

This is a repository copy of *Modeling temperature dependent avalanche characteristics of InP*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152395/

Version: Supplemental Material

Article:

Petticrew, J. orcid.org/0000-0003-3424-2457, Dimler, S. orcid.org/0000-0001-9998-8562, Tan, C.H. et al. (1 more author) (2020) Modeling temperature dependent avalanche characteristics of InP. Journal of Lightwave Technology, 38 (4). pp. 961-965. ISSN 0733-8724

https://doi.org/10.1109/jlt.2019.2948072

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Modeling Temperature dependent Avalanche Characteristics of InP Supplementary Material

Jonathan D. Petticrew, *Student Member*, *IEEE*, Simon J. Dimler, Chee Hing Tan, *Senior Member*, *IEEE*, and Jo Shien Ng, *Member*, *IEEE*.

I. TEMPERATURE DEPENDENT GAIN COMPARISON

Fig. S1 Comparison of M(V) simulated using the recurrence equations and the $\alpha^*(E)$ and $\beta^*(E)$ expressions from Table 3 with experimental results (symbols) [18], for three InP P-I-N (device C, D and G) and two N-I-P devices (device E and F) at 290K.

Fig. S3 Comparison of M(V) simulated using the recurrence equations and the $\alpha^*(E)$ and $\beta^*(E)$ expressions from Table 3 with experimental results (symbols) [18], for three InP P-I-N (device C, D and G) and two N-I-P devices (device E and F) at 200K.

Fig. S2 Comparison of M(V) simulated using the recurrence equations and the $\alpha^*(E)$ and $\beta^*(E)$ expressions from Table 3 with experimental results (symbols) [18], for three InP P-I-N (device C, D and G) and two N-I-P devices (device E and F) at 250K.

Fig. S4 Comparison of M(V) simulated using the recurrence equations and the $\alpha^*(E)$ and $\beta^*(E)$ expressions from Table 3 with experimental results (symbols) [18], for three InP P-I-N (device C, D and G) and two N-I-P devices (device E and F) at 150K.

Figure S5 shows a comparison of recurrence generated F(M) results that shows reasonable agreement to experimentally measured results except for device A.

Fig. S5 Comparison of F(M) simulated using the recurrence equations and the $\alpha^*(E)$ and $\beta^*(E)$ expressions from Table 3 with experimental results (symbols) [8], for four InP P-I-N (device A-D) and two N-I-P devices (device E and F) at 290K.