)_RJF = (l)) COMPARISONSOF THETPARi:;Il-:cITNE PERFORMANCEOF
ri-(k1+k2) THE DIFFERENTMODELING METHODSFOR THEBENCHMARK PROBLEM
(13)  Modeling Methods No.  No.of The type of Performance
where,R; andR, are two FRBSs witlk1 andk2 rules;rl is (Ref) ﬂ?l‘;s fsuezéy FRBS (RMSE training)
the length of the ruleR, ™ (R{2) represents the closest rule
in R, (R;) with respect to thélth (i2th) rule inR; (Ry); [5] 6 12 Mamdani 05639  0.281F
abs(¥) is the absolute value of [27] 5 10 Singleton 05604  0.339F
IMOFM_S(IMOFM for Singleton FRBS):
d) Model Simplification Initial FRBS 5 10 Singleton 05954 0.088°
A model simplification step is added as shown in Fig. £<ES1(30times) 5 9 Singleton  0.0696  4:0
The aim is to remove the redundancy both in the rules and™XBS2(0 times) s 8 Singleton  0.0875  ¢?:0.004
the fuzzy sets. On the rule level: 1) one of the insignificafRBS3(29 times) 4 8 Singleton  0.0930  57:0.010
rules (rules that contribute the least to any prediction erf"RBS4(29 times) 3 6 Singleton  0.1417  %:0.005
increase when not include these rules) is removed unless FRBS5(25 times) 28) 4 Singleton 04769 0%:0.072

rule base reaches the fewest rules designated by the us¢MOFM_M (IMOFM for Mamdani FRBS):

one of singleton rules [21] (rules whose comprising fuzz 'niial FRBS 5 15 Mamdani 06078  0.0702°
sets are similar to singleton set) is removed; 3) the mERBS1(25 times) 5 14 Mamdani  0.061"  ¢?:0.002
similar pair of rules based on the Similarity of Rule Premi§RBS2(22 times) 5 13 Mamdani  0.001°  ¢?:0.002
(SRP) [20] are merged. On the fuzzy sets level: 1) one fuZRBS3(26 times) 4 1 Mamdani  0.0781°  ¢2:0.003
set that is the most similar to the universal fuzzy set FRBS4(28 times) 3 9 Mamdani  0131F  ¢%:0.015
labeled as ‘Don’t care’; 2) two most similar fuzzy sets from FRBS5(28 times) 2(5) 5 Mamdani 02718  5%:0.062

the inputs and output dimensions are merged to form

. L i &: For IMOFM_S, it is the number of fuzzy sets in iputs; for IMOFM_M,
VY _ _

single fuzzy set based on the similarity measi(&;, 4;) it is the number of fuzzy sets in its inputs and output.

[20]. It is worth mentioning that the above operations ar*: Initial model extracted directly from data usietustering algorithms or
executed for each cloned FRBS at each iteration step. A _ 9rid partition methods. .

f threshold hich trol th . imilarit @: Refined model or the consequents are computed thrdwglestimation
of thresholds which control the various similarity measure™" methods.
are specified by the users. Interested readers are referre#: Simplified model after model simplification andaaeter fine tuning.
[24, ch.5] for more details. During the experiments, it i:T;.STtOIZ' ”gfgbe,f ?_f fu'ef'tf]”gth- s obtained from 38
found that the thresholds are not the critical parameters ¢ ardard deviation of the resufts oblained from S8.run
to the fO”OWing two reasons: 1) only one fuzzy rule or two Input2 (+2) of a Srule initial Mamdani FRBS  Input2 (2) of a 5-rule refined Mamdani FRBS Input2 (x2) of a drule simplified Mamdani FRBS

fuzzy sets are removed or merged at each iteration step; |

1

elitism is adopted to record any non-dominated solutior ;.. £l | &)
found at each iteration step. £ g
V. EXPERIMENTS b L b

] ﬁl a

A ABenchmark Problem ' , : ,
152 FE I & I R F ] 19 1 23 1 35 4 45 15 2 15 1 15 4 45

. . . . . Input? 2} Input {x2} Input2 (x2)
The benChm‘?rk example used in this section '_S a nonlinear First Modeling Stage Second Modeling Stage Third Modeling Stage
StatIF: Sy_Stem with two mput; and_one output, which has been Fig. 4 The membership function distribution of input2.
studied in [27]. The system is defined as follows:

(14) Since different runs will lead to slightly different FRBS
configurations, Table | also records the number of each
Although this problem is a simple low-dimensional problenFRBS’ configuration found within the 30 runs. Most
it is a very good example in terms of demonstrating hogonfigurations are found more than 20 times within 30 runs,
IMOFM works. The same 50 input-output data pairs as thosghich suggests that IMOFM is robust and consistent. The
used in [5] and [27] are collected. The number of clusters Gomparing to other Singleton and Mamdani modglin
set to 5 in the first modeling stage. The refined 5-rule initialpproaches, IMOFM was found to represent the most
FRBS is used to seed the initial population in the thirdccurate results with simpler rule-base structure.

y=Q+x72+x°)?, 1<x,x <5



In order to test the influences of the each modeling stagesB. Real World Applications
two variants of the proposed IMOFM are investigated: 1) the |n this section, the problem of predicting the Ultimate
combination of the first stage and the third stage; 2) only theensile Strength (UTS) of heat-treated steel is stydied
third stage. In the latter case, the initial 5-rule FRBS ighich features a high dimensional, nonlinear and sparse data
randomly generated within the variable domains. Table §pace. The UTS data set consists of 3760 data samples and
summarizes the results of the two variants. It is wortiycludes 15 inputs and 1 output which is the UTS with the
mentioning that for the two variants, the thresholds for thgyjyes between 516\/mm? and1842V /mm?. In order to
model simplification are set at higher values so that th@ympare with the work in [28], the data sstrandomly
merging operation only happens when the fuzzy sets or rulggided into two parts: 75% of the data are used for training
are ‘very’ similar. This is to ensure that the FRBSs Withhng the remaining data are used for testing. Another 12
more rules are given a better chance of surviving in the eagliseen examples are also included. All the parameter
stages of the evolution. In [19],‘niche’ concept is used t0  settings related to IMOFM are the same as those used for the
maintain a set of FRBSs with the same number of rules. fenchmark problem except that the initial number of rules is
substitution only happens within each niche so that one cagt to 12 The results presented in Table Il include the
evolve a set of FRBSs with the different number of rulegyerage values of 10 independent runs and only a few

without the worry of losing individuals with more rules. Thepareto’ FRBS are presented due to the constraints on space.
proposed three-stage procedure does not need the

. TS ) TABLE III
af().r.ementloned niche’ concept if all the stages work as a COMPARISONS OF THEPREDICTIVE PERFORMANCE FOR THEDIFFERENT
unified procedure. In such a case, the most accurate FRE MODELING METHODS USING THEUTS DATA
always the one with the number of rules close to 1 First Sltage r(10|L;8tering Second Sta%e_(sir;gle objective

; : : Modeling algorithm refining
maximum value. More importantly, this accurate FRBS W |, %1oue Training Testing | Training | Testing | Validation
direct the search from the most complex structure (the (RMSE) (RMSE) | (RMSE) | (RMSE) | (RMSE)
accurate one) to the simplest ones (the less accurate o [28) 100.54 108.26 3745 | 43.07 -
hi th - ¢ FRBS it . IMOFM_s | 11354 112.32 30.93 35.65 53.61
This ensures the coexistence 0 S WIith varC “jyorm wm | 120.43 123.44 31.21 35.49 37.23
complexities during the ‘Pareto’ selection. Third Stage (multi-objective fuzzy modeling)
TABLE 1l Modeling No. of No. of Fuzzy setsin inputs TM ,‘”,'e'mg perfo.:—ma:r.'ncel
COMPARISONSOF THE PREDICTIVE PERFORMANCEOF THE DIFFERENT Methods | rules (RMSE) | Validation
MODELING STAGES FOR THEBENCHMARK PROBLEM
Modeling No. No. of Thetype  Performance [28]
Methods (Ref.)  of fuzzy of FRBS (RMSE Pareto 12 Inputs: [9111012810891¢ 5, o 43.07/-
les  seté training) FRBS1 10 6 11 10 10 10 10]
Output: 10
Pareto 9 Inputs: [978756468826 42.82 43.90/-
IMOFM (thefirst stage and the third stage); numbeer of iterations: 3000 FRBS2 7 8 7], Output: 9 ) )
iti i 0.6069
Initial FRBS 5 10 Singleton IMOPFa’\:le_tc? Inputs: (478847387734 o o 8204101
FRBS1 5 6 Singleton 0.1183% FRBS1 10 | 477), Outputs: 10 . : :
FRBS2 4 6 Singleton 0.1268 baret Inputs: (244733354522
FRBS3 3 5 Singleton 0.1724 FRBS 8 | 366] Output: 8 36.43 | 37.638154
FRBS4 2 4 Singleton 0.2478 Pareto o Inputsi[344413343411 oo | gagrica,
FRBS5 2(4) 2 Singleton 0.723% FRBS3 26 5], Output: 7 i i i
4 o IMOFM_M
IMOFM (only thethird stage); number of iterations: 4000 Pareto 10 | Inputs:[8910106106997 31.21 | 35.3285.65
Initial FRBS 5 10 Singleton 1.0363 FRBS1 47610 9], Output: 10
FRBS1 4 7 Singleton 0.1116 Pareto ; Inputs: [577724366623| 3470 | 36.4487.80
FRBS2 4 6 Singleton 0.1223 FRBS2 177], Output: 5
FRBS3 3 5 Singleton 0.1502 Pareto 6 'l“g“;]s: gutzpﬁfsz 2143802 4583 | 44304987
FRBS4 3(8" 4 Singleton  0.1753 FRBS3 '
FRBS5 3(7" 4 Singleton 0.321% . -
As shown in Table Ill, the problem of over-fitting
*Initial model extracted directly from data usingstering algorithms or Specifically related to the second modeling stage (vaccine
grid partition methods; TTotal number of rule length; FRBS) under unseen situations is revealed in Table IIl. Such

#: Simplified model after model simplification and paramditee tuning. over-fitting is mainly attributed to the complex structures
As shown in Tabldl, more iterations are needed for thénvolved in the first two modeling stages. However, the
two variants to achieve a similar predictive performance asmplified fuzzy models can predict well even under
that obtained using the three-stage modeling procedure (ref@lknown scenarios. Fig. 5 shows the snapshot of the
to Table I), and only a few Pareto FRBSs are obtained. Thgtained approximate Pareto fronts at different iterations
most complex structure which is supposed to evolve to thghe evolution starts from the most accurate FRBS and
most accurate FRBS is discarded during the optimization fekpands the Pareto front during the course of the
the reasos already describedAll these justified the optimization. Table IV summarizes the results of the UTS
inclusion of the first two stages. modeling problem using IMOFM with and without the



variable length coding and the new distance index. Mud®l E. H. Mamdani,“Applications of Fuzzy Algorithm for Control a
bigger improvements have been registered for the FRBS
with fewer rules since they are more prone to suffering fropg;

th

2
e problem ofunordered set of rules’.
Pareto fronts at 10, 100 500, 800, 1000 and 1200 iterations
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Fig. 5 The Pareto FRBSs at different iterations.
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TABLE IV
THE COMPARISON OF THEMODELING APPROACHES WITH AND WITHOUT
VARIABLE LENGTH CODING SCHEME
No. IMOFM_S IMOFM_S
Conf':iRﬁ;ions of (without VLC) (with VLC) 'mprg;’?me“‘
9 rules (Training RMSE) | (Training RMSE) °
Pareto FRBS1 11 29.782 29.671 0.3%
Pareto FRBS2 10 30.024 29.882 0.5%
Pareto FRBS3 8 36.762 35.740 7.0%
Pareto FRBS4 6 47.780 42.581 10.9%
VI. CONCLUSION

The main novelty of IMOFMis considered to be as

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

follows: 1) the initial number of rules in the rule-base is ndf9l
an important factor anymore since in the third stage a set of
Pareto FRBS with different structure are elicited; only the

maximum allowable number of rules is required a priori; Zp0]
due to the vaccination process, the efficiency and predictive
accuracy of the modelling are improved; 3) by using thypy

variable

length coding scheme,

‘unordered set of rules’ is resolved, which leads to a more
efficient parameter optimisation; 4)the proposed methqu]
represents one of the first attempts which uses an

approximate

Mamdani FRBS for

the linguistic Mamdani fuzzy modeling approach

(1
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