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Abstract—Intelligent environments aim at supporting the user
in executing her everyday tasks, e.g. by guiding her through
a maintenance or cooking procedure. This requires a machine
processable representation of the tasks for which workflows have
proven an efficient means. The increasing number of available
sensors in intelligent environments can facilitate the execution of
workflows. The sensors can help to recognize when a user has
finished a step in the workflow and thus to automatically proceed
to the next step. This can heavily reduce the amount of required
user interaction. However, manually specifying the conditions
for triggering the next step in a workflow is very cumbersome
and almost impossible for environments which are not known
at design time. In this paper, we present a novel approach
for learning and adapting these conditions from observation.
We show that the learned conditions can even outperform the
quality as conditions manually specified by workflow experts.
Thus, the presented approach is very well suited for automatically
adapting workflows in intelligent environments and can in that
way increase the efficiency of the workflow execution.

I. INTRODUCTION

We are dealing with an ever increasing number of sensors

in our everyday life which provide information about the

current context. This enables intelligent environments to be

better aware of the user’s current actions and thus to better

support the user in executing tasks. A task can thereby refer

to the usage of a single product, e.g. repairing a dishwasher

or descaling a coffee machine, as well as to the execution of

a task involving several products, e.g. cooking with a smart

oven, a smart pot etc. If the user is not familiar with a task,

she usually has to refer to written instructions or executes the

task the way she thinks is best. Both approaches hamper the

quality of the execution. Therefore, the products or the whole

environment should be able to guide the user in executing

tasks. This requires a machine processable specification of

the tasks stating the steps which are required to accomplish

them. The task descriptions should also contain information

about when to proceed to the next step to avoid that the user

has to press a “next” button all the time. Workflows have

proven an efficient means for such a representation (see [1]

or [2]). However, specifying these workflows is quite tedious,

especially stating which (context) events should trigger the

next step. Moreover, it is usually not possible to specify all

possible triggers at design time as the concrete environment

∗The author was employed at the Technische Universität Darmstadt when
conducting the research presented in this paper.

in which the task will be executed (including the available

sensors) is usually unknown (e.g. the user’s kitchen). For that

reason, the workflow should be able to automatically adapt to

new environments.

In this paper, we present a novel approach to augment

an existing workflow description with information when to

proceed to the next step for a given environment. For that

purpose, we rely on observing the user in executing the

workflow in this environment. Our approach is able to deal

with very few training data (two runs already provide good

results) which is important when being applied in practice.

Currently, we do not automatically perform adaptations and

only suggest them to the user, because we want to avoid

the user feeling that she has lost control of the system.

However, the results achieved by the presented approach are

very promising so that a complete automation is conceivable.

We show that the approach achieves results comparable to

those of workflow experts with respect to (i) the ability to

recognize the end of an activity, and (ii) the meaningfulness of

the proposed triggers. For this evaluation, we generated a novel

dataset containing recordings of the execution of a workflow

in an intelligent kitchen. The dataset can be downloaded from

our website and thus hopefully supports further research on

workflows in intelligent environments.

In the following, we at first describe how workflows for

intelligent environments are represented (Section II). Then, we

introduce our approach, i.e. which types of context triggers

it supports (Section III) and how it learns context triggers

from observation (Section IV). In Section V, we report on

the results of our evaluation. Finally, we give an overview of

related approaches (Section VI) and outline further research

(Section VII).

II. WORKFLOWS IN INTELLIGENT ENVIRONMENTS

Workflows can be seen as graph structures with nodes (ac-

tivities) and edges (transitions). Executing a workflow means

following transitions from at least one start node and executing

all activities on the way. Thereby, conditions can be specified,

expressing when an activity is finished and thus when its

outgoing transition should be followed (triggering conditions).

An activity can have several outgoing and incoming transi-

tions, which can result in very complex workflow structures.

However, we focus here on purely sequential workflows (with

one incoming and one outgoing transition) and will extend



Fig. 1. Example workflow for preparing espresso

it to other workflows in future work. Sequential workflows

have the advantage that they can be learnt more reliably

and are sufficient for many real world applications. Figure 1

shows a short sequential example workflow for preparing an

espresso consisting of four activities and three transitions.

Thereby, two activities (“Place Cup’’) and (“Take Cup’’) need

to be performed by the user whereas the other two can be

automatically executed by a coffee machine.

Triggering conditions can be expressed with the help of

context information. Triggering allows a change from explicit

interaction, e.g. an acknowledgement via a user interface,

to implicit interaction. For example, the end of the “Place

Cup” activity in our example workflow could be automatically

recognized by RFID events, if an RFID tag is attached to the

cup and an RFID reader to the coffee machine: As soon as the

user places the cup under the drain of the coffee machine, the

coffee machine could automatically brew the espresso without

requiring the user to press a button.

III. TRIGGERING CONDITIONS IN WORKFLOWS

As stated before, for each activity in a workflow a condition

can be specified that needs to be satisfied in order to proceed to

the next activity, i.e. a triggering condition. These conditions

usually refer to the current context. In this section, we will

point out how we represent context and which types of

conditions are supported by our approach.

We represent context information by its type and a list

of attributes Att in form of key value pairs (ki, vi) which

represent the actual content. Further, a timestamp t can be

attached to it. We thus define context information c as

c = (type,Att = {(ki, vi)}, t)

For example, temperature information can be represented as

c = (′temp′, {(′unit′, ′C ′), (′value′, 21.4)}, 145).
A triggering condition at first needs to state to which type

of context information it refers. Further, it should be possible

to specify restrictions on the actual content of the context

information, e.g. that the temperature is more than 25oC. For

that purpose, we define a basic condition (or rule) as:

r = (type, key, op, value)

with key referring to one of the attributes ki of context

information, op being the operator of the condition and value

the value to compare to. A condition for a temperature of more

than 25oC could thus be expressed as (′temp′, ′value′,≥, 25).
Our approach supports the following set of operators but many

more are conceivable:

op ∈ {=,≤,≥, increase, decrease, change}

Thereby, increase, decrease and change refer to a change of

the attribute’s value with respect to its value at the beginning

of the activity. For example, (′temp′, ′value′, increase, 6)
means that the temperature value has to rise by more than 6oC

in the course of the activity to meet the condition. Whether

context information c satisfies a condition r is given by1:

sat(c, r) ⇔ type(c) = type(r)∧

∃(k, v) ∈ Att(c).(k = key(r) ∧ f(v, op(r), value(r)))

Thereby, f : (x, op, y) 7→ {true, false} is a boolean function

which is defined for each operator op and two values x, y as

follows:

• f(x,=, y) ⇔ x = y

• f(x,≤, y) ⇔ x ≤ y

• f(x,≥, y) ⇔ x ≥ y

• f(x, increase, y) ⇔ x − vinit ≥ y, with vinit being

the initial value of the corresponding attribute at the

beginning of the activity

• f(x, decrease, y) ⇔ vinit − x ≥ y

• f(x, change, y) ⇔ |x− vinit| ≥ y

The next activity in the workflow is then triggered as soon

as context information is observed that satisfies the basic

condition r, i.e.

satisfied(r, C) ⇔ ∃c ∈ C.sat(c, r)

with C being the set of observed context information.

Sometimes these basic conditions are not sufficient and

we need to specify a temporal sequence of conditions

(r1 → ... → rn) or to combine several conditions (r1∧...∧rn).

For example, (′temp′, ′unit′,=,′C ′)∧(′temp′, ′value′,≥, 25)
ensures that we use a sensor that reports the temperature in

degree Celsius.

Temporal conditions In order to make a statement about

temporal relationships, we need to know when the context

information that met a condition was observed, i.e. we need

to consider t(c). A temporal composition of conditions is then

satisfied if:

satisfied(r1 → ... → rn, C) ⇔ ∃{ci ∈ C|i = 1..n}.

(t(c1) ≤ ... ≤ t(cn)) ∧ sat(c1, r1) ∧ ... ∧ sat(rn, cn)

Combined conditions: A combined condition is satisfied

as soon as context information was observed that satisfies all

the conditions it is composed of, i.e.

satisfied(r1∧...∧rn, C) ⇔ ∃c ∈ C.sat(c, r1)∧...∧sat(c, rn)

Finally, we might want to specify several alternatives that

can trigger the next activity. For that purpose, workflows allow

1For ease of readability, we will use the abbreviation a(x) to refer to the
first parameter of x = (a, b, c) etc.



us to specify several conditions per activity, thus alternatives

(or the ∨ operator) are implicitly defined. We refer to the set

of all conditions for an activity a as Ra. The next activity is

automatically triggered as soon as one condition is satisfied,

i.e. ∃r ∈ Ra.satisfied(r, C).

IV. LEARNING TRIGGERING CONDITIONS

In this paper, we present a novel approach for learning

triggering conditions from observation and thus for disburden

the user or developer from having to manually specify them.

At first, we need to track how a user executes a workflow.

The end of an activity and thus the start of the next activity

can either be determined based on (i) a context-trigger already

specified for the activity, or (ii) the user who tells the system

to move on to the next activity, e.g. by pressing a button.

This data is stored along with all context information which

incurred during the execution of the workflow in a log Li (one

log per workflow execution).

As stated before, context information consists of a type,

attributes and a timestamp, i.e. t(c). The execution of an

activity a is characterized by a start (tstart) and end time

(tend), and a set of initial context information Cinit, i.e.2

a = (tstart, tend, Cinit)

Cinit contains all initial values vinit which are required for

determining how the value of an attribute changes in the course

of an activity (e.g. that the temperature increases by 10oC).

Cinit is defined as follows:

Cinit ={c ∈ L<a|∀ci ∈ L<a\{c}.

type(ci) = type(c) ⇒ t(ci) ≤ t(c)}

with L<a being the set of context information that was ob-

served before a started, i.e. L<a = {c ∈ Li|t(c) ≤ tstart(a)}.

Further, we define the set of context information recorded

during the execution of a in Li as

Ca = {c ∈ Li|tstart(a) ≤ t(c) ≤ tend(a)}

The logged data is then used to learn triggering conditions

from observation. We require at least two runs, i.e. logs,

to be able to obtain reliable results, because it is hardly

possible to distinguish between noise and relevant context data

from only one run. With our approach, two logs are usually

already sufficient to achieve good results as we will show in

the evaluation. For learning triggering conditions, we at first

determine possible conditions for each activity per log (Section

IV-A) and then combine the conditions from the different logs

(Section IV-B). Finally, we rate the conditions according to

some quality metrics to identify the most relevant conditions

for triggering the next activity (Section IV-C).

2Formally correct, we would need to explicitly state the log file from which
the information was obtained, e.g. a(Li) or Ca(Li), but we will abbreviate
it as a or Ca to ease the readability if it is clear from the context to which
log file it refers.

A. Calculating Conditions for a Single Log Ra(Li)

At first, we iterate over all activities stored in a single

log Li and determine the set of conditions Ra(Li) that

could be relevant triggering conditions (see Algorithm 1).

Ra consists of ‘=’-conditions for all possible attributes of

the context information that occurred in the course of the

execution of the activity. For example, (′temp′,′unit′,=,′ C ′)
for the attribute ′unit′. Further, a ‘≤’- and a ‘≥’-condition for

each context attribute with its minimal and maximal value,

respectively (e.g. (′temp′,′value′,≤, 70)). For the other three

operators, also one condition is computed per operator and

context attribute with the maximal ‘increase’, ‘decrease’ or

‘change’. From all observed combinations of attribute values

we built corresponding combined conditions. In order to limit

the amount of resulting conditions and their complexity, we

only consider combined conditions consisting of basic ‘=’-

conditions. Temporal conditions are only determined in the

next step when combining the results of different logs.

Algorithm 1 Calculate Ra for log Li

Definition: amountAttributes(tp): amount of attributes for

context information of type tp, e.g. tp =′temp′ has two

attributes (′unit′, ′value′) in our example

Definition: b: buffer ∈ [0, 1]
for all tp ∈ {type(c)|c ∈ Ca} do

// basic conditions

for 1 ≤ x ≤ amountAttributes(tp) do

for all y ∈ {vx(Att(c))|c ∈ Ca ∧ type(c) = tp} do

add (tp, kx,=, y) to Ra

end for

vinit = vx(Att(c)) with c ∈ Cinit(a) ∧ type(c) = tp

min = min{vx(Att(c))|c ∈ Ca ∧ type(c) = tp}
max = max{vx(Att(c))|c ∈ Ca ∧ type(c) = tp}
absMax = max{vinit −min,max− vinit}
if ((1− b) ·min < vinit) then

add (tp, kx,≤, (1− b) ·min) to Ra

if (min < vinit) then

add (tp, kx, decrease, (1− b) · (vinit−min)) to Ra

if ((1− b) ·max > vinit) then

add (tp, kx,≥, (1− b) ·max) to Ra

if (max > vinit) then

add (tp, kx, increase, (1− b) · (max−vinit)) to Ra

if (absMax > 0) then

add (tp, kx, change, (1− b) · absMax) to Ra

end for

// Combined Conditions

for all c ∈ {c ∈ Ca|type(c) = tp} do

r∧ = true

for all (k, v) ∈ Att(c) do

r∧ = r∧ ∧ (tp, k,=, v)
end for

add r∧ to Ra

end for

end for



The calculated conditions are filtered by checking whether

they “fit” to the corresponding initial value vinit. For example,

if vinit = 5 and the minimally observed value is 6, the

value did not really decrease, so (x, y,≤, 6) (for corresponding

context attribute y of type x) is not considered relevant.

Humans do not use the minimal/maximal value for specify-

ing conditions and rather leave a buffer to this maximum value

(which could also be observed in our evaluation). For example,

if the maximally observed value is 10, a human usually states a

condition with a lower value, e.g. (x, y,≥, 8). We try to mimic

this behavior in our approach and also apply a buffer b ∈ [0, 1]
to the minimally/maximally observed values by multiplying

them with (1 − b). Which value should be chosen for b will

be discussed in the evaluation (Section V).

B. Combining Conditions from Several Logs

In the next step, the conditions of the single logs Ra(Li)
are combined to build the final set of conditions Ra(L)
with L = {Li} being the set of all logs. For that purpose,

we determine the best conditions for every combination of

context type and attribute’s key (tp, k). Ra(L) contains all

combined and ‘=’-conditions of the single logs. From all other

conditions, only the one with the maximal value from all

logs (for ‘≤’-conditions) or the minimal value (for all other

conditions) is maintained, i.e.

Ra(L) =
⋃

tp,k

{{(tp, k,=, x) ∈ R∪
a }

∪ {r ∈ R∪
a ∧ isCombined(r) ∧ type(r) = tp}

∪ {(tp, k,≤,max{x|(tp, k,≤, x) ∈ R∪
a })}

∪op∈O {(tp, k, op,min{x|(tp, k, op, x) ∈ R∪
a })}}

with R∪
a =

⋃
i Ra(Li), isCombined(r) ⇔ r is a combined

condition, and O = {≥, increase, decrease, change}.

Next, we identify relevant temporal conditions. In order to

keep the complexity of conditions low, we restrict temporal

conditions to two steps referring to the same context type,

e.g. increase and decrease of the temperature. Further, not

all combinations of temporal conditions are sensible, e.g.

(x, y,≥, 5) → (x, y,≥, 10) is not really useful, because it can

usually be replaced by (x, y,≥, 10). For that reason, we re-

strict the temporal conditions to combinations of ‘≤’, ‘≥’ and

of ‘increase’,‘decrease’ conditions. Moreover, we also allow

the combination of two combined conditions with different

content (but of the same type). To compute the temporal con-

ditions, we calculate for each relevant condition r1 in Ra(L)
the corresponding r2 on a subset Lr1of the log L. Lr contains

all data that was recorded after the condition r was met, i.e.

Lr =
⋃

i{x ∈ Li|c = match(r, Ca(Li)) ∧ t(x) ≥ t(c)}
with match(r, Ca(Li)) being the first context information in

Ca(Li) that satisfies r (i.e. with sat(c, r) = true). Thus, the

following temporal conditions are added to Ra(L):

Ra(L) = Ra(L) ∪
⋃

tp,k

{{(r1 → r2)|r1 = (tp, k, op1, x) ∈ Ra(L)

∧ ∃r2 = (tp, k, op2, y) ∈ Ra(Lr1) ∧ {op1, op2} ∈ T}

∪ {(r1 → r2)|r1, r2 ∈ Ra(L) ∧ r1 6= r2∧

isCombined(r1) ∧ isCombined(r2)}}

with T = {{≤,≥}, {increase, decrease}}.

C. Selecting Best Triggering Conditions

From the set of calculated conditions Ra(L) we select

those which most likely reflect the end of an activity. For

that purpose, we determine the quality of each condition r

according to several parameters3:

• applicability app: ratio of logs Li in which the condition

was satisfied during the execution of the corresponding

activity a, i.e.

app(r, a) =

∑
i satisfied(r, Ca(Li))

|L|

This results in a value between 0 and 1, whereby 1 means

that r was satisfied in all logs and 0 that it was not

satisfied in any log.

• specificity spec reflects how specific the condition is to

an activity a, i.e. whether it is not also satisfied in the

course of many other activities. This metric is important

to filter conditions which are generated by noise. For

example, if a sensor continuously reports changing data,

the algorithm will generate some (irrelevant) conditions

from it. However, these conditions are satisfied during

the execution of many activities and can thus be filtered

accordingly. We compute the specificity of a condition r

as the ratio of other activities to which r could NOT be

applied:

spec(r, a) = 1−

∑
ai∈A\{a} app(r, ai)

|A| − 1

with A being the set of all activities of the workflow.

Thus, a specificity value of 1 indicates that r was only

met during the execution of a. whereas a specificity of 0

means that the condition r was also satisfied during the

execution of all other activities.

• timing dt (delta t): Moreover, it is important that the

condition should be satisfied as close to the recorded

end of the activity as possible, i.e. it should not already

trigger the next activity if the user has just started the

activity. We define this time gap dt for one log Li as

dt(r, Li) = tend(a) − t(c) with c = match(r, Ca(Li)).
(As stated before, match(r, Ca(Li)) refers to the first

context information in Ca(Li) that satisfies r) We then

define dt(r) as the average of all those values, i.e

dt(r) =

∑
i dt(r, Li)

|L|

3For simplicity, we assume that L only consists of complete logs, i.e. logs
that contain data for each activity of the workflow.



Fig. 2. Workflow for preparing tea with milk

We sort the conditions according to these parameters –with

app having the highest priority and dt the lowest. As stated

before, we currently only suggest these conditions to the user

or workflow developer (via a workflow editor), but we aim

to automatically include them in the workflow description in

the future. To prevent that the user or workflow gets flooded

with conditions that vary only slightly, e.g. (x, y,≥, z1) and

(x, y, increase, z2), we restrict the suggested conditions to the

best condition per context type.

V. EVALUATION

For evaluating the presented approach, we recorded a work-

flow for preparing tea in a kitchen equipped with several

sensors. Further, we asked six workflow experts to fill out

a questionnaire regarding the conditions they would use for

annotating the workflow in that specific environment. In the

following, we at first describe the setup of the experiment and

the questionnaire. Then we evaluate our approach regarding

expressiveness, performance and meaningfulness. Performance

thereby refers to how well these conditions can predict the

end of an activity. Meaningfulness captures the subjective

ratings of human experts which does not necessarily reflect the

performance of the conditions. For example, a very complex

condition can yield good results, but would not be rated as

appropriate by human judges. For evaluating the performance

and meaningfulness of our automated approach, we compared

the results to those of the human experts. We expected that

the experts would outperform our approach regarding both

metrics, because they can profit from background knowledge,

e.g. which axis of a 3D-gyroscope is relevant for detecting

movements in a specific direction, in contrast to the computer.

A. Experimental Setup

The workflow we chose for evaluating our approach is

shown in Fig. 2. The kitchen used for the experiment with

all items can be seen in Fig. 3. We attached RFID tags to

all items and equipped some of them with Phidget4 sensors:

the tea caddy with vibration and light sensors, the cup with

sound and temperature sensors, and the milk bottle with a

gyro sensor. For the latter, we only recorded the average x-,

y- and z-values for time windows of 2s in order to reduce

the amount of recorded data. During the execution of the

workflow, the user was wearing an RFID reader around his

wrist. The computer, which was attached to all sensors and

4http://www.phidgets.com

Fig. 3. Kitchen and items used for experiments

the RFID reader, prompted the user which activity to execute.

The user had to press a button in order to proceed to the next

activity. We recorded 8 runs with two different users. As there

is a time gap between the “ideal” and the recorded end of an

activity (when the user presses the button), we also annotated

in 4 of these datasets the time when we would consider an

activity to be finished (tidealEnd(a)). The recorded datasets

can be downloaded from our website5.

B. Questionnaire

The six workflow experts were given a description of

the workflow and the experimental setup including graphs

illustrating the values for each sensed context type for two

randomly chosen runs. These graphs were also annotated with

beginning and end of the different activities. The questionnaire

consisted of two parts:

At first, we asked the experts to state which conditions they

would choose for annotating the workflow for the given envi-

ronment. For example, “a temperature rise to more than 80oC”.

Thereby, we did not restrict them in the type of conditions.

These conditions were used to evaluate the expressiveness

of our approach and to gather a “gold standard” for the

performance and meaningfulness of the learned conditions.

Next, the experts should rate the suitability of different

conditions for detecting the end of an activity in our exper-

imental setup. Here, we limited the conditions to those that

are supported by our approach and were only interested in

the type of condition (e.g. ≤) and not in concrete values. We

used a scale from 0 to 3 (with 0: “should not be used”, 1:

“Not best condition, but could detect the end of the activity

in some cases”, 2: “Should work in most cases / best choice

with given sensors”, 3: “Very well suited condition, should

reliably detect the end of the activity”). The ratings were used

to evaluate the meaningfulness of the different conditions.

C. Results

The experts stated 84 conditions in total, i.e. they specified

on average 1.75 conditions per activity. 45% were basic

5http://www.smartproducts-project.eu/teaDataset



conditions making use of all the operations that are also

supported by our approach. 30% were combined conditions

each consisting of two basic conditions. The final 24% were

temporal conditions, whereby all but one consist of two

conditions.

Expressiveness 93% of all triggering conditions specified

by the workflow experts can be represented with our approach.

Five of the six conditions that are not covered, deal with

“constant” values over a specific period of time to detect

that a movement has stopped, e.g. that the gyro sensor does

not report a value above 5 or below -5 for 4 seconds.

The remaining not covered condition is a temporal condition

consisting of three different basic conditions of two different

types. Our approach could be easily extended to cover this

condition, but we wanted to keep the resulting conditions as

simple as possible and for that purpose restricted our approach

to two-step temporal conditions of the same context type (e.g.

a ‘≥’- and a ‘≤’-conditions for the temperature value).

This shows that our approach can cover most conditions

required for representing triggering conditions in workflows,

at least for such a simple example as used for the evaluation.

Performance In order to evaluate the performance of the

generated conditions, we computed their applicability and

timing and compared the results to those achieved by the

experts.6 We had to exclude one expert, as he did not state

concrete numbers for the conditions. Further, we excluded

the results for the “boil water” activity because there was

no way to detect the end of this activity with the given

sensors. We used a slightly modified version dt′of dt for the

evaluation: (i) we normalized delta t according to the length of

the corresponding activity to enhance comparability, and (ii)

we used the annotated “ideal” ends of activities (tidealEnd)

instead of tend to better reflect the desired outcome, i.e. we

used

dt′(r, Li) =
tidealEnd(a)− t(c)

tidealEnd(a)− tstart(a)

As discussed before, we also try to mimic human behavior

in applying a buffer to the maximum / minimum value for

the conditions (see Section IV-A). We evaluated the effects

of the chosen buffer b on the performance of our approach.

We calculated app and dt′ when considering only the best

condition suggested by our approach, i.e. n = 1, using

two randomly chosen datasets for training and all others for

testing. Fig. 4 shows that an increasing buffer b improves the

applicability app but worsens the timing (increasing dt′) as

was to be expected. As the best results are achieved with

b = 0.1 we use this for the further evaluation.

Next, we computed the applicability and timing achieved

with the conditions specified by the workflow experts. The

six conditions that cannot be expressed with our system were

simplified or ignored after consultation with the corresponding

6The third quality parameter specificity is only relevant for selecting
conditions and does not give evidence about the performance.
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experts. We used all datasets but the two used in the question-

naire for testing. Fig. 5 shows the performance per expert. It is

very variable which shows that it is a difficult task for humans

to define the best conditions for a workflow.

We compared the results to the one achieved by our gen-

erated conditions. The computer was trained on the same two

datasets that were given to the experts. We computed the

results when considering the best n conditions generated by

our approach for n = 1, 2, 3 (as stated before, several condi-
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(with standard deviation) and the conditions generated by our approach for
varying amount of considered conditions (with b = 0.1)



tions per activity are treated as alternatives). Fig. 6 shows the

performance regarding applicability and timing compared to

the average results achieved by experts. As to be expected, app

and dt′ increases with the number of considered conditions

n. If we only take the top ranked condition (n = 1) into

account, the applicability is comparable to the one achieved

by the average expert (-1%), the corresponding timing is

even better than the one of the average expert (i.e. smaller

dt′, -11%) which exceeded our expectations. With n = 2
(which corresponds approximately to the amount of conditions

specified by experts per activity, i.e. 1.75) it is the other way

round: The applicability achieved by our approach is higher

(+13%), but the timing is slightly worse (+5%).

To sum it up, we could show that the generated

conditions can keep up with conditions specified by

human workflow experts with respect to their performance

(i.e. their applicability and timing) and even outperform the

results achieved by some experts.

Meaningfulness For computing the meaningfulness of con-

ditions, we rated them according to the human judgements.

Thereby, we again excluded the “boil water” activity. The

agreement between the different experts regarding the best

conditions was lower than expected: the interrater agreement

κ (according to [3]) is 0.21 and the best condition per activity

achieved only an average score of 1.9 (rating per condition).

For gaining a gold standard, we computed the average score

per activity for the conditions specified by the experts. For

each activity and expert, we considered only the condition

with the highest score. The average expert achieves a score

of 1.5 (with standard deviation of 0.3) and our approach with

n = 2 only a score of 1.2 (see Fig. 7). This is due to the fact

that our approach often suggested conditions the experts did

not consider. For example, our approach preferred conditions

when the connection to the RFID tag is lost (and thus e.g. the

cup released) while the users preferred conditions when the tag

was read. When we discussed issues like this with the experts

they often agreed that such a condition might detect the end

of an activity better than those they had selected. This shows

that it is hard to suggest the right condition every user would

agree upon and that the conditions with the highest ratings are

not necessarily the best ones.
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The conditions that were rated highest often differed only

slightly between the different users, e.g. one user rated

(′temp′,′value′,≥, x) with the highest score while another

preferred the increase variant of this condition. For that

reason, we also calculated ratings per sensor and RFID tag

(rating per type) as we assumed that the experts can better

agree on the relevance per type and could thus give us a better

estimation of the meaningfulness of a condition. The score of

a condition was calculated as the average of the maximum

ratings the corresponding sensor / tag could achieve per expert,

no matter which specific operation was rated. Here, the experts

as well as our approach achieved an average rating of 2.3 with

a much lower standard deviation between experts of 0.04 (see

Fig. 7).

Finally, we evaluated whether the sorting of conditions by

our approach reflects the relevance of the conditions. We

computed the average ratings for the top ranked conditions

as can be seen in Fig. 8. The solid line shows the average

rating per type. You can see that the first condition is usually

considered very relevant, the second as more or less relevant

and the remaining conditions as hardly relevant. We also

wanted to know whether the relevance of the exact type of

condition (i.e. which operator is used etc.) is also reflected in

the ranking of conditions.7 The dashed line in Fig. 8 shows

the results: the rating per condition also drops with increasing

rank, but due to the problems arising with the rating per

condition the trend is not as clear as the one for the rating

per type.

To sum it up, the generated conditions are rated as meaning-

ful as the conditions specified by human experts if we focus on

the context type of the conditions (rating per type). Moreover,

we showed that our approach successfully ranks the conditions

based on their relevance according to the human judgements

and thus meets the requirements for automatically adapting

workflows in the future.

7For this purpose, we considered all conditions per type (in contrast to the
general approach as discussed in Section IV-C).



VI. RELATED WORK

In this section, we give an overview of work in three related

areas: (i) context-aware workflow description languages, (ii)

learning workflows for business processes, and (iii) learning

workflows in intelligent environments.

In the literature, there exist several approaches how context

information can be considered in workflows (e.g. [2], [4]).

There also exist interesting contributions in the closely re-

lated domain of context-aware service composition, e.g. [5].

However, none of these approaches deals with learning or

automatically adapting workflows.

In the area of business processes, there exists a plethora of

work about mining workflow processes from logs (e.g. [6], [7],

[8], [9]). However, their approaches cannot be directly applied

to intelligent environments, e.g. because activities are harder to

identify in intelligent environments than in business processes.

Further, these approaches usually only cover mining of the

workflow structure (“Graph mining”, for an overview see [10])

and not learning conditions for triggering the next activity.

Approaches which deal with the problem of mining triggering

conditions (e.g. [8]) make use of decision trees which are for

example not able to express temporal relations in conditions

(which is important in intelligent environments as could be

seen in the evaluation) and are not well suited for dealing

with the multitude of highly dynamic context events.

Learning structures of tasks in the area of intelligent

environments focuses usually on the aspect of using this

information for activity recognition (e.g. building HMMs).

For example, Kasteren et al. [11] learn the user’s activity

from low level sensor readings and Youngblood and Cook

describe in [12] an algorithm for learning hierarchical models

to predict the user’s behavior in order to automate tasks in a

smart home. Their results can be used as input (i.e. context)

for our approach. However, none of these approaches uses

explicit workflow models and can be used to support the user

in executing a task.

One approach that learns workflows from observation and

uses this data to support subsequent executions of the work-

flow was presented by Schneider [13]. He introduces the

Semantic Cookbook which allows users to record videostreams

of cooking procedures. The user can specify breakpoints

during recording that specify states in the kitchen which have

to be met during playback in order to proceed with the cooking

procedure. However, the Semantic Cookbook is tailored to the

cooking domain and a specially equipped kitchen and can thus

not be easily applied to arbitrary workflows like our approach.

VII. SUMMARY AND OUTLOOK

In this paper, we presented a novel approach for automati-

cally adapting workflows to intelligent environments. For that

purpose, we learn conditions to detect the end of an activity

based on the current context. This enables us to automatically

proceed to the next activity in a workflow and thus to heavily

reduce the required user interaction. We compared the learned

triggering conditions to those specified by workflow experts.

We showed that the quality of the generated conditions is

comparable to that achieved by workflow experts (wrt. per-

formance and meaningfulness). Thus, our approach is able

to relieve the user or workflow developer from manually

specifying the conditions without hampering the quality of the

workflow and can in that way simplify the adaptation process

to a great extend.

As stated before, our final aim is to automatically adapt

workflows to intelligent environments with none or at least

minimal user involvement. However, this most probably has

an effect on the perceived usability of the system, because of

the loss of control for the user. For that reason, some more

studies need to be performed how this effect can be reduced

and/or how workflows (or the suggested modifications) can be

represented in a way that can be easily understood by end-

users.

Moreover, we want to learn those conditions used by the

workflow experts which are not yet covered by our approach

(that a context value does NOT change for a given period of

time). We also want to extend our approach to workflows that

are not purely sequential and learn whole workflows from

scratch in intelligent environments.
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