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Experiments have shown that when a mixture of fuel and oxygen is passed through a
zirconia tube whose inner surface is coated with a catalyst, and then ignited at the end of
the tube, a reaction front, or flame, propagates back along the tube towards the fuel inlet.
The reaction front is visible as a red hot region moving at a speed of a few millimetres per
second. In this paper we study a model of the flow, which takes into account diffusion,
advection and chemical reaction at the inner surface of the tube. By assuming that the
flame propagates at a constant speed without change of form, we can formulate a steady
problem in a frame of reference moving with the reaction front. This is solved using the
method of matched asymptotic expansions, assuming that the Reynolds and Damköhler
numbers are large. We present numerical and, where possible, analytical results, firstly
when the change in fluid density is small (a simplistic but informative limit) and secondly
in the fully compressible case. The speed of the travelling wave decreases as the critical
temperature of the surface reaction increases and as the mass flow rate of fuel increases.
We also make a comparison between our results and some preliminary experiments.

1. Introduction

In this paper we construct and analyse a mathematical model for a novel, surface-
catalysed reaction front that has been observed in an experiment performed recently
on a model fuel cell (Lefevre 2003). The experimental set up is shown in Figure 1. A
mixture of fuel and oxygen is fed into one end of a long thin tube of zirconia (the inlet).
The opposite end of the tube (the outlet) is heated by igniting the gas so as to form a
premixed flame at the end of the tube. The increased temperature at the outlet starts a
reaction on the inner surface of the zirconia, where a high surface area platinum catalyst
is present, and the heat produced by the reaction causes the tube to glow red. When
the premixed flame at the end of the tube is extinguished, the red glow remains, and
then moves at a speed of a few millimetres per second along the tube towards the inlet.
The motion of the reaction front is shown in Figure 2; fuel flows along the tube from
the left and the outlet is at a distance shown by d = 90 mm on the ruler. The speed
of the reaction front calculated from these pictures is about 0.46 mm s−1. This speed
decreases as the flow rate of fuel coming into the tube increases, and increases with the
amount of catalyst on the inner surface of the tube. There is an obvious analogy between
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Figure 1. Schematic of the experiment.

(a) At time t = 0.0 s the reaction front is at
d = 80 mm.

(b) At time t = 6.5 s the reaction front has
progressed to d = 77 mm.

(c) At time t = 12.7 s the reaction front has
progressed to d = 74 mm.

Figure 2. The observed propagation of the reaction front, or surface-catalysed flame.

this phenomenon and the classical experiment of Davy (1817). In his experiment, Davy
heated a fine platinum wire and introduced it into a mixture of methane and air. He
noted:

“...the oxygene (sic) and coal gas in contact with the hot wire combined without
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flame, and yet produced heat enough to preserve the wire ignited, and to keep up
their own combustion.”

Apart from its intrinsic scientific interest, an understanding of surface-catalysed flames
could improve our understanding of the way a fuel cell behaves as it is heated to its
working temperature. A fuel cell is a device that converts chemical energy into electrical
energy. It differs from a battery in that it is continuously supplied with fuel rather than
simply using a finite amount of fuel stored within it. The fuel cell is one of the cleanest and
most efficient forms of energy production available at the moment (Winkler 1994; Kumar,
Krumpelt and Myles 1992). There are several types of fuel cell in development which have
different applications. The solid oxide fuel cell (SOFC) consists of an electrolyte layer
made from a solid ceramic, zirconia (ZrO2), which at high temperatures (usually at least
700oC) can conduct oxygen ions (Singhal and Kendall 2003). Fuel reacts on one side of the
zirconia, where a catalyst is present, reducing the oxygen concentration on this side. The
other side, which is exposed to the air, remains at the atmospheric oxygen concentration.
The fuel burning process therefore results in a gradient in oxygen concentration across the
zirconia electrolyte. An electrical connection is placed across the zirconia, the cathode on
the oxygen rich side and the anode on the fuel side. At the cathode, electrons combine
with oxygen molecules to form negatively charged oxygen ions, which travel through
the zirconia down the concentration gradient. On reaching the anode, the oxygen ions
release electrons and react with fuel. The electrons continue around the circuit back to
the cathode.

An important design feature of the SOFC is that the oxygen rich and fuel sides of
the electrolyte must be kept separate. This ensures that the oxygen travels only through
the electrolyte and produces an electrical current. Any leakage of oxygen between the
two sides of the fuel cell reduces its efficiency. The tubular SOFC is made up of a tube
of zirconia with tubular electrodes on either side. This arrangement helps to solve the
problem of sealing one side from the other. The tubular design we study was developed by
Kendall and Prica (1994) and Finnerty et al (1998). Fuel flows through the zirconia tube
and reacts with oxygen at the inner surface which is coated with a platinum catalyst.
The tubes used in these cells are extruded from powders dispersed in polymer solutions
which makes the cells more resistant to thermal and mechanical shocks. These cells can
therefore be used for small scale applications as they are not likely to break during rapid
start-up.

Previous mathematical analysis of the tubular SOFC has considered the cell running
under isothermal steady state conditions (Cooper 2000; Cooper, Billingham and King
2000). The surface-catalysed reaction front that we study here is relevant to the initial
heating and start-up of this type of fuel cell. We shall neglect electrochemical effects
in our analysis, since the surface catalysed reaction front is observed in the absence of
electrochemical activity. In the following section we formulate a mathematical model
that describes the flow field, temperature distribution and mass fraction distributions,
and the speed of the reaction front. We then describe the basic structure of the asymptotic
solution, and some of the boundary value problems that we need to solve, in Section 3. We
take two different approaches: in Section 4 we consider the case of small heat production,
and hence constant density at leading order, whilst in Section 5 we present results for the
fully compressible model, which has a slightly more involved asymptotic structure. We
then compare our theory with some preliminary experiments, and draw some conclusions.
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Figure 3. The coordinate system and asymptotic regions.

2. The mathematical model

In the following analysis we use a cylindrical polar coordinate system, (r, θ, z), with
the origin at the centre of the outlet of the tube, as shown in Figure 3. Although we
formulate the governing equations for an unsteady flow, in due course we shall look for
a steady, permanent form travelling wave solution (a flame solution).

2.1. The governing equations

The equations for conservation of mass, momentum and energy can be derived using
continuum theory for a mixture of reacting species (Buckmaster and Ludford 1982). We
will work with the mass averaged velocity of the fluid, u, and the mass fractions, Yi, of
the separate reacting species. These are defined so that the density of species i is ρYi

where ρ is the total density of the fluid mixture. The mass conservation equation for
species i is

ρ

(

∂Yi

∂t
+ u·∇Yi

)

= ∇· (ρD∇Yi) , (2.1)

where D is the molecular diffusivity of the gases in the mixture, which we assume to be
the same for each species. The equation for conservation of total mass is

∂ρ

∂t
+ ∇·(ρu) = 0. (2.2)

Note that the right hand side is zero, since the temperature of the mixture is low enough
that there is no significant chemical reaction in the bulk. The chemical reaction is confined
to the inner surface of the tube, where a platinum catalyst is present, and will therefore
appear as a boundary condition.

Since the chemical reaction does not occur in the bulk, there is no creation of mo-
mentum or energy there and the mixture of gases just behaves as a continuous fluid.
Conservation of momentum is

∂u

∂t
+ u ·∇ u =

1

ρ
∇· σ, (2.3)

where σ is the stress tensor,

σ = −pI + µ
(

∇u + (∇u)
T
)

−
2

3
µ (∇·u) I,

and I is the unit tensor. The parameter µ is the mass averaged kinematic viscosity of the
fluid mixture and p is the pressure. Conservation of energy is

ρcp
DT

Dt
=

Dp

Dt
−

2

3
µ (∇·u)

2
+ µ

(

∇u + (∇u)T
)

: ∇u + ∇·(k∇T ), (2.4)

where T is the temperature of the fluid mixture, cp is the heat capacity at constant
pressure and k is the thermal conductivity of the mixture.
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Physical quantity Symbol Value/magnitude

inner radius of tube a 10−3 m
width of tube h = b − a 2 × 10−4 m
mass flow rate at inlet qin 1 × 10−6 kg s−1

inlet (room) temperature Tin 293 K
critical temperature of reaction Tc O(103) K
density at the inlet (T = Tin) ρin O(1) kg m−3

molecular diffusivity at inlet Din O(10−6) m2 s−1

viscosity of gas mixture at inlet µin O(10−5) kg m−1 s−1

thermal conductivity of gas mixture at inlet kin O(10−2) W m−1 K−1

specific heat at constant pressure of gas mixture cp O(103) J kg−1 K−1

specific heat at constant volume of gas mixture cv O(103) J kg−1 K−1

Stefan-Bolzman constant σ 5.67 × 10−8 W m−2 K−4

emissivity of zirconia tube ǫ O(10−1)

surface heat transfer coefficient H O(1) W m−2 K−5/4

heat of combustion of methane Qc 5.570 × 107 J kg−1

rate of reaction k0 O(10−2) m s−1

Table 1. Parameters, their values and their meanings.

We assume that the separate gases all satisfy the equation of state for a perfect gas so
that

pi =
RρYiT

mi
,

where R is the molar gas constant and mi is the molecular mass of species i. From this,
Dalton’s law of partial pressures gives the total pressure, p, in terms of the mass fractions,
Yi, as

p = RρT

N
∑

i=1

Yi

mi
.

2.2. Boundary conditions and initial simplifications

In order to obtain an asymptotic solution that will provide us with some insight into
the structure of the flow, we must make some simplifying assumptions. We first look to
simplify the chemistry of the problem. The reaction of methane with oxygen is complex
(Senkan 1992) and we simplify the system so that the reaction is essentially

fuel → products.

This model is widely used for premixed flames (Buckmaster and Ludford 1982). Since
mass is conserved, mf = mp, where the subscripts f and p denote properties of the fuel
and product respectively. Also, since the sum of the mass fractions is always unity, we
have Yp = 1−Yf and hence we only have to solve for the fuel mass fraction which satisfies

ρ

(

∂Yf

∂t
+ u

∂Yf

∂r
+ w

∂Yf

∂z

)

=
1

r

∂

∂r

(

rρD
∂Yf

∂r

)

+
∂

∂z

(

ρD
∂Yf

∂z

)

. (2.5)

This simplification also affects the equation of state, which becomes

p =
RρT

mf
.
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Chemical reaction takes place on the inner surface of the tube only, since this is the only
place where the catalyst is present. At the boundary between the surface of the tube and
the rest of the gas, r = a, there is an influx of fuel into the boundary, balanced by an
efflux of products produced by the chemical reaction. Using the law of mass action, we
have

ρD
∂Yf

∂r
=

{

−k0ρYf , T > Tc,

0, T < Tc,
at r = a,

where k0 is the rate of the catalysed reaction, which we take to be constant. We have
also assumed that no reaction takes place when the temperature at the surface of the
tube is below the critical temperature, Tc. Surface catalysis is a complicated process and
this is a reasonable first approximation of what happens.

At the inner surface of the tube there are several other boundary conditions. Continuity
of velocity normal to the surface gives u = 0 at r = a, since gases cannot penetrate the
tube wall. The no slip condition at the solid boundary is w = 0 at r = a. To obtain
the heat flux boundary condition, we assume that the radial temperature gradient across
the tube is small, since the zirconia is thin compared to the radius of the tube. We can
therefore combine the boundary conditions at r = a, the inner surface, and r = b, the
outer surface, to obtain

k
∂T

∂r
+ σǫ

(

T 4 − T 4
in

)

+ H (T − Tin)
5/4

=

{

k0ρYfQc, T > Tc,

0, T < Tc,
at r = a,

where σ is the Stefan Bolzman constant, ǫ and H are the emissivity and coefficient of
surface heat transfer of zirconia respectively and Qc is the heat of combustion of methane.
The second and third terms on the left hand side of the equation give the heat loss by
radiation and natural convection respectively (Carslaw and Jaeger 1959). The magnitudes
of these heat losses can be estimated using the non-dimensional radiation heat transfer
coefficient, A = O(10−2), and the Nusselt number, Nu = O(10−1) (see Tables 1 and
2). Since these heat losses are small in comparison to the magnitude of the heat flux
through the tube, we will neglect them here, although their effect on the solution as a
small perturbation over a long distance remains to be investigated. In particular, the
appearence of the reaction front as a red band rather than an extended red hot region
must be due to cooling by heat losses. We assume that this affects the appearence, but
not the leading order behaviour of the flame.

The length of the tube is much greater than its radius, so we treat it as semi-infinite to
leading order. The temperature, mass fraction and mass flow rate at the inlet therefore
satisfy

T → Tin, Yf → 1, 2π

∫ a

0

ρwr dr → qin as z → −∞, (2.6)

where qin is the inlet mass flow rate and Tin the inlet temperature.

2.3. Non-dimensionalisation

In what follows, dimensional variables are denoted by a star. We non-dimensionalise
the governing equations using characteristic scales of the system. As there is now no
geometrical length scale in the axial direction, we use the diffusion length scale. The
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dimensionless variables are

r =
r∗

a
, z =

z∗

qa
, u =

qu∗

W
, w =

w∗

W
, t =

Wt∗

qa
, T =

T ∗

Tin
,

k =
k∗

kin
, D =

D∗

Din
, µ =

µ∗

µin
, p =

p∗ − pin

ρinW 2
, ρ =

ρ∗

ρin
,

where qa is the diffusion length scale and

q =
Wa

Din
.

The parameters Din, µin, kin and ρin are the diffusivity, viscosity, thermal conductivity
and density of the mixture of fluids at the inlet temperature, Tin. The axial velocity scale,
W , is given by

W =
qin

πa2ρin
.

In terms of these variables, the dimensionless governing equations are

∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0, (2.7a)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −q2 1

ρ

∂p

∂r
+

q

Re

1

3ρ

[

4
∂

∂r

(

µ
∂u

∂r

)

+ 4
µ

r

∂u

∂r
−

4uµ

r2
+ 3

∂

∂z

(

µ
∂w

∂r

)

−2
∂

∂r

(

µ
∂w

∂z

)

− 2
u

r

∂µ

∂r

]

+
1

Re q

1

ρ

∂

∂z

(

µ
∂u

∂z

)

, (2.7b)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −

1

ρ

∂p

∂z
+

1

Re q

1

3ρ

[

1

r
µ

∂u

∂z
+ 3

∂

∂r

(

µ
∂u

∂z

)

− 2
∂

∂z

(

µ
∂u

∂r

)

+4
∂

∂z

(

µ
∂w

∂z

)

− 2u
1

r

∂µ

∂z

]

+
q

Re

1

ρ

1

r

∂

∂r

(

rµ
∂w

∂r

)

, (2.7c)

ρ

(

∂Yf

∂t
+ u

∂Yf

∂r
+ w

∂Yf

∂z

)

=
1

r

∂

∂r

(

rρD
∂Yf

∂r

)

+
1

q2

∂

∂z

(

ρD
∂Yf

∂z

)

, (2.7d)

ρ

(

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

)

= M2(γ − 1)

(

∂p

∂t
+ u

∂p

∂r
+ w

∂p

∂z

)

+
M2(γ − 1)

q Re
µ

(

−
2

3

[

1

r

∂

∂r
(ru) +

∂w

∂z

]2

+2

[

(

∂u

∂r

)2

+
(u

r

)2

+

(

∂w

∂z

)2

+ 2
∂u

∂z

∂w

∂r

])

+
M2(γ − 1)

q3 Re
µ

(

∂u

∂z

)2

+
M2(γ − 1)q

Re
µ

(

∂w

∂r

)2

+L
1

r

∂

∂r

(

rk
∂T

∂r

)

+
L

q2

∂

∂z

(

k
∂T

∂z

)

, (2.7e)

p =
1

γM2
(ρT − 1) , (2.7f )
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Symbol Definition Typical value Description

q
qin

πaρinDin

O(102)
rate of fuel flow

rate of diffusion

Re
qin

πaµin

O(102)
inertial forces

viscous forces

Pr
µincp

kin

O(1)
momentum diffusivity

thermal diffusivity

L
kin

ρinDincp
O(1)

thermal diffusivity

mass diffusivity

γ
cp

cv
O(1)

specific heat at constant pressure

specific heat at constant volume

M
qin

πa2ρin

√

(γ − 1) cpTin

O(10−3)
average speed in fluid

average speed of sound in fluid

Q
Qc

cpTin

O(10)
heat produced in reaction

heat transferred by conduction

Da
k0 a

Din

O(10)
rate of reaction

rate of diffusion

ε
h

a
O(10−1)

thickness of tube

radius of tube

A
σǫT 3

ina

kin

O(10−2)
rate of heat transfer by radiation

rate of heat transfer by conduction

Nu
HaT

1/4

in

kin

O(10−1)
rate of heat transfer by convection

rate of heat transfer by conduction

Table 2. The dimensionless parameters.

where Re and L are the Reynolds number and Lewis number respectively, defined by

Re =
Waρin

µin
, L =

kin

ρinDincp
.

The parameter M is the Mach number given by M = W/ws where ws =
√

(γ − 1) cpTin

is the speed of sound through the fluid and γ is the ratio of specific heats, γ = cp/cv.
Since M2 ≪ 1 (see Table 2), we will set M = 0 in all future calculations. Defining the
Prandtl number by Pr = µincp/kin we can write q in terms of the Reynolds, Prandtl and
Lewis numbers as

q = RePrL. (2.8)

Since both Pr and L are O(1) parameters, q = O(Re), with Re ≫ 1. We can therefore
think of q as a measure of the mass flow rate.
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2.3.1. Boundary conditions

In terms of the dimensionless variables, the boundary conditions at r = 1 are

u = 0, w = 0,

ρD
∂Yf

∂r
=

{

−DaρYf , T > Tc,

0, T < Tc,
k

∂T

∂r
=

{

QDaρYf/L, T > Tc,

0, T < Tc,

where Tc is now the dimensionless critical temperature of the reaction, Da is the Damköhler
number and Q is the dimensionless heat of reaction

Da =
k0a

Din
, Q =

Qc

cpTin
.

At r = 0, u, w, Yf and T must be finite, and

u → 0, w ∼ inlet velocity, Yf → 1, T → 1,

1
∫

0

rρw dr →
1

2
,

as z → −∞.

2.4. Further simplifications

A commonly used, and reasonable approximation is that the fuel and temperature diffuse
at the same rate, and hence that the Lewis number is unity, L = 1 (Buckmaster and
Ludford 1982). From this we further assume that the temperature dependences of the
thermal conductivity and diffusion coefficient are such that

k = ρD.

This allows us to add Q times (2.7d) to (2.7e) and obtain

ρ

(

∂

∂t
(QYf + T ) + u

∂

∂r
(QYf + T ) + w

∂

∂z
(QYf + T )

)

=
1

r

∂

∂r

(

rk
∂

∂r
(QYf + T )

)

+
1

q2

∂

∂z

(

k
∂

∂z
(QYf + T )

)

.

From the boundary conditions we have

∂

∂r
(QYf + T ) = 0, at r = 1,

and

QYf + T → Q + 1, as z → −∞,

so QYf + T = Q + 1 is a solution. We therefore only have to explicitly solve for one of
either temperature or mass fraction. We choose to solve for temperature.

3. The structure of the asymptotic solution

We now seek an asymptotic structure based on the limit of large q and Da. Physically,
this corresponds to a rapid throughput of fuel and fast chemical reaction at the inner
surface of the tube. We look for a travelling wave solution, which we expect will develop as
the large time solution. We transform the equations into a frame of reference moving with
the flame front at a constant speed, c, which we will have to determine. Experimentally



10 F. Adamson, J. Billingham, A. C. King and K. Kendall

this wave speed is much less than the flow speed and its magnitude will be determined
theoretically by the scalings in the asymptotic regions, as we will show in Section 3.1.
Writing z′ = z + ct and substituting into (2.7), we obtain

1

r

∂

∂r
(rρu) +

∂

∂z′
(ρw′) = 0, (3.1a)

u
∂u

∂r
+ w′

∂u

∂z′
= −q2 1

ρ

∂p

∂r
+

q

Re

1

3ρ

[

4
∂

∂r

(

µ
∂u

∂r

)

+ 4
µ

r

∂u

∂r
−

4uµ

r2
+ 3

∂

∂z′

(

µ
∂w′

∂r

)

−2
∂

∂r

(

µ
∂w′

∂z′

)

− 2
u

r

∂µ

∂r

]

+
1

Re q

1

ρ

∂

∂z′

(

µ
∂u

∂z′

)

, (3.1b)

u
∂w′

∂r
+ w′

∂w′

∂z′
= −

1

ρ

∂p

∂z′
+

1

Re q

1

3ρ

[

1

r
µ

∂u

∂z′
+ 3

∂

∂r

(

µ
∂u

∂z′

)

− 2
∂

∂z′

(

µ
∂u

∂r

)

+4
∂

∂z′

(

µ
∂w′

∂z′

)

− 2u
1

r

∂µ

∂z′

]

+
q

Re

1

ρ

1

r

∂

∂r

(

rµ
∂w′

∂r

)

, (3.1c)

ρ

(

u
∂T

∂r
+ w′

∂T

∂z′

)

=
1

r

∂

∂r

(

rk
∂T

∂r

)

+
1

q2

∂

∂z′

(

k
∂T

∂z′

)

, (3.1d)

ρT = 1, (3.1e)

where w′ = w + c is the axial velocity in the new frame of reference. The boundary
conditions in this frame of reference become

u = 0, w′ = c,

k
∂T

∂r
=

{

Daρ (Q + 1 − T ) , z′ > 0,

0, z′ < 0,
at r = 1. (3.2)

At r = 0 we require that u, w′ and T are finite, and as z′ → −∞ we match the flow in the
reaction region to the steady inlet flow. In order to fix the axes in the flame, we assume
that the surface catalysed reaction is not active for z′ < 0, so that the temperature at
z′ = 0 is the critical temperature, Tc. Since the Damköhler number is large, changes in
the flow due to the reaction occur in a small region close to the reaction front at z′ = 0,
r = 1. This region is the innermost of our asymptotic structure and is shown as region IV
in Figure 4. The outer regions, I and II, give the O(1) flow in the tube for z′ < 0 and
z′ > 0 respectively. In z′ < 0, no chemical reaction occurs and the flow at leading order
is just the steady inlet flow. In z′ > 0, changes in the flow due to chemical reaction at
r = 1 diffuse out into the centre of the tube. The solution in region III matches together
the solutions in regions II and IV.

In regions I and II, the leading order equations are the large q and Da limits of (3.1)
and (3.2). From (2.8) we have q = PrRe, since L = 1. Substituting this into (3.1) and
taking the limit of large q we have,

1

r

∂

∂r
(rρu) +

∂

∂z′
(ρw′) = 0, (3.3a)

∂p

∂r
= 0, (3.3b)

u
∂w′

∂r
+ w′

∂w′

∂z′
= −

1

ρ

∂p

∂z′
+ Pr

1

ρ

1

r

∂

∂r

(

rµ
∂w′

∂r

)

, (3.3c)
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Figure 4. Sketch of the tube showing the asymptotic regions.

ρ

(

u
∂T

∂r
+ w′

∂T

∂z′

)

=
1

r

∂

∂r

(

rk
∂T

∂r

)

, (3.3d)

ρT = 1, (3.3e)

at leading order. Taking Da → ∞ in the heat flux boundary condition at r = 1, (3.2),
we have simply ∂T/∂r = 0 for z′ < 0 and T = 1 + Q for z′ > 0. The equations to be
solved in the inner two regions can be found by rescaling (3.1).

We construct a region around the edge of the reaction front in which changes in the
heat flux due to the reaction are of O(1). The radial scale is therefore determined by
considering the heat flux boundary condition at the wall, (3.2). Writing r2 = 1− ηR̄ and
substituting into (3.2), we have a balance of leading order terms when η = Da−1. Before
we can determine the axial scaling of the inner region we need to know the magnitude
of the wave speed. We can determine this by considering the solution in the inlet region
and how it matches to the inner region.

3.1. Solution in the inlet region, Region I

No chemical reaction takes place in region I, and the inlet conditions show that T = 1,
ρ = 1, µ = 1 and k = 1. The inlet flow is Poiseuille, with u = 0 and w′ = 2

(

1 − r2
)

+ c.
From experiments we know that the wave speed is much less than the flow speed, so we
write c = ξC where ξ ≪ 1 and C = O(1) which gives

w′ = 2
(

1 − r2
)

+ ξC.

To obtain the richest balance of terms in the governing equations, we rescale the axial
velocity so that it appears at leading order in the innermost asymptotic region. Let W̄ be
the axial velocity in the inner region so that w′ = ξ

(

W̄ + C
)

. In terms of the region IV
scaled variable R̄, we obtain

W̄ = 2ξ−1Da−1R̄,

so the richest balance occurs when ξ = Da−1. This allows us to determine the equations
in region IV.
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3.2. Equations in region IV

We write r2 = 1 − Da−1R̄, z′ = Da−3Z̄, w′ = Da−1
(

W̄ + C
)

and substitute into (3.1).
At leading order we obtain

∂

∂R̄

(

ρŪ
)

+
∂

∂Z̄

(

ρ(W̄ + C)
)

= 0, (3.4a)

1

2
Ū

∂Ū

∂R̄
+

1

2
(W̄ + C)

∂Ū

∂Z̄
= −q̄2 2

ρ

∂P̄

∂R̄
+

Pr

3ρ

[

8
∂

∂R̄

(

µ
∂Ū

∂R̄

)

+ 6
∂

∂Z̄

(

µ
∂W̄

∂R̄

)

−4
∂

∂R̄

(

µ
∂W̄

∂Z̄

)]

+
Pr

q̄2

1

2ρ

∂

∂Z̄

(

µ
∂Ū

∂Z̄

)

, (3.4b)

Ū
∂W̄

∂R̄
+ (W̄ + C)

∂W̄

∂Z̄
= −

1

ρ

∂P̄

∂Z̄
+

1

q̄2

Pr

3ρ

[

3
∂

∂R̄

(

µ
∂Ū

∂Z̄

)

− 2
∂

∂Z̄

(

µ
∂Ū

∂R̄

)

+4
∂

∂Z̄

(

µ
∂W̄

∂Z̄

)]

+
4Pr

ρ

∂

∂R̄

(

µ
∂W̄

∂R̄

)

, (3.4c)

ρŪ
∂T

∂R̄
+ ρ

(

W̄ + C
) ∂T

∂Z̄
= 4

∂

∂R̄

(

k
∂T

∂R̄

)

+
1

q̄2

∂

∂Z̄

(

k
∂T

∂Z̄

)

, (3.4d)

ρT = 1, (3.4e)

where Ū = −2Da−1u. The rescaled pressure, P̄ , is given by p = Da−2P̄ , where p is the
pressure in the outer regions. The parameter q̄ is given by q̄ = qDa−2, and we assume
that q̄ = O(1).

The boundary conditions in region IV are

Ū = 0, W̄ = 0, k
∂T

∂R̄
=

{

1
2ρ (T − 1 − Q) , Z̄ > 0,

0, Z̄ < 0,
at R̄ = 0, (3.5a)

Ū → 0, W̄ ∼ 2R̄, T → 1 as Z̄ → −∞, (3.5b)

along with matching to the outer solution as R̄, Z̄ → ∞. We can now determine the
scalings for the intermediate region, III.

3.3. Equations in region III

Region III is situated between regions II and IV as shown in Figure 4. We rescale using
r2 = 1−Da−1/2R, z′ = Da−3/2Z and w′ = Da−1/2W +Da−1C. Substituting into (3.1),
we find the leading order equations to be

∂

∂R
(ρU) +

∂

∂Z
(ρW ) = 0, (3.6a)

∂P

∂R
= 0, (3.6b)

U
∂W

∂R
+ W

∂W

∂Z
= −

1

ρ

∂P

∂Z
+

4Pr

ρ

∂

∂R

(

µ
∂W

∂R

)

, (3.6c)

ρU
∂T

∂R
+ ρW

∂T

∂Z
= 4

∂

∂R

(

k
∂T

∂R

)

, (3.6d)

ρT = 1. (3.6e)
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The rescaled pressure, P , is given by p = Da−1P and the radial velocity is, U = −2Da−1/2u.
The boundary conditions at the wall are

U = 0, W = 0, T = 1 + Q at R = 0, (3.7)

along with matching to the outer regions as Z → 0 and R → ∞.
We are now in a position to solve the systems of equations we have obtained in each

of the asymptotic regions. We have already described the simple solution in region I, the
inlet region, in Section 3.1. We will consider the solution in the three other regions for
two different cases. The more complicated of the two is the O(1) heat release problem,
which is given by the fully compressible equations. In order to gain some insight, we
first consider the case of small heat release, which is significantly more straightforward
to tackle than the full problem.

4. Solution for small heat release

The complexity of the systems to be solved in regions II, III and IV can be reduced by
assuming that the heat of reaction, Q, is small. This approximation is not very realistic
physically, but it simplifies the equations greatly and can be used as a check on the
accuracy of our solutions when Q = O(1) in the limit Q → 0. Moreover, the solution for
Q ≪ 1 retains most of the features and physics of the full problem. When Q ≪ 1, the
temperature remains close to its inlet value, so it is appropriate to define T = 1 + QT̂ .
It follows from the equation of state that, to leading order, the density is also constant
(the constant density approximation) and, since the viscosity and thermal conductivity
are dependent only on the temperature, we have µ = 1 and k = 1 at leading order. Using
the constant density approximation, we therefore find that the flow down the tube is
unchanged, with u = 0 and w′ = 2(1−r2)+Da−1C at leading order. The energy equation
is now the only nontrivial equation to be solved. In each of the asymptotic regions, the
leading order equation can be found by substituting u = 0, w′ = 2(1 − r2) + Da−1C,
T = 1+QT̂ , k = 1 and ρ = 1 into (3.3d), (3.4d) and (3.6d) and their respective boundary
conditions.

4.1. Region II

In this region we have a parabolic governing equation

2
(

1 − r2
) ∂T̂

∂z′
=

1

r

∂

∂r

(

r
∂T̂

∂r

)

, (4.1)

for 0 6 r 6 1, 0 6 z′ < ∞, to be solved subject to the boundary conditions

∂T̂

∂r
= 0, at r = 0, (4.2a)

T̂ = 1, at r = 1, (4.2b)

T̂ = 0, at z′ = 0. (4.2c)

We have replaced the requirement that T̂ should be finite at r = 0 by the equivalent
symmetry condition, (4.2a), since we solve this system numerically.

Using a forward stepping, implicit finite difference scheme, we discretise the equations
on an m × n grid, and write the problem in the form

Aj Tj = Bj Tj−1,

where Aj and Bj are known m × m matrices, Tj is a vector of length m that contains
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Figure 5. Temperature profiles in region II.

the discretized temperature, and 0 6 j 6 n. Writing Tj = Tg + ∆T where Tg is an
approximation to the solution, Tj , and ∆T is a small correction to this, we obtain an
equation for ∆T of the form

Mj∆T = rj , (4.3)

where Mj is another known m×m matrix and rj is a known vector of length m. Both Mj

and rj contain the approximate solution Tg. We solve (4.3) for ∆T and use an iterative
procedure to improve the approximation for Tj until ∆T has converged to zero. The
numerical solution is shown in Figure 5. The qualitative form of the solution is as we
might expect, with the temperature decreasing with distance from the wall and increasing
as the distance from the edge of the reaction front, z′, increases.

4.2. Region III

In region III the velocities are U = 0 and W = 2R. Substituting for U , W , k and T
into (3.6d) we obtain

R
∂T̂

∂Z
= 2

∂2T̂

∂R2
, (4.4)

where 0 6 R < ∞, 0 6 Z < ∞, with the boundary conditions

T̂ = 1, at R = 0, (4.5a)

T̂ → 0, as R → ∞, (4.5b)

T̂ = 0, at Z = 0. (4.5c)

We obtained the boundary condition as R → ∞ by matching to the outer solution in
region II where T̂ → 0 as z′ → 0. By looking for a similarity solution of the form
T̂

(

R/(3Z)1/3
)

we find the solution to be

T̂ = 1 − P

(

1

3
,

R3

18Z

)

, (4.6)

where P is the incomplete gamma function defined by

P (a, x) =
1

Γ(a)

x
∫

0

e−tta−1 dt.

This solution is shown in Figure 6.
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Figure 6. Temperature in region III.
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Figure 7. Comparison of results in regions II and III.

4.3. Matching between regions II and III

In order to confirm that the solutions in regions II and III match, we write the solution
in region III, (4.6), in terms of the variables of region II to give

T̂ = 1 − P

(

1

3
,
(1 − r2)3

18z′

)

.

The region II solution should match with this as r → 1, z′ → 0. The comparison between
the two solutions is shown in Figure 7. The two solutions match relatively closely, with
a maximum absolute error of around 2.5%, see Figure 7. The matching can be improved
by calculating a correction to the solution in region III. We will not give the details here
(see Adamson 2004), but find that the corrected matching condition in region II is

T̂ ∼ 1 − P

(

1

3
,
(1 − r2)3

18z′

)

+
(1 − r2)

5
P

(

4

3
,
(1 − r2)3

18z′

)

−
(1 − r2)

2
P

(

1

3
,
(1 − r2)3

18z′

)

+
3

10
(1 − r2) as r → 1, z′ → 0. (4.7)

Figure 8 shows that the matching between solutions has been greatly improved by adding
this correction term. We move on to investigate the solution in the innermost region,
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Figure 8. Matching with corrected region III solution.

region IV, where matching with the solution in region III provides the boundary condition
for large R̄ and Z̄.

4.4. Region IV

The velocities in region IV are Ū = 0 and W̄ = 2R̄. Substituting for Ū , W̄ , k and T
into (3.4d) gives the elliptic governing equation

(2R̄ + C)
∂T̂

∂Z̄
= 4

∂2T̂

∂R̄2
+

1

q̄2

∂2T̂

∂Z̄2
, (4.8)

for 0 6 R̄ < ∞, −∞ < Z̄ < ∞, which we solve subject to the conditions

∂T̂

∂R̄
=

{

1
2

(

T̂ − 1
)

, Z̄ > 0,

0, Z̄ < 0,
at R̄ = 0, (4.9a)

T̂ → 0, as Z̄ → −∞, (4.9b)

T̂ → Region III solution, as R̄, Z̄ → ∞. (4.9c)

Since we wish to solve this system numerically, we must smooth the discontinuous bound-
ary condition at R̄ = 0 to reduce errors close to Z̄ = 0. We replace the Heaviside function
with a hyperbolic tangent giving

∂T̂

∂R̄
=

1

4

(

T̂ − 1
)

{

1 + tanh(δ−1Z̄)
}

,

where δ is a small parameter of the order of the step size in Z̄. The matching conditions
as R̄ → ∞† and Z̄ → ∞ are given by the corrected region III solution, (4.7), written in

† For Z̄ < 0 the condition as R̄ → ∞ is that T̂ → 0, since for small Z̄ we have T̂ → 0 and

T̂ = 0 in the inlet region.
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Figure 9. Solution in region IV.

terms of the region IV variables as

T̂ (R̄, Z̄) ∼ 1 − P

(

1

3
,

R̄3

18Z̄

)

+
3

8π2
21/6Γ(5/6)Γ(2/3)(C − 4)

1

(3Z)1/3

√

R

(3Z)1/3
K1/6

(

R3

36Z

)

exp

(

−
R3

36Z

)

−
3C

2Γ(1/3)

1

61/3

1

(3Z)1/3
exp

(

−
R3

18Z

)

.

We solve numerically, with the temperature given by an array with components, Ti, j ,
representing the temperature at R̄i, Z̄j on a uniform grid of m × n points. We truncate
the semi-infinite range in R̄ and infinite range in Z̄ so that 0 6 R̄j 6 10 and −10 6 Z̄j 6

60. We calculate the derivatives of the discrete function Ti, j using a five point centred
difference formula in the bulk and a four point biassed stencil formulae at the edges of
the solution grid. In discrete form, (4.8) is given by

ajTj+2 + bjTj+1 + cjTj + djTj−1 + ejTj−2 = rj ,

where aj , bj , cj , dj and ej are m×m arrays and Tj(= Ti, j) and rj are vectors of length
m. We solved this system using a Thomas algorithm (Fletcher 1991).

When we tested the numerical solution for mesh dependence, we found that the largest
errors occur around R̄ = 0, Z̄ = 0, where the change in heat flux is maximum, but that
these errors decrease as the grid spacing in R̄ and Z̄ is reduced. To minimise errors,
without making the computational time too great, we chose grid spacings of 0.1. A plot
of the temperature, T̂ , for C = 1.0 is shown in Figure 9. Although we made use of the
corrected region III solution in our boundary conditions, the region IV solution does
not tend smoothly to the matching condition as Z̄ → ∞. To correct this, we calculated
the next order solution in region III. After much algebra (Adamson 2004) we found the
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O(Da−1) solution

T̂2 =
1

(3Z)2/3

[

B1 exp

(

−
R3

18Z

)

−
CA1

8
exp

(

−
R3

36Z

)(

R

(3Z)1/3

)5/2 [

K1/6

(

R3

36Z

)

+ K5/6

(

R3

36Z

)]

+
CA2

8

(

R

(3Z)1/3

)2

exp

(

−
R3

18Z

)

]

,

where

B1 =
21/6 245/6 3

128π2
Γ(2/3) (Γ(5/6))

2
(C − 4)2.

When this is written in terms of the region IV variables we obtain the same expression
but with R̄ and Z̄ in place of R and Z, and the whole expression is of O(Da). Hence
we find that T̂2 appears at leading order in the correction to the matching condition
between regions III and IV. We solved the system described by (4.8) and the boundary
conditions, (4.9), with this new matching condition and obtained the following results.

4.4.1. Variation of wave speed with critical temperature

We obtained results at different values of the wave speed, C, for q̄ = 1, as shown in
Figure 10. Comparing these solutions we find that for small C the temperature increases
more rapidly than for large C so that, at a given point, the temperature is greater when
the wave speed is smaller. We obtained results at several wave speeds and for each value
of C noted the temperature at R̄ = 0, Z̄ = 0, which is the critical temperature, T̂c, to
which the solution corresponds. A plot, which shows that the wave speed decreases with
critical temperature, is shown in Figure 11.

4.4.2. Variation of wave speed with mass flow rate

Taking a fixed value of critical temperature we varied q̄ to determine the effect on the
wave speed. The results for T̂c = 0.2 are shown in Figure 12. Increasing the mass flow
rate causes the wave speed to decrease, and reach zero at q̄ ≈ 2.48. For q̄ > 2.48 the wave
speed is negative so that, instead of propagating towards the inlet of the tube, the wave
front moves towards the outlet and will eventually be blown out.

The solution for small Q shows that the flame speed depends on both the mass flow
rate of fuel into the tube and the critical temperature at which the reaction starts,
T̂c. The latter is related to the amount of catalyst present on the inner surface of the
tube; the more catalyst present the lower T̂c will be. These effects could both be tested
experimentally. We make a comparison with experiment in Section 6, but first we tackle
the problem when Q = O(1).

5. Solution for O(1) heat release

When Q = O(1), the solution in the inlet region, which we discussed in Section 3.1,
remains unchanged. In the other three regions, however, we must solve the more compli-
cated system of fully compressible equations.
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Figure 10. Solutions in region IV.
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Figure 11. Plot of wave speed, C, against critical temperature, T̂c.

5.1. Region II

In this region we solve (3.3) subject to the boundary conditions

u = 0, w′ = 0, T = 1 + Q, at r = 1, (5.1a)

u = 0, w′ = 2
(

1 − r2
)

, T = 1, at z′ = 0. (5.1b)
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Figure 12. Plot of wave speed, C, against mass flow rate of fuel, q̄.

We also require that u, w′ and T are finite at r = 0. We assume that the fluid behaves like
the model fluid described by Stewartson (1964), so that the Prandtl number, Pr = 1, and
the viscosity and thermal conductivity are directly proportional to temperature, µ = T ,
k = T . In terms of the streamfunction, ψ, defined by

∂ψ

∂z′
= rρu,

∂ψ

∂r
= −rρw′,

so that conservation of mass, (3.3a), is satisfied, (3.3)(c) and (d) become

−3
T

r4

∂ψ

∂z′
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∂r

)2

+
T

r2

∂ψ

∂r

∂3ψ

∂z′∂r2
= 3

T 2

r4

∂ψ
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T
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, (5.2a)

∂ψ

∂z′
∂T

∂r
−

∂ψ

∂r

∂T

∂z′
= T

∂T

∂r
+ r

(

∂T

∂r

)2

+ rT
∂2T

∂r2
, (5.2b)

where we have used the fact that ∂p/∂r = 0 to remove the pressure terms. The boundary
conditions for ψ and T are

ψ = −
1

2
,

∂ψ

∂r
= 0, T = 1 + Q, at r = 1, (5.3a)

ψ = −

(

r2 −
r4

2

)

,
∂ψ

∂z′
= 0, T = 1, at z′ = 0. (5.3b)

As u and w′ must be finite at r = 0 we require that

ψ = 0,
∂ψ

∂r
= 0,
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Figure 13. Solutions in region II.

and also impose the symmetry condition

∂T

∂r
= 0, at r = 0.

We solved this system using a numerical scheme that follows the basic principles of the
method described in Section 4.1. The process is more complicated, however, as we now
solve two equations simultaneously. Some typical solutions are shown in Figure 13.

The temperature profiles are qualitatively similar to those we obtained when Q ≪ 1.
The axial velocity increases most quickly close to the wall of the tube where the temper-
ature is highest. As z′ becomes large the velocity field tends to a steady Poiseuille profile
again, but the maximum velocity here is larger than it was in the inlet region, because
of the expansion of the heated gas. The radial velocity increases quickly at small z′ as
the heated fluid moves away from the wall. In fact, the solution for u jumps from zero
at z′ = 0 to a large negative value at the first calculated value of z′. The magnitude of
this jump increases as the step size in z′ is decreased so that as z′ → 0 there appears to
be a singularity in the radial velocity solution. There are no physical singularities in our
problem, which suggests that as z′ → 0 the solution in region II becomes nonuniform.
Our asymptotic structure should include another region which smoothes out the solu-
tion for small z′. Figure 14 shows the new asymptotic structure where extra regions, IIa
and IIIa, have been added around the reaction front. Region III is drawn as a boundary
layer to show more easily how the regions match together. Regions IIa and IIIa match
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Figure 14. Sketch of the tube showing the additional asymptotic regions.

the solutions of regions I and II when r = O(1) and r = O(Da−1/2) respectively. We
describe the solution in these two new regions in the appendix.

5.2. Region III

In this region, we solve (3.6) subject to the boundary conditions

U = 0, W = 0, T = 1 + Q, at R = 0, (5.4a)

U, W, T ∼ Region IIIa solution, as R → ∞, Z → 0. (5.4b)

When written in terms of the region III variables, the region IIIa solutions are, to leading
order,

T = 1 + Da−γ exp

(

−
R3

18Z

)

,

Ψ = R2 + 2Da−γ−1 exp

(

−
R3

18Z

)

,

where Ψ = Da
(

2ψ + 1 + Da−1C
)

and γ is a constant, which can be determined by higher
order matching. The streamfunction, Ψ, is related to the velocities, U and W , by

∂Ψ

∂R
= ρW,

∂Ψ

∂Z
= −ρU,

so conservation of mass, (3.6a), is satisfied. We look for a similarity solution of the form

T = T (η), Ψ = (3Z)
2/3

f(η), where η =
R

(3Z)
1/3

.

After removing the pressure terms from the momentum equations, by differentiating (3.6c)
with respect to R, we obtain the governing equations in terms of T and f as

−2f
df

dη

d2T

dη2
− 4f

d2f

dη2

dT

dη
− 2f

d3f

dη3
T −

(

df

dη

)2
dT

dη
= 12

dT

dη

d2T

dη2

df

dη

+16

(

dT

dη

)2
d2f

dη2
+ 4T

d3T

dη3

df

dη
+ 16T

d2T

dη2

d2f

dη2
+ 20T

dT

dη

d3f

dη3
+ 4T 2 d4f

dη4
, (5.5a)

4

(

dT

dη

)2

+ 4T
d2T

dη2
+ 2f

dT

dη
= 0. (5.5b)
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Figure 15. Solutions in region III.

The boundary conditions at the wall, η = 0, are

f = 0,
df

dη
= 0, T = 1 + Q, (5.6)

and as η → ∞ we have

T ∼ 1 + Da−γ exp

(

−
η3

6

)

, (5.7a)

f ∼ η2 +
1

(3Z)
2/3

2Da−γ−1 exp

(

−
η3

6

)

. (5.7b)

Although it appears that the boundary condition in (5.7b) is not in similarity form, we
can assume that the term in Z in front of the exponential is part of the next order
solution in region IIIa, and therefore that

f ∼ η2 + 2Da−γ−1 exp

(

−
η3

6

)

, (5.8)

to leading order. Differentiating (5.7a) and (5.8) and eliminating the exponential terms
gives the boundary conditions

df

dη
+

η2

2
f ∼ 2η +

η4

2
,

d2f

dη2
+

η2

2

df

dη
+ ηf ∼ 2 + 2η3, as η → ∞.

dT

dη
+

η2

2
T ∼

η2

2
,

We solved (5.5) numerically using a finite difference scheme and the solutions, when
Q = 1, are shown in Figure 15.

5.3. Region IV

The equations to be solved in this region are (3.4) with the boundary conditions, (3.5).
Differentiating (3.4b) and (3.4c) with respect to Z̄ and R̄ respectively, we then combine
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them so as to remove the pressure terms. We define the streamfunction, ψ̄, using

∂ψ̄

∂Z̄
= −ρŪ ,

∂ψ̄

∂R̄
= ρ

(

W̄ + C
)

,

and, setting µ = T , k = T as before, we substitute ψ̄ and T for u, w′, µ, k and ρ into
the momentum and energy equations giving

−
∂T

∂R̄
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∂Z̄
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2
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and

−
∂ψ̄

∂Z̄

∂T

∂R̄
+

∂ψ̄

∂R̄

∂T

∂Z̄
= 4

(

∂T

∂R̄

)2

+ 4T
∂2T

∂R̄2
+

1

q̄2

(

∂T

∂Z̄

)2

+
1
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∂2T
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. (5.9b)

The boundary conditions become

ψ̄ = 0,
∂ψ̄

∂R̄
=

C

T
, T 2 ∂T

∂R̄
=

{

1
2 (T − 1 − Q) , Z̄ > 0,

0, Z̄ < 0,
at R̄ = 0, (5.10a)

ψ̄,
∂ψ̄

∂R̄
, T → Region IIIa solution as R̄ → ∞, (5.10b)

∂ψ̄

∂Z̄
→ 0, ψ̄ ∼ CR̄ + R̄2, T → 1 as Z̄ → −∞, (5.10c)

ψ̄,
∂ψ̄

∂Z̄
, T → Region III solution as Z̄ → ∞. (5.10d)

As in the small Q problem, we smooth the heat flux boundary condition at R̄ = 0 using
a hyperbolic tangent profile,

T 2 ∂T

∂R̄
=

1

2
(T − 1 − Q)

1

2

[

1 + tanh(δ−1Z̄)
]

, at R̄ = 0,

where δ ≪ 1 is of the order of the step size in Z̄. We return to the solutions found in
regions IIIa and III to obtain boundary conditions as R̄ → ∞ and Z̄ → ∞ respectively.
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5.3.1. Boundary conditions as R̄ → ∞

The region IIIa solutions are

T = 1 + Da−γ exp (−Da φ) ,

ψ = −
1

2
− Da−1 C

2
+ Da−3/2 CR∗

2
+ Da−1 R∗2

2
+ Da−γ−2 exp (−Da φ) ,

where φ is given by (A 8) and t is a root of (A 7). In terms of the region IV variables
R∗ = Da−1/2R̄ and Z∗ = Da−1/2Z̄, and t ≡ t (R∗/Z∗) therefore remains of O(1) when
written in terms of R̄, Z̄. It follows that φ = O(Da−1) and the region IIIa solutions
written in terms of the region IV variables are

T = 1 + Da−γ exp
(

−φ̄
)

,

ψ̄ = CR̄ + R̄2 + 2Da−γ exp
(

−φ̄
)

,

to leading order, where φ̄ = Daφ and ψ̄ = Da2
(

2ψ + 1 + Da−1C
)

. Differentiating these
expressions and eliminating exponential terms we obtain

∂T

∂R̄
+

∂φ̄

∂R̄
T ∼

∂φ̄

∂R̄
,

∂ψ̄

∂R̄
+

∂φ̄

∂R̄
ψ̄ ∼ C + 2R̄ +

(

CR̄ + R̄2
) ∂φ̄

∂R̄
,

∂2ψ̄

∂R̄2
+

∂φ̄

∂R̄

∂ψ̄

∂R̄
+

∂2φ̄

∂R̄2
ψ̄ ∼ 2 +

(

C + 2R̄
) ∂φ̄

∂R̄
+

(

CR̄ + R̄2
) ∂2φ̄

∂R̄2
,

which are the boundary conditions for T and ψ̄ as R̄ → ∞.

5.3.2. Boundary conditions as Z̄ → ∞

The region IV solutions must match to the region III solutions as Z̄ → ∞. In region III,
we obtained solutions in terms of a similarity variable η, and in terms of the region IV
variables, R̄ and Z̄, the region III solutions are given by

T = T (η) , ψ̄ =
(

3Z̄
)2/3

f (η) , where η =
R̄

(

3Z̄
)1/3

.

We require a boundary condition as Z̄ → ∞, so we only need to know the structure of
the solution in region III as η → 0. We let

T = 1 + Q + T̂ , f = f̂ ,

where T̂ , f̂ are small and substitute into (5.5), which gives

d2T̂

dη2
= 0,

d4f̂

dη4
= 0,

at leading order. The solutions are

T̂ = A1η, f̂ = A2η
3 + B2η

2,

where we have satisfied the boundary conditions at η = 0, given in (5.6). The constants
A1, A2 and B2 are unknown but can be eliminated from the solutions to give mixed
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boundary conditions of the form

η
dT

dη
− T → −(1 + Q),

η2

6

d2f

dη2
−

2η

3

df

dη
+ f → 0 as η → 0.

−η3 d3f

dη3
+ 4η2 d2f

dη2
− 10η

df

dη
+ 12f → 0,

When these are written in terms of ψ̄, R̄ and Z̄ we obtain

3Z̄
∂T

∂Z̄
+ T → 1 + Q,

3Z̄
∂2ψ̄

∂Z̄2
+ 4

∂ψ̄

∂Z̄
→ 0, as Z̄ → ∞.

3Z̄2 ∂3ψ̄

∂Z̄3
+ 10Z̄

∂2ψ̄

∂Z̄2
+ 4

∂ψ̄

∂Z̄
→ 0,

These boundary conditions complete the system, which we solved using a numerical
scheme similar to that outlined in Section 4.4.

5.4. Numerical solution

We checked the mesh dependency of the numerical solution, and found the maximum
relative errors between solutions on different grids to be of O(10−2). To minimise these
errors without sufficiently increasing computational time we set 0 6 R̄ 6 12, dR̄ = 0.1,
−20 6 Z̄ 6 60 and dZ̄ = 0.1. We obtained results on this grid for a range of values of
the wave speed, C, heat of reaction, Q, and mass flow rate, q̄. We began by holding Q
and q̄ constant and calculated the variation of critical temperature, Tc, with wave speed,
C.

5.4.1. Variation of wave speed with critical temperature

We obtained results for a range of values of C. The results for C = 1 and C = 2
are shown in Figures 16 and 17 respectively. The temperature profiles are qualitatively
similar to those obtained in the constant density model. At the point where the reaction
starts, Z̄ = 0, there is a displacement of the streamlines due to the changing density and
viscosity of the gas mixture. This causes a large increase in the radial velocity around
R̄ = 0, Z̄ = 0 as the heated gas moves away from the wall. This behaviour agrees with
what we found in region II. The axial velocity also changes rapidly around R̄ = 0, Z̄ = 0
and increases as Z̄ increases. From the solutions obtained at each value of the wave
speed, C, we noted the critical temperature, Tc. The variation of C with Tc is plotted
in Figure 18. The result is qualitatively similar to that obtained in the constant density
model (see Figure 11). A quantitative comparison of the two models is made by looking
at the variation of Tc with heat released from the reaction, Q.

5.4.2. Variation of critical temperature with Q

Our results for Q sufficiently small must be consistent with the results we obtained
using the constant density approximation, Q ≪ 1, when the temperature was given by
T = 1 + QT̂ . For C = 1, q̄ = 1 we found that the critical temperature is T̂c = 0.21, and
it follows that for small Q the results of the compressible model for Tc should be given
approximately by Tc = 1 + 0.21Q. Figure 19 shows that solutions of the compressible
model are in very good agreement with the constant density result when Q is small, but
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Figure 16. Region IV solutions for C = 1.

that for larger values of Q the constant density approximation predicts too high a value
for the critical temperature.

5.4.3. Variation of wave speed with mass flow rate

We now fix Q and Tc and vary the mass flow rate, q̄, to see its effect on the wave
speed, C. The results for Q = 1, Tc = 1.2 are shown in Figure 20. They are qualitatively
similar to the constant density results shown in Figure 12. The wave speed decreases as
q̄ increases and reaches zero when q̄ ≈ 1.51. For q̄ > 1.51 the wave speed is negative, so
for sufficiently large mass flow rates, the reaction front propagates towards the outlet of
the tube and will eventually be blown out.

6. Qualitative comparison with preliminary experiment

At present, only very limited experimental data is available. However, we can qualita-
tively compare the preliminary results obtained by Lefevre (2003) with our model. The
experiment described in Section 1 was carried out several times using tubes of zirconia
coated on their inner surface with varying amounts of platinum catalyst. The variation of
the wave speed, c∗, with the amount of catalyst on the surface of the tube was measured
and the results are given in Table 3. Two results linking the percentage of platinum on the
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Figure 17. Region IV solutions for C = 2.
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Figure 18. Plot of the wave speed, C, against critical temperature of reaction, Tc.

Percentage of platinum on surface of tube 0.12 0.19 0.29 0.32
Average wave speed (m s−1 × 10−4) 0.80 1.65 1.95 2.65

Table 3. Experimental data.
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Figure 20. Plot of wave speed, C, against mass flow rate of fuel, q̄.

tube to the critical temperature were obtained experimentally, and from these a linear
relationship between the percentage platinum concentration, P , and critical temperature,
T ∗, was obtained, namely

T ∗ = −500P + 948.

Experimentally, the heat released from the reaction is large and gives Q = O(10). How-
ever, our models are not valid for large values of Q, due to the simplification made in
Section 2.4. By comparing the Q = O(1) and constant density results, we know that as
Q increases to O(1) values the constant density model predicts too high a critical tem-
perature at constant wave speed, see Figure 19. From this we infer that as Q increases to
O(10) values the O(1) model will tend to overestimate the critical temperature. There-
fore, as the wave speed decreases with increasing critical temperature, Figure 18, we
conclude that the values of wave speed at each Tc predicted by the Q = O(1) model will
be too high.

Indeed, the experimentally measured values of the wave speed are smaller than those
predicted by our model, however, the qualitative behaviour of the results is the same;
the wave speed decreases with increasing critical temperature.

Further experimental data relates the mass flow rate of fuel into the zirconia tube to
the wave speed, as shown in Table 4. The experiments in this case were carried out using a
tube coated with 0.4% platinum catalyst. Experimentally, as the mass flow rate increases
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Mass flow rate (kg s−1 × 10−6) 1.09 1.63 2.18 2.72 3.27
Average wave speed (m s−1 × 10−4) 1.90 2.45 2.65 2.45 2.20

Table 4. Experimental data.

the wave speed increases until qin reaches a value of about 2 × 10−6 kg s−1. After this
point, the wave speed decreases as the mass flow rate increases. Our asymptotic solution
is based on a large mass flow rate, so we only expect to obtain agreement with experiment
at sufficiently large values of qin. Although, the wave speeds obtained from our model are
again too large, the qualitative behaviour of the solutions for qin > 2 × 10−6 is correct.

Furthermore, the numerical results show that for qin sufficiently large the wave speed
becomes negative. Although the available experimental data does not show this, it has
been reported that on increasing the mass flow rate sufficiently, the wave stops propa-
gating towards the inlet and the reaction front is blown out of the tube.

We note that the work by Lefevre (2003) is at a very early stage and that the results
need to be verified. Further work is also required to extend the experimental results to
include a wider range of wave speeds, temperatures and mass flow rates, especially at
large values of qin.

7. Conclusion

We have shown that the reaction front, or surface-catalysed flame, that can propagate
in a zirconia tube can be modelled as a steady travelling wave. We found that the speed
of this reaction front decreases as the temperature at which the reaction starts, the
critical temperature, Tc, increases, and as the mass flow rate of fuel entering the tube,
qin, increases. Having found a solution using the constant density approximation, we
found that for larger values of the heat released by the reaction, Q = O(1), the constant
density model predicts too high a value for the wave speed, C. Also, as expected, the
wave speeds predicted by our model were higher than those given by the experimental
data. There is, however, qualitative agreement with experiment. At a critical value of
the mass flow rate, q̄ = q̄c, the wave speed is zero and, as q̄ increases past this critical
value, C becomes negative. Hence, for q̄ > q̄c the reaction front propagates towards the
outlet of the tube and the reaction will eventually be blown out. The experimental data
available at present shows an increase in wave speed with mass flow rate, qin, for small
qin and then a decrease as qin increases past a value of about 2 × 10−6 kg s−1. Data at
large values of the mass flow rate has not been obtained, although it has been observed
experimentally that for large enough values of the mass flow rate the wave propagates
towards the outlet of the tube and the reaction is blown out.

There are several possible extensions and improvements to the work in this paper.
We hope to obtain better agreement between theory and experimental results by solving
for larger values of Q, which could be done by considering the asymptotic solution for
Q ≫ 1. We could also consider some of the effects that we have currently neglected, such
as heat loss from the tube, more realistic chemistry and electrochemistry. In addition to
any further mathematical analysis, a validation of the current experimental results and
more detailed experimental work is required. In particular, further results showing the
variation of wave speed with large mass flow rate are needed to verify that the wave
propagates backwards for sufficiently large qin.



An asymptotic theory for the propagation of a surface-catalysed flame in a tube 31

REFERENCES

Adamson, F. 2004 Propagating reaction fronts in zirconia tubes PhD Thesis, University of
Birmingham.

Buckmaster, J. D. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge Uni-
versity Press.

Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Oxford University Press.
Cooper, R. J. 2000 Flow and reaction in solid oxide fuel cells PhD Thesis, University of

Birmingham.
Cooper, R. J., Billingham, J. & King, A. C. 2000 Flow and reaction in solid oxide fuel cells.

Journal of Fluid Mechanics 411, 233-262.
Davy, H. 1817 Some new experiments and observations on the combustion of gaseous mixtures,

with an account of a method of preserving a continued light in mixtures of inflammable
gases and air without a flame. Phil. Trans. Roy. Soc. London 107, 77-85.

Finnerty, C. M., Cunningham, R. H., Kendall, K. & Ormerod, R. M. 1998 A novel test
system for in situ catalytic and electrochemical measurements on fuel processing anodes in
working solid oxide fuel cells. Chemical Communications 8, 915-916.

Fletcher, C. A. J. 1991 Computational Techniques for Fluid Dynamics, Volume I: Funda-
mental and General Techniques, Second Edition. Springer-Verlag, Berlin.

John, F. 1978 Partial Differential Equations, Third edition Springer-Verlag, Berlin.
Kendall, K. & Prica, M. 1994 Integrated SOFC tubular system for small-scale cogeneration.

Proc. 1st European Solid Oxide Fuel Cell Forum, Lucerne, pp.163-170.
Kumar, R., Krumpelt, M. & Myles, K. M. 1992 Solid oxide fuel cells for transportation:

a clean, efficient alternative for propulsion. Proc. 3rd International Symposium on Solid
Oxide Fuel Cells (ed. S. C. Singhal and H. Iwahara), pp.948-956, Pennington, NJ: The
Electrochemical Society.

Lefevre, R. J. 2003 Nanoparticle catalysts in fuel cells and fuel cell systems. Internal report,
School of Chemical Engineering, University of Birmingham.

Senkan, S. M. 1992 Detailed chemical kinetic modeling. Advances in chemical engineering (ed.
J. Wei), 18, 95-196, New York: Academic.

Singhal, S. C. & Kendall, K. 2003 High Temperature Solid Oxide Fuel Cells: Fundamentals,
Design and Applications. Elsevier, Oxford.

Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Oxford
University Press, London.

Winkler, W. 1994 SOFC-integrated power plants for natural gas. 1st European Solid Oxide
Fuel Cell Forum (ed. U. Bossel), 2, 821-848, Lucerne: Kinzel.

Appendix A. The additional asymptotic regions when Q = O(1)

A.1. Equations in region IIa

We return to the original equations, (3.1), to determine the scalings for this new region.
We remove the pressure terms from the momentum equations by differentiating (3.1b)
with respect to z′ and (3.1c) with respect to r and combining the resulting equations.
We rescale the axial coordinate using z′ = ζz̃ with ζ ≪ 1, and look for a WKB solution
of the form

T = 1 + ǫγ̃ exp

(

−
ϕ(r, z̃)

ǫ

)

,

ψ = −

(

r2 −
r4

2

)

− Da−1 Cr2

2
+ ǫ̃δ̃ exp

(

−
ϕ̃(r, z̃)

ǫ̃

)

,

where ǫ and ǫ̃ are small parameters and γ̃ and δ̃ are constants. The streamfunction, ψ,
is defined in exactly the same way as in region II. We substitute the expressions for T
and ψ into the momentum and energy equations. This gives the leading order equations
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for ϕ and ϕ̃ as

−2(1 − r2)
∂ϕ

∂z̃
=

(

∂ϕ

∂r

)2

+
1

q̄2

(

∂ϕ

∂z̃

)2

, (A 1a)

−2(1 − r2)
∂ϕ̃

∂z̃

[

(

∂ϕ̃

∂z̃

)2

+ q̄2

(

∂ϕ̃

∂r

)2
]

exp

(

−
ϕ̃

ǫ̃

)

−4rq̄2(1 − r2)2
∂ϕ

∂z̃

∂ϕ

∂r
exp

(

−
ϕ

ǫ

)

=

[

2

(

∂ϕ̃

∂r

)2 (

∂ϕ̃

∂z̃

)2

+
1

q̄2

(

∂ϕ̃

∂z̃

)4

+ q̄2

(

∂ϕ̃

∂r

)4
]

exp

(

−
ϕ̃

ǫ̃

)

+2r(1 − r2)q̄2 ∂ϕ

∂r

[

1

q̄2

(

∂ϕ

∂z̃

)2

+

(

∂ϕ

∂r

)2
]

exp
(

−
ϕ

ǫ

)

, (A 1b)

where we have taken ǫ = ǫ̃ = ζ = Da−2 and δ̃ = γ̃ + 1. The viscosity and thermal
conductivity are µ = T and k = T , as they were in region II. Using (A 1a), we cancel all
the terms in ϕ in (A 1b), which then reduces to

−2(1 − r2)
∂ϕ̃

∂z̃
=

(

∂ϕ̃

∂r

)2

+
1

q̄2

(

∂ϕ̃

∂z̃

)2

,

and is of the same form as (A 1a). The boundary conditions on ϕ and ϕ̃ are identical,

exp
(

−
ϕ

ǫ

)

→ 0, as z̃ → −∞ and r → 0,

so we have ϕ̃ = ϕ.

The solution in region IIa does not explicitly affect the solution in region IV, since
region IIa has no boundaries with region IV (see Figure 14). The wave speed is determined
in region IV and the variation of C is the main result we wish to obtain from our model.
Because of this, and the complexity of the problem, we will not look for a solution
of (A 1a). However, in the correct asymptotic limits, the solution of (A 1a) satisfies the
appropriate boundary conditions. We will show that, as r → 1 and z′ → 0, (A 1a) reduces
to the equations in region IIIa, which we now derive.

A.2. Region IIIa

We again return to the original equations, (3.1), to determine the scalings for this new
region. We eliminate the pressure from the momentum equations as we did in region IIa.
We rescale using r2 = 1− ξR∗, z′ = ξ̃Z∗, with ξ, ξ̃ ≪ 1, and look for a WKB solution of
the form

T = 1 + εγ exp

(

−
φ(R∗, Z∗)

ε

)

,

ψ = −

(

r2 −
r4

2

)

− Da−1 Cr2

2
+ ηδ exp

(

−
φ̃(R∗, Z∗)

η

)

,

where ε and η are small parameters and γ and δ are constants. The streamfunction, ψ,
is defined in exactly the same way as in regions II and IIa. Substituting the expressions
for T and ψ into the momentum and energy equations, the leading order equations for
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φ and φ̃ are

−2R∗
∂φ

∂Z∗
= 4

(

∂φ

∂R∗

)2

+
1

q̄2

(

∂φ

∂Z∗

)2

, (A 2a)
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 exp

(
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η

)

−4R∗q̄2 ∂φ
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[

1

q̄2

(

∂φ
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)2

+ 4

(

∂φ

∂R∗

)2
]

exp

(

−
φ

ε

)

, (A 2b)

where we have taken ε = η = ξ̃ξ−3, q̄ = q ξ̃ξ−1 and δ = γ + 2. We fixed the magnitudes
of these parameters by matching next order terms in the energy equation. The richest
balance is obtained when ε = Da−1, ξ = Da−1/2 and ξ̃ = Da−5/2. All the terms in (A 2b)
containing φ cancel due to (A 2a), and (A 2b) reduces to

−2R∗
∂φ̃

∂Z∗
= 4

(

∂φ̃

∂R∗

)2

+
1

q̄2

(

∂φ̃

∂Z∗

)2

,

which is of the same form as (A 2a). The boundary conditions on φ and φ̃ are identical,

exp

(

−
φ

ε

)

→ 0 as Z∗ → −∞, and R∗ → ∞, (A 3)

so we conclude that φ̃ = φ.

A.2.1. Matching regions IIa and IIIa

The equation for ϕ in region IIa, (A 1a), should reduce to (A 2a) as r → 1, z̃ → 0.
Substituting for R∗ and Z∗ into (A 1a), we obtain

−2R∗
∂φ

∂Z∗
= 4

(

∂φ

∂R∗

)2

+
1

q̄2

(

∂φ

∂Z∗

)2

,

to leading order, where φ = Da1/2ϕ, and this is identical to (A 2a). The region IIa
solution for the temperature is given by

T = 1 + Da−γ̃ exp (−Da ϕ) ,

and in region IIIa we have

T = 1 + Da−γ/2 exp
(

−Da1/2φ
)

,

and, since φ = Da1/2ϕ, the exponential term is the same in both regions. The term in
front of the exponential will be affected by the next order solutions for φ and ϕ so at
leading order it is not necessary for these two terms to match. We conclude that the
leading order temperatures in regions IIa and IIIa match as R∗, |Z∗| → ∞. In a similar
manner it follows that the streamfunctions also match to leading order.
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A.3. Solution for φ

We solve (A 2a) by writing it as a system of characteristic ordinary differential equations
in terms of a parameter t (John 1978). Rewriting (A 2a) as

F (R∗, Z∗, φ,P,Q) = 2R∗Q + 4P2 +
1

q̄2
Q2 = 0, (A 4)

where

P =
∂φ

∂R∗
, Q =

∂φ

∂Z∗
,

the characteristic equations are then given by

dR∗

d t
= 8P,

dZ∗

d t
= 2R∗ +

2Q

q̄2
,

dφ

d t
= −2R∗Q,

dP

d t
= −2Q,

dQ

d t
= 0.

On solving these, we obtain

R∗ = −8at2 + 8bt + f, (A 5a)

Z∗ = −
16

3
at3 + 8bt2 + 2ft +

2at

q̄2
+ g, (A 5b)

φ =
16

3
a2t3 − 8abt2 − 2aft + h, (A 5c)

P = −2at + b, (A 5d)

Q = a, (A 5e)

where a, b, f , g and h are functions of s that satisfy

dh

ds
= b(s)

df

ds
+ a(s)

dg

ds
,

and (A 4) when t = 0. A simple solution is

a = s, b = s, f = −2s −
1

2q̄2
s, g = 2s +

1

2q̄2
s, h = 0,

and (A 5)(a)-(c) become

R∗ = −8st2 + 8st − 2s −
1

2q̄2
s, (A 6a)

Z∗ = −
16

3
st3 + 8st2 − 4st +

1

q̄2
st + 2s +

1

2q̄2
s, (A 6b)

φ =
16

3
s2t3 − 8s2t2 + 4s2t +

1

q̄2
s2t. (A 6c)

Dividing (A 6b) by (A 6a) eliminates s and, after rearranging the result, we obtain a
cubic equation for t,

t3 −
3

2

(

Z∗

R∗
+ 1

)

t2 +
3

2

(

Z∗

R∗
+

1

2
−

1

4q̄2

)

t −
3

8

(

Z∗

R∗
+

1

4q̄2

Z∗

R∗
+ 1 +

1

4q̄2

)

= 0. (A 7)

On solving this, the solution for t can be substituted into (A 6c) and, using (A 6a) to
eliminate s, we obtain

φ =
4q̄2R∗2

(

16q̄2t3 − 24q̄2t2 + 12q̄2t + 3t
)

3 (16q̄2t2 − 16q̄2t + 4q̄2 + 1)
2 . (A 8)

The appropriate root of (A 7) is determined by the boundary conditions on φ as Z∗ →
−∞ and R∗ → ∞, given in (A 3). Figure 21 shows the real and imaginary parts of
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Figure 21. Roots of the cubic equation, (A 7).
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Figure 22. Solution for φ.

the roots of (A 7) for a range of values of x = Z∗/R∗. We take the real, positive root,
which for x > −1 is t1, shown as the solid line in the figure, and for x 6 −1 is t2, the
dashed curve in the figure. The solution for φ, after making this choice for t, is shown in
Figure 22.

The solution in region IIIa is therefore given by

T = 1 + Da−γ exp (−Daφ) ,

ψ = −
1

2
− Da−1 C

2
+ Da−3/2 CR∗

2
+ Da−1 R∗2

2
+ Da−(γ+2) exp (−Da φ) ,

where φ is given by (A 8) and t is the root of (A 7) which gives the correct behaviour of
φ at each point (R∗, Z∗) as described. We must compare this solution to the numerical
solution in region II to determine whether they match in the appropriate limit.

A.3.1. Matching between regions II and IIIa

As we match to region II, the region IIIa variables become large and positive. The
correct solution of (A 7) in this case is given by

t =
1

4R∗q̄
T +

1

4R∗q̄

(

R∗2 + 4q̄2Z∗2
) 1

T
+

1

2

Z∗ + R∗

R∗
,
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where T is given by

T =
(

2q̄
(

4q̄2 + 3
)

R∗3 + 6q̄Z∗R∗2 + 8q̄3Z̄∗
3

+ R∗

[

(

64q̄6 + 96q̄4 + 36q̄2 − 1
)

R∗4

+
(

96q̄4 + 72q̄2
)

R∗3Z∗ + 24q̄2R∗2Z∗2 +
(

128q̄6 + 96q̄4
)

R∗Z∗3 + 48q̄4Z∗4
]1/2

)1/3

.

In terms of the region II variables we find that to leading order

t ∼
3

2
Da2 z′

(1 − r2)
.

Substituting this into the expression for φ and taking the leading order terms we get

φ ∼ Da−1 (1 − r2)3

18z′
.

The region IIIa solutions in terms of r and z′ are therefore

T = 1 + Da−γ exp

(

−
(1 − r2)3

18z′

)

, (A 9a)

ψ = −

(

r2 −
r4

2

)

+ Da−γ−2 exp

(

−
(1 − r2)3

18z′

)

, (A 9b)

to leading order. We expect that the small correction to the solution in region IIIa will
give an O(1) contribution in region II to match with the numerical solution obtained
here. The multiplier in front of the exponential term could be found from the next order
solution for φ, and the value of γ chosen to make this term O(1) in region II. However,
our solution for T satisfies

∂T

∂z′
=

(1 − r2)3

18z′2
(T − 1) ,

which gives the leading order behaviour for T , at small z′, without calculating the next
order correction for φ. Similarly, the small z′ behaviour of the streamfunction, ψ, is given
by

∂ψ

∂z′
=

(1 − r2)3

18z′2

(

ψ +

(

r2 −
r4

2

))

.

Substituting the region II solution into the expressions

fT = z′
2 ∂T

∂z′
−

(1 − r2)3

18
(T − 1) ,

fψ = z′
2 ∂ψ

∂z′
−

(1 − r2)3

18

(

ψ +

(

r2 −
r4

2

))

,

we expect to find that fT and fψ → 0 as z′ → 0. Figure 23 shows these functions for
small z′, confirming that the solutions in regions II and IIIa match in the limit z′ → 0.
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Figure 23. Comparison between solutions in regions II and IIIa.


