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Visual saliency with foveated images for fast object detection and

recognition in mobile robots using low-power embedded GPUs

Uziel Jaramillo-Avila1, Jonathan M. Aitken1, and Sean R. Anderson1

Abstract— This paper presents a visual saliency algorithm
for fast object detection and recognition in mobile robots using
low power graphics processing units (GPUs), based on human
vision foveation. The step of image foveation enables the use
of small images, which leads to a much reduced number
of computations in deep convolutional neural networks and
consequent increase in frame-rate. We demonstrate how using
a simple foveated downsampling method, we can maintain a
detection-recognition performance level similar to the level at
larger image resolutions, even when transforming from 416x416
to 128x128 pixels, for a small high acuity region of the image,
which can lead to a 4× speed up in frame rates, maintaining
a relatively stable mean Average Precision. The visual saliency
algorithm is evaluated on the Stanford drone dataset and our
own experimental drone dataset.

I. INTRODUCTION

Computer vision for robotics is a research area that has

grown rapidly in the last few decades, tackling problems

towards scene understanding from very diverse fronts. A key

current challenge to overcome is how to leverage advanced

vision processing algorithms based on computationally inten-

sive deep neural networks in mobile robots with low power

embedded GPUs. There are a number of solutions to this

problem, e.g. more compact neural network design, and the

general advancement of low power GPU hardware. But there

is also potential to exploit insight from biological design,

specifically in foveated image processing.

Foveated image processing is the focus of this paper for

faster, more light-weight use of deep neural networks in

mobile robots. It has long been understood that there are

very valuable lessons to learn from biology, while the visual

system is possibly the most studied brain mechanism. Two

main insights from human vision often brought up with

this goal are saliency and foveation. Often these principles

become independent research areas with the rightful aim of

testing competing algorithms, but a congruent integration

of them is not always straight forward. Foveal vision is a

well established principle, since machines and animals face

a same basic dilemma: prioritizing areas of attention to faster

process information with limiting computer power.

In general, mobile robots have the potential to benefit from

more efficient detection-recognition algorithms. In particular,

the focus chosen in this paper is Unmanned Aerial Vehi-

cles (UAVs), since they have a particular need for power-
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Fig. 1. (upper left) Nvidia Jetson Nano board, weighting 136 grams
and rated at 10 Watts in default conditions, this GPU was used to obtain
performance frame-rates to better illustrate the drastic difference from using
lower resolutions CNNs on an implementation ready platform; (upper right)
DJI Phantom 4 Pro drone, as the one used to record some of the test images,
as described in §II-D; (bottom) frame downsampled to 416x416 pixels from
an original 848x480 frame, run through object detection network of the same
size, where two persons standing up and one person lying down are correctly
labeled, after been deemed salient and foveated on.

efficient computing. More computing resources also means

more weight to be carried, increased battery consumption

and decreased flying time. Visual saliency is also naturally

beneficial for aerial images given their inherent wide-view,

an idea that has been explored in cases like [1], [2], [3].

In this work we present a visual saliency algorithm, based

on biological principles aimed at selecting main regions of

interest on aerial images, so that they can be foveated into a

down-sampled image. This foveated image will be processed

by a Convolutional Neural Network (CNN), which in turn

is required to be done at a relatively small scale, due to

the constraint of computing power in UAVs. This paper

builds on our previous work [4], which only studied the use

of foveation to speed up CNN processing. The new visual

saliency algorithm presented here enables the selection of

regions of interest on which to foveate, which is crucial for

developing a real-time system.

A. Visual saliency

Given how fast the human visual system allows us to

interact with our environment (e.g. scan it to locate an object,

find food, or detect a threat), a robust system is needed to

regulate this behavior, by broadly answering the question

"Where to look next?". The stimuli that drives us to look

at something are often classified as either bottom-up or top-

down, the former makes reference to purely visual stimuli

(such as a bright color, an odd shape or a sudden movement),



the latter is directed by our current task. In this work we use

a bottom-up top-down method for visual saliency.

Itti and Koch [5] proposed a popular bottom-up engineer-

ing saliency map model, derived from the visual attention

theory presented by [6], an updated version of which is used

here - VOCUS2 [7]. This model is based on extracting color,

intensity and orientation cues from an image and iteratively

comparing them against each other. We fuse this bottom-up

saliency with a top-down saliency path based on deep neural

networks. Recently, deep neural networks have been used to

learn visual saliency with foveated vision in an end-to-end

scheme [8]. Here, we focus on a modular scheme, which

more closely mimics biological structures [9, Fig. 9].

B. Foveal vision

Foveation refers to the mechanism in which the human

eye has a small high acuity area of the retina, with a much

denser presence of photo-receptor cells [10]. While the rest

of the retina, the periphery, still allows to process a larger

field of view, with considerable less detail. Full acuity would

not be possible for the complete field of view without a much

larger brain area dedicated to this purpose alone [11]. This

problem is tackled by active vision, an approach that very

directly extrapolates to embedded robotics.

A considerable amount of literature is available on foveal

image transformation, here we build on previous feveation

work, presented on [4].

C. Convolutional neural networks

Deep convolutional neural networks (CNNs) have received

in recent years a large amount of attention in computer

vision, a good overview is given in [12]. For the task of ob-

ject detection and recognition there are two well established

networks, which we use in this work: Faster-RCNN [13] and

YOLOv3 [14], with different approaches and performance

trade-offs. Faster-RCNN uses a Region Proposal Network to

reduce the number of bounding boxes, and YOLOv3 is posed

as a single shot regression-classification system (see Fig. 2).

The key problem with using these networks in mobile

robots is the limited computational resources: GPUs are used

for implementation and the GPUs for embedded systems

have far fewer cores than for workstations. The solution

proposed here is to use a visual saliency algorithm to detect

where to look, then centre a foveated image transformation

at this point to produce a small image that is fast to process

in a CNN object detection system.

II. METHODS

A. Visual saliency algorithm

The main task addressed in this paper is the development

of a visual saliency algorithm that uses bottom-up visual

saliency fused with top-down information via the CNN

detection, operating on foveated images - the main algorithm

is illustrated in Fig. 3.

By normally down-sampling the current frame Io, by a

magnitude m (we use m = 4), into ID, two advantages are

obtained; (a) given the pyramidal saliency model structure

(a)

(b)

Convolutional

Classifier

Region Proposal Network

ROI pooling

1x 2x 8x 8x 4x

Residual Avgpool Connected Softmax

Convolutional

Fig. 2. (a) YoloV3, a fully convolutional model with 106 layers, that makes
single shot detections at 3 different scales, (b) Faster-RCNN, a classification
model using anchors and a dedicated network for region proposals.

(Fig. 4), a smaller image will be processed considerably

faster, and (b) the chance is decreased that an one-off pixel

with high saliency will be marked as the most salient one.

With ID as input, the bottom-up saliency map, SBU , is

obtained, providing the top salient location, which is used as

the center of the fovea, fc. Then the frame Io is transformed

into a squared foveal image If , of equal length and width,

to match the input size of the CNN.

The bounding box predictions of the CNN can then be

transformed back into the coordinates at the same size to

ID, and used as a top-down saliency influence, STD, in the

next frame, at t+ 1, allowing to obtain an overall saliency,

SO = β · SBU + (1− β) · γ · STD (1)

where β is an influencing factor that allows to fine-tune the

magnitude in which the top-down information is considered.

How the value of gamma affects the overall saliency is

illustrated in Fig. 6, using conventional saliency evaluation

metrics.

The factor γ enables to give a higher priority to any

given class of the CNN detection. For example, with c = 5
categories present in the data-set, giving a priority to the

third one, γ = [0.5, 0.5, 1, 0.5, 0.5],

γ · STD =

c∑

n=1

γ[n] · sn (2)

where sn is the normalized predicted bounding boxes for the

nth category.

B. Bottom-up saliency

A well established bottom-up saliency algorithm was

chosen to compute the bottom-up saliency, VOCUS2 [7],

for several reasons: this model is closely structured to the

original [5] proposal, using difference of Gaussian at differ-

ent scales, as a representation of ganglion cells in the human

retina [7]. It also provides a pixel level saliency map, which is

necessary to establish the location of the fovea. Fig. 4 shows

a diagram of this model. Given its pyramidal structure, a

smaller image and limiting the number of layers, provides a

considerable speed-up. One scale pyramid was used, with
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Original image
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+

Fig. 3. Diagram of how the bottom-up saliency orientates the top location
for the foveal transformation, in its turn feeding the deep neural network.
The predictions of the CNN are used as feedback to supplement the saliency
computation, with a variable magnitude β, for the frame at t+ 1.

arithmetic mean for feature and conspicuity fussing, two

center surround pyramids and four layer levels.

C. Foveated image transformation

With the goal of obtaining foveal images of a smaller size

than the original, and having determined the foveal location,

fc, the original image can be transformed following the

principles described in previous work [4] where for an image

of size Nx×Nx, rows of pixels are selected at sample points

xk that are at a logarithmically increasing distance,

xk = exp (k∆x) for k = 0, . . . , nx/2 (3)

where ∆x = 2n−1
x log (Nx/2), and then applying the same

process to the columns of the image.

The main difference is that here a fast foveal transfor-

mation is required, which can be efficiently achieved by

creating a Look Up Table (LUT) with the coordinates of

all the possible locations of the fovea and simply consulting

the required rows and columns to create the foveal image,

avoiding the need to do online computations to reach an

exact number of pixels to match the shape of the CNN. The

LUT contains the pixel coordinates required to transform the

input image to a desired size. Here we start with the original

frames at 480x848 pixels, a popular resolution with a ratio

close to 16:9, to then test with foveal images at increasingly

Input image

Intensity

Center Surround

Blue/yellowRed/green

On-off contrast Off-on contrast

On-off feature map Off-on feature map

Intensity map Red/green map Blue/yellow map

Saliency map

...

+

+

~

~

~

~

...

Fig. 4. Partial scheme of the Bottom-up VOCUS2 [7] Saliency model
used, with one scale pyramid, feature and conspicuity fussing by arithmetic
mean, two center surround pyramids and four layer levels.

smaller images, from 416x416 to 96x96 pixels, at 32 pixel

intervals. The Neural Network size is made to match the one

of the image.

D. Experimental data

It is considerably more beneficial, for a drone surveying

a natural area, to be able to distinguish between actions

than simpler categories, e.g. "person", specially for search

and rescue operations; a drone could be monitoring a large

area, with several dispersed people present, with only one

requiring assistance or special attention. Here we hypothe-

size two relatively simple categories; "person standing up"

and "person lying down", with the latter being a clue or

representation that someone might be in need of assistance.

Video footage was taken using a DJI Phantom 4 Pro drone



Fig. 5. Frame from the Stanford drone dataset, at 848x480 pixels, and downsampled by the described foveation approach to 416x416, 288x288 and
160x160, from left to right, respectively. As the image size decreases, less objects are present in the fovea, but keeping a resolution similar to the original.

in a meadow region of the Lake District, United Kingdom.

Using five participants either walking around in random

directions or lying down on the floor, with them switching

between the two categories previously described. For train-

ing, 4804 frames where manually labeled, from 4 different

scenes, and extended to 24020 using the Imgaug image

augmentation library [15], with transformations including

Gaussian blur and noise, contrast normalization, rotation and

flipping.

For a better generalization, the dataset was merged with

a subset of the Stanford drone data-set [16], following a

few conditions to balance the number of occurrence of each

category, given the overwhelming number of appearances of

"pedestrians", which was fused with our "person standing

up" label. Similarly, the "golf cart" and "car" labels were

considered as one. From 18 separate videos, of 6 different

scenes, the frames that contained bus were considered, with

a total count of "pedestrian/person standing up"; 84201,

"biker"; 57280, "golf cart/car"; 16040, and "bus"; 12006.

Fig. 5 shows an example frame at 848x480 pixels resolution,

and foveated to 416x416, 288x288 and 160x160 pixels

respectively, from left to right.

III. RESULTS

Two main approaches are taken to evaluate the perfor-

mance of this implementation. First, conventional saliency

metrics provide insight into the influence of the top-down

feedback loop. Although this metrics are designed and nor-

mally compared to human eye fixations, given as ground

truth. In this context the main interest is the objects that the

CNN is trained to classify.

Second, the mean Average Precision (mAP), a measure

commonly used in machine learning, helps to validate how

for the objects that are within the vicinity of the fovea, the

performance rate can be kept at a similar level than with

bigger network/image sizes. While doing so, a considerable

increase in frame-rate is obtained, for which we test using

a portable GPU, with relatively low energy consumption

requirements, the Nvidia Jetson Nano, that at 10 Watts and

136 grams, is well suited for drone implementations.

A. Visual saliency

The Area under ROC Curve (AUC), Pearson’s Correlation

Coefficient (CC), Kullback-Leibler divergence (KLdiv) and

the Normalized Scanpath Saliency (NSS) are four commonly

used saliency metrics. For the latter,

NSS =
1

N

∑

i

Si ×Gi (4)

where Si is the overall saliency, N is the total number of

pixels with a fixation and Gi is the binary ground truth map.

To study the influence of top-down versus bottom-up

visual saliency, Fig. 6 shows the behaviour of overall saliency

when varying β from Eq. 1. Given that both the ground truth

and the top down predictions are rectangular boxes, AUC and

NSS are most relevant here, as location-based metrics [17].

For the same reason, a performance increase for these

saliency metrics can be expected when the top-down infor-

mation has a larger weight than the bottom-up. However

the AUC reaches an almost steady level around β = 0.5.

Of these four metrics, the KL-divergence is the only one

for dissimilarity, instead of similarity, meaning that a lower

value signifies a better prediction of saliency [17]. In this

case, a key point to remark is that the best performance is

obtained with approximately a similar influence for top-down

and bottom-up information.

A second relevant behavior to consider is the effect of

γ, from Eq. 1, which can be used to give priority to any

selected label. In Fig. 7, this effect is illustrated using the

NSS metric (Eq. 4), by making γ = [a, b, c, d, e], where any

of γ{a,...,d} = 1 when the corresponding label and γn = 0.5
for all the rest, for example γ = [1, 0.5, 0.5, 0.5, 0.5] to give

priority to the first label (person lying down). Even when

this effect is not drastic, it can help to prioritize information.

B. Object detection and recognition

The most common method for detection-recognition eval-

uation is to obtain the Intersection over Union (IoU) between

the ground truth bounding box and the prediction box,

IoU =
Area of overlap

Area of union

and then use it as a threshold to determine if a predicted

box can be considerate positive. The mean Average Precision

(mAP) is then calculated using the metrics of the PASCAL

VOC 2012 competition [18], with an IoU of at least 50%. We

measure the performance of the instances where the objects

are at least 30% into the foveal region.



1− β AUC CC KLdiv NSS

0 * 0.551 0.161 3.680 1.420

0 0.546 0.084 3.49 0.820

0.1 0.591 0.158 3.620 1.374

0.3 0.730 0.289 3.306 2.301

0.5 0.796 0.392 3.035 2.982

1.0 0.813 0.481 8.507 3.573
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Fig. 6. (left) Table with key values for performance changes using some of the conventional saliency metrics; AUC, CC, KLdiv and NSS, as presented
in [17], while varying the weight β of the top-down influence. (right) The graph shows the behaviour for values of β ∈ {0, 1}. Given the nature of the
ground truth (binary bounding boxes with the top-down object locations), it its expected that a larger effect of the top-down information, 1− β, will give
a better result. However, for most metrics, the performance flattens around β = 0.3 to β = 0.6, supporting that hypothesis that a good balance is obtained
giving equal weight to the bottom-up and top-down information.
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Fig. 7. The γ influencing factor allows to give priority to any of the
top-down detection categories, to make it more likely for the fovea to stay
centered on it, in case it is required by the task. In this case, γi = 1 for
every of the plotted objects, and γi = 0.5 for the rest of them. The effect
of γ is determined by the difficulty and frequency in which each object
appears, but in most cases at least a slight increase is obtained, compared
to treating all categories equally (blue bars), here using the NSS metric.

As the network sizes are made smaller, fewer objects are

considered. But those that are can be taken with a higher

confidence as true positives. While with a conventional

linear downsample the performance is affected near linearly

by network size. Additionally, with smaller networks, the

slowdown of adding the bottom-up saliency and foveal

transformation becomes more noticeable.

Fig. 8 gives some of the key mean Average Precision

values while using the tinyYolo network. And Fig. 9 does the

equivalent while using the complete YoloV3 model, together

with their respective frame-rates. While the values vary

considerably depending on the network, or when only using

the more difficult subsection of the dataset, the behaviour

is consistent, where the performance is considerably more

steady for the detections that appear in the fovea, as easily

seen in the right side graph of Fig. 9. A key result from Fig.

8 is that for the foveal images (last row), the performance

can even be seen to increase for the objects in the fovea.

When using the Faster-RCNN network (Fig. 10), only

trained at full 416x416 resolution, it is clear that it does

Network size 416 256 192 160 128

Frame-rate 8.89 20.31 26.92 31.48 37.54

Normal 45.12 26.12 8.07 1.3 0.08

Foveal 38.88 49.15 44.18 46.76 46.48

Normal (S) 21.71 12.37 5.17 1.57 0.43

Foveal (S) 17.55 17.52 17.72 28.43 30.79

Fig. 8. Key values for mean Average Precision performance using the
tinyYolo V3 neural network. The second row exemplifies the frame-rate
averaged by all the test images on the Jetson Nano, going from 8.89, at
a resolution of 416x416, to 37.54 frames/second, at 128x128 pixels. In
the foveal images, performance can be seen to maintain a steady level,
although considering less objects as the scale decreases, only those that
are at least 30% present in the rows and columns selected for the foveal
transformation. The last two rows, marked by a (S), give the performance
when only considering the Stanford dataset images, which proved to be
considerably more difficult, but where the effect of the foveation remained.

not generalize as well for smaller resolutions (marked by

the steep performance decline in the normal downsample).

The foveated images show a behaviour similar to the one

described in the previous cases. This implementation also

did not show a considerable speed-up, staying around 1.1

frames/second on the Jetson Nano, possible due to having a

bottleneck on the Region Proposal Network (Fig. 2).

IV. CONCLUSIONS

This paper has proposed a novel visual saliency algorithm

with foveated vision that enables fast object detection and

recognition using low power GPUs. It was shown how down-

sampling an image, while keeping a small high resolution

region, allows to maintain confidence in the CNN predictions

comparable to that at higher resolutions, with the trade-off of

the performance on the low-resolution areas, the periphery.

While keeping the periphery still allows to have information

to influence saliency estimation and the location of the fovea,

in contrast to simply cropping the images.

The visual saliency system was demonstrated on two

datasets: the Stanford drone dataset and our own UAV test



Network size 416 192 160 128

Frame-rate 1.44 4.57 5.11 6.69

Normal 72.56 21.3 20.65 10.31

Foveal 69.16 58.49 40.61 30.89

Normal (S) 35.51 15.78 12.25 5.53

Foveal (S) 30.79 28.79 25.84 21.41
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Fig. 10. Evaluating for only the images taken from our drone, the
performance is considerably better (as shown in this two graphs), supporting
the view that this section of the test images is easier to learn for the CNN,
with around 3 object appearances per frame. The right axis shows the
average number of objects taken into account for evaluation in each case,
selected by being at least 30% in the fovea.

set. The results showed the benefit of the visual saliency

algorithm in the applications domain of UAVs, where objects

of interest (persons, vehicles, animals, etc.) are often small

and naturally different from the rest of the scene (and hence

more salient).
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