

This is a repository copy of *Management of bleeding and procedures in patients on antiplatelet therapy*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/152369/

Version: Supplemental Material

Article:

Swan, D., Loughran, N., Makris, M. orcid.org/0000-0001-7622-7939 et al. (1 more author) (2020) Management of bleeding and procedures in patients on antiplatelet therapy. Blood Reviews, 39. 100619. ISSN 0268-960X

https://doi.org/10.1016/j.blre.2019.100619

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Table 1. Antiplatelet drugs, mechanism of action, and pharmacokinetics (Makris, *et al* 2013, Oprea and Popescu 2013b)

Drug	Mechanism of	Route of	Reversible or	Half-life	Time to recover
	action	administration	irreversible inhibition		platelet function
Aspirin	COX-1 inhibitor	Oral	Irreversible	15-20 mins	5-7 days
Clopidogrel	P2Y12 inhibitor	Oral	Irreversible	6-8 hours	Approx. 7 days
					(Wallentin 2009)
Prasugrel	P2Y12 inhibitor	Oral	Irreversible	7 hours	7-10 days
					(Wallentin 2009)
Ticagrelor	P2Y12 inhibitor	Oral	Reversible	7-9 hours	3-5 days
	(partial P2Y1)				
Cangrelor	ATP analogue	Intravenous	Reversible	3-6 mins	Rapid (minutes-
					hours)
Abciximab	GP IIb/IIIa	Intravenous	Reversible	10-15 mins	24-48 hours
	inhibitor				
Epitifibatide	GP IIb/IIIa	Intravenous	Reversible	2.5 hours	4-8 hours
	inhibitor				
Tirofiban	GP IIb/IIIa	Intravenous	Reversible	2 hours	4-8 hours
	inhibitor				
Vorapaxar	PAR-1 inhibitor	Oral	Reversible	5-13 days	Up to 4-8 weeks
				(Gremmel and	(Kosoglou <i>, et al</i>
				Panzer 2017)	2011)

Table 2. General risk factors associated with bleeding

Risk factors				
Patient-related factors	Surgery-related factors			
Advanced age	Bleeding risk of surgery			
Renal disease	Bleeding risk of anaesthetic technique eg. spinal			
Liver disease	anaesthesia			
Elevated body mass index (BMI)	Elective or emergency			
Personal or family history of bleeding				
Known bleeding disorder				
Polypharmacy including antiplatelets,				
anticoagulants, NSAIDs, other drugs affecting				
haemostasis eg. ibrutinib/Bruton tyrosine kinase				
inhibitors, chemotherapy				

Table 3. The DAPT Score (Yeh 2016)

Risk Factor	Points	
Age	≥75 years	-2
	65-75 years	-1
	<65 years	0
Smoking	1	
Diabetes mellitus	1	
MI at presentation	1	
Prior PCI or MI	1	
Paclitaxel-eluting ste	1	
Stent diameter <3m	1	
Congestive cardiac f	2	
ejection fraction <30		
Vein graft stent	2	

High risk: ≥2; Low risk: <2

Table 4. POC platelet analysers

Test	Method	Strengths	Weaknesses
PFA-100	Whole blood is added to cartridges impregnated with collagen and adrenaline or ADP. Time required for platelet aggregation to occlude a 150 µm aperture is recorded as the closure time (CT).	Cheap Quick Sensitive to aspirin-effect, and more recent cartridges allow assessment of P2Y12- effect (Jilma and Fuchs 2001, Tsantes, <i>et al</i> 2012).	Affected by VWF levels, platelet count and anaemia Cannot assess GP IIb/IIIa inhibition (Srivastava and Kelleher 2013) Studies in cardiac surgery have shown no benefit in prediction of bleeding risk (Fattorutto, <i>et al</i> 2003).
VerifyNow	Citrated whole blood is mixed with a lyophilised peptide that activates the thrombin receptor. Activated platelets agglutinate with fibrinogen-coated beads, which fall out of suspension, producing an increase in light transmission through the sample.	Quick Can assess effects of aspirin, P2Y12 antagonists and GP IIb/IIIa inhibitors (Srivastava and Kelleher 2013)	Relatively expensive Low predictive value for post- operative bleeding risk (Alstrom, <i>et al</i> 2009).
Multiplate	Measures increases in impedance between electrodes caused by platelet aggregation following administration of a platelet activator to whole blood.	Assessment of aspirin. P2Y12 antagonists and GP IIb/IIIa inhibitors is possible, with good agreement with gold-standard light transmission aggregometry(Srivastava and Kelleher 2013) The ADP test was predictive of post-operative bleeding in 1 study in cardiac surgery (Ranucci, <i>et al</i> 2011). Multiplate with ROTEM has shown benefit in several	Requires manual pipetting by laboratory staff Results may be affected by age, coexisting inflammation and platelet count (Bolliger, <i>et</i> <i>al</i> 2016, Ranucci, <i>et al</i> 2016).

		other studies (Bolliger and	
		Tanaka 2017).	
TEG-PM	Measures platelet inhibition	Results in the post-operative	Platelet activation by thrombin
(platelet	relative to baseline global	setting have been poor	is partially blocked by heparin-
mapping)	viscoelastic profile. A	(Alstrom, et al 2009, Carroll,	may lead to overestimation of
	heparinised sample with	<i>et al</i> 2006), but have shown	ADP/aspirin-effect in cardiac
	Reptilase and Factor XIIIa	benefit pre-operatively	surgery patients/other
	generates a cross-linked fibrin	(Mahla, <i>et al</i> 2012).	heparinised patients (Bolliger
	clot without thrombin-mediated		and Tanaka 2017)
	platelet activation. AA and ADP		
	are then used to assess for		
	aspirin and P2Y12-related		
	inhibition, respectively		
	(Srivastava and Kelleher 2013).		