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Purpose: To accelerate 19F‐MR imaging of inhaled perfluoropropane using 

compressed sensing methods, and to optimize critical scan acquisition parameters for 

assessment of lung ventilation properties.

Methods: Simulations were performed to determine optimal acquisition parameters for 

maximal perfluoropropane signal‐to‐noise ratio (SNR) in human lungs for a spoiled gra-

dient echo sequence. Optimized parameters were subsequently employed for 19F‐MRI 

of inhaled perfluoropropane in a cohort of 11 healthy participants using a 3.0 T scanner. 

The impact of 1.8×, 2.4×, and 3.0× undersampling ratios on 19F‐MRI acquisitions was 

evaluated, using both retrospective and prospective compressed sensing methods.

Results: 3D spoiled gradient echo 19F‐MR ventilation images were acquired at 1‐cm 

isotropic resolution within a single breath hold. Mean SNR was 11.7 ± 4.1 for scans 

acquired within a single breath hold (duration = 18 s). Acquisition of 19F‐MRI scans 

at shorter scan durations (4.5 s) was also demonstrated as feasible. Application of 

both retrospective (n = 8) and prospective (n = 3) compressed sensing methods dem-

onstrated that 1.8× acceleration had negligible impact on qualitative image appear-

ance, with no statistically significant change in measured lung ventilated volume. 

Acceleration factors of 2.4× and 3.0× resulted in increasing differences between 

fully sampled and undersampled datasets.

Conclusion: This study demonstrates methods for determining optimal acquisition 

parameters for 19F‐MRI of inhaled perfluoropropane and shows significant reduc-

tion in scan acquisition times (and thus participant breath hold duration) by use of 

compressed sensing.
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1 |  INTRODUCTION

Respiratory diseases are a leading cause of morbidity and 

mortality worldwide.1 Clinically, computed tomography 

(CT) and nuclear medicine techniques (e.g. planar scintig-

raphy and single photon emission computed tomography) 

facilitate assessment of both structural and functional prop-

erties of the lungs and are used routinely to aid diagnosis and 

monitoring of treatment response. However, these methods 

are limited by their reliance on ionizing radiation, restricting 

longitudinal or serial use.

Magnetic resonance imaging is increasingly recognized as 

a potential radiation‐free approach to the investigation of pul-

monary disease. Specifically, hyperpolarized gas MRI is well 

established in research settings, permitting the study of re-

gional ventilation across a variety of respiratory pathologies,2-4 

yet the requirement for gas polarization equipment and exper-

tise presents potential barriers to routine clinical application.
19F‐MRI of inhaled perfluoropropane is an emerging 

method for assessment of ventilation properties in humans.5,6 

This technique uses an inert, thermally polarized gas with 

multiple chemically equivalent 19F nuclei. The short in vivo 

T1 relaxation time of perfluoropropane (~12 ms at 3.0 T)5 

permits short repetition time (TR), allowing a high degree of 

signal averaging and thus image acquisition without the need 

for hyperpolarization. Previous studies have demonstrated 

the feasibility of this approach to assess regional gas distri-

bution5,6 and washout dynamics7 in the lungs of healthy vol-

unteers and patients with respiratory disease. These human 

studies have built upon comprehensive preclinical8-12 and ex 

vivo13 studies that demonstrated the technical approach and 

characterized physical and MR properties of in vivo fluoro-

carbon gases. Nonetheless, MRI of inhaled perfluoropropane 

remains challenging, largely driven by its short in vivo T2
* 

relaxation properties (~2 ms at 3.0 T).5

As with all MRI techniques, acquisition parameter choice 

fundamentally impacts scan efficiency and resultant SNR. 

Understanding the interdependency of scan acquisition pa-

rameters is therefore central to maximizing performance 

of this methodology. Compressed sensing (CS) methods 

can further exploit the sparsity of MR images under math-

ematical transformation,14 reducing the amount of raw data 

acquired for a given matrix size while preserving image 

quality and content.15,16 This has potential substantially to 

reduce breath hold duration,17 which may be invaluable for 

assessing patients with compromised ventilation by reduc-

ing scan times or improving spatial resolution. Compressed 

sensing has shown utility in hyperpolarized 3He and 129Xe 

lung imaging,18,19 where there is intrinsically high SNR. The 

degree to which undersampling and compressed sensing re-

construction can be applied with acceptable image fidelity is 

highly dependent on SNR and phase encoding matrix size.20 

19F‐MR ventilation imaging is characterized by lower SNR 

and smaller phase‐encoding matrices. Acceleration factors 

and phase encoding patterns validated for 3He‐MRI and 
129Xe‐MRI are unlikely to be acceptable for 19F imaging. 

This work evaluates CS for 19F‐MRI of inhaled perfluoropro-

pane for the first time.

In this study we assessed the impact of critical image ac-

quisition parameters on spoiled gradient echo (SPGR) scan 

performance by calculating the interdependent effects of 

bandwidth (BW), excitation pulse amplitude and flip angle 

(B1, θ), and repetition time (TR) on SNR of 19F‐MRI scans of 

inhaled perfluoropropane. Additionally, we compared image 

SNR and measured lung ventilated volume and ventilation 

defect percentage (VDP) calculated from retrospectively and 

prospectively accelerated scans compared to fully sampled 

acquisitions to gauge utility of accelerated 19F‐MR ventila-

tion imaging.

2 |  METHODS

2.1 | 
19F‐MRI sequence optimization

The standard equation for the signal intensity elicited by a 

SPGR sequence21 was modified to calculate the maximal 

SNR achievable within a defined scan duration, SNRSPGR 

(Equation 1). Simulations were then performed using the 

modified equation to assess variation in SNRSPGR with change 

in acquisition parameters, and to determine the parameters 

necessary for optimal SNRSPGR. The total scan time (Tscan) 

was kept at an arbitrary constant, permitting assessment of 

scan performance variability within the finite scan time im-

posed by breath hold acquisitions (e.g. <20 s).

where Nx, Ny, and Nz = number of frequency, and phase and 

partition encoding steps in each dimension; BW = receiver 

bandwidth (Hz/pixel); Tscan = total scan time (s); TEmin = 

minimum achievable echo time (s); T2
* = transverse relax-

ation time (s); T1 = longitudinal relaxation time (s); FOVx,y,z = 

field of view (mm); and TR = repetition time (s).

The scan acquisition parameters in Equation 1 are interde-

pendent, such that adjusting one parameter to increase scan 

performance can have a subsequent impact on other parame-

ters, with potential to reduce or negate SNR gains. For exam-

ple, TRmin is dependent on TEmin, which in turn is dependent 

on bandwidth, matrix size, and radiofrequency (RF) pulse 

and gradient properties.

SNRSPGR was calculated for flip angles (θ) between 

0 and 90 degrees, and for BW between 0 and 1500 Hz/

(1)
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pixel. The minimum echo time (TEmin) and repetition time 

(TRmin) were calculated as the minimum achievable on our 

scanner hardware based on RF pulse durations for B1 am-

plitudes between 0 and 10 µT, in accordance with scan-

ner gradient rise times and amplitudes, over the ranges of 

flip angle, bandwidth, and B1 amplitude assessed. TRmin 

was further bound by IEC 60601‐2‐33 specific absorption 

rate (SAR) limits22 applied to the 19F birdcage chest coil 

(Rapid Biomedical, Rimpar, Germany) in use at our center. 

The TR was therefore extended (i) to maintain whole‐body 

SAR limits under normal (2 W/kg) and first‐level (4 W/kg)  

operating modes and (ii) to maintain local torso limits 

under normal operating mode (10 W/kg).22

The field of view (FOVx,y,z) and matrix size (Nx,y,z) 

used in our simulations were chosen to be representative 

of 19F‐MRI scans performed at our center (detailed later). 

Perfluoropropane T1 and T2
* were based on values observed 

in previously published human studies at 3.0 T (12.4 ms and 

2.2 ms, respectively).5

The variation in SNRSPGR with change in θ, BW and TR 

was determined for a nonselective block RF pulse with B1 

amplitude of 4 μT, corresponding to the B1 used in our 

human studies (outlined later). Acquisition parameters for 

optimal SNRSPGR were subsequently determined. The impact 

of changing B1 amplitude on optimal SNRSPGR was also cal-

culated over a B1 range of 0 to 10 μT.

2.2 | 
19F‐MRI of inhaled perfluoropropane 

in healthy volunteers

Ethical approval for this study was granted by the Newcastle 

and North Tyneside 2 Research Ethics Committee and the 

NHS Health Research Authority. A total of 11 healthy volun-

teers (3 males, aged 25 to 46, mean = 33; 8 females, aged 24 

to 63, mean = 34) were screened for study eligibility across 

two research sites (Newcastle and Sheffield) and provided 

written informed consent to participate. All participants were 

nonsmokers in good health with no history of respiratory dis-

ease and no contraindications to MRI. Body weights were 

maintained within lower and upper weight limits specified 

by the RF coil manufacturer (50 kg and 100 kg, respectively).

Participants were invited to attend a single MRI scan 

session at one of the two research centers, during which 

they underwent conventional 1H‐MRI and 19F‐MRI scans, 

performed using a Philips Achieva (Newcastle) or Philips 

Ingenia (Sheffield) 3.0 T MRI scanner and chest bird-

cage 19F/1H coil (Rapid Biomedical, Rimpar, Germany). 
1H images were acquired using a multislice SPGR sequence  

(TE = 2.3 ms; TR = 5.1 ms; FOV = 450 × 450 × 300 mm; 

resolution = 192 × 96 × 30, reconstructed to 256 × 256 × 30; 

BW = 450 Hz/pixel; flip angle = 40°; scan duration = 15 s)  

with standard elliptical window21 after instructing partici-

pants to perform a breath hold at total lung capacity.

Participants were then asked to inhale a clinical grade 79% 

perfluoropropane/21% oxygen gas mixture (BOC Special 

Products, Guilford, United Kingdom), which involved up to 

five inhalation sessions during the MRI scan session, where 

one (retrospective scan acceleration measurement) or two 

(prospective scan acceleration measurements) of the inhala-

tion sessions were used to generate data for the study reported 

here. The remaining inhalation sessions were employed for 

other method development or research study purposes. Each 

inhalation session lasted less than 1 min, comprising three 

deep breaths of the gas via a nonrebreathe valve and mouth-

piece (Hans Rudolf, Shawnee, KS), followed by a breath hold 

at total lung capacity. 19F‐MR images were subsequently ac-

quired using a 3D SPGR sequence (1 cm isotropic resolu-

tion; FOV = 40 × 32 × 25 cm, zero‐filled to a reconstruction 

resolution of 0.36 × 0.36 × 1 cm; matrix = 112 × 90 × 25). 

The optimized acquisition parameters derived from simula-

tion studies were TE = 1.7 ms; TR = 7.5 ms; BW = 500  

Hz/pixel; flip angle = 50°, nonselective block RF pulse with 

a B1 amplitude of 4 μT. The duration of a single 3D gradient 

echo image was 4.5 s. Scans were acquired with four signal 

averages in total (scan duration = 18 s).

2.3 | Compressed sensing for accelerated 
19F‐MRI

Fully sampled k‐space data were acquired from eight 

participants in an 18‐s scan (number of signal averages,  

NSA = 4). The data were retrospectively undersampled in 

both phase encoding directions (i.e. ky and kz, correspond-

ing to physical directions right‐left and anterior‐posterior 

respectively, 32 × 25 matrix). The undersampling schemes 

were designed to create an incoherent sampling pattern 

possible with standard Fourier transformation using a uni-

form density Poisson disc with a fully sampled center.23 

Although our previous work has used variable density 

Poisson discs to reflect the underlying distribution of  

k‐space,17 the small matrix size used for this application pro-

vided too few samples at the edge of k‐space. Three degrees 

of undersampling were considered (1.8×, 2.4×, and 3.0×,  

sampling patterns shown in Figure 1), which would lead to 

breath holding times of 10 s, 7.5 s, and 6 s, respectively, with 

four averages. The sampling patterns were executed within 

a standard elliptical window for 3D gradient echo and there 

was full sampling of a central 8 × 7 region. A full acquisi-

tion with elliptical window has 592 phase encodes. Where  

undersampled data were acquired prospectively, a cus-

tom pulse sequence, which could faithfully reproduce the  

undersampled phase encode patterns to reduce the acquisi-

tion time, was used.

The incoherently undersampled data were reconstructed 

using an L1‐ESPIRiT algorithm with wavelet regularization 

as described in17 performed by minimizing:
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where yi is the acquired data, m is the reconstructed image space 

to find, F is a Fourier transform operator, and D is an operator 

that selects only those locations where data have been acquired 

(to match yi).
24 The Daubechies‐4 wavelet was used as the spar-

sifying transform, Ψ, and the weighting between the fit to the 

data and the sparsity of m in the wavelet domain was provided 

by λ. While there are many possible transforms that can sparsify 

MRI data, the Daubechies‐4 wavelet is computationally unde-

manding and has proven excellent performance across a range of 

compressed sensing applications in MRI.15,17,24,25 Randomized 

shifting of the wavelet transform was used to approximate 

translation‐invariant wavelets and prevent the appearance of 

structured artefacts within the reconstructed images.25,26 Fifty 

iterations were used to ensure convergence of the solution. In 

order to determine the optimal value of the wavelet weighting 

parameter, λ, the retrospectively sampled raw data were recon-

structed with several different values of λ and the root mean 

square error was calculated between the fully sampled and un-

dersampled data, using a signal intensity threshold to ensure 

only lung signals were evaluated. Lambda (λ) was chosen to 

minimize the root mean square error and an optimal value of 

0.05 was used throughout.

The fully sampled and retrospective accelerated recon-

structions were compared by subtraction and the apparent 

SNR measured. The SNR achieveable in 18 s (NSA = 4) of 
19F‐MR images was determined for all participants. Regions 

of interest 4 cm in diameter were placed in the center of the left 

lung (signal) and below the lung (noise) and SNR calculated 

using in‐house software developed in Matlab (Mathworks 

Inc., Natick, MA) using the equation SNR = 0.66 × mean 

signal amplitude/standard deviation of the noise, where 0.66 

is the Rayleigh distribution correction.27

Images acquired using optimized 19F scan parameters 

were also reconstructed from the first signal average (4.5 s) 

of the dataset.

A prospectively undersampled 3D gradient echo scan 

was acquired from a further three participants using the 1.8×  

acceleration scheme and NSA = 4 (scan duration = 10 s), 

using a custom pulse sequence to perform the selective phase 

encodings for the undersampling scheme in Figure 1,23 in ad-

dition to a fully sampled dataset acquired in a separate breath 

hold.

2.4 | Measurement of lung ventilated 
volume and ventilation defect percent

The ventilated volumes of the fully sampled and undersam-

pled 1.8× CS data were measured using an open‐source 

semiautomated 3D segmentation tool (ITK‐SNAP).28 A 

signal threshold of 3 SD below the mean signal from each 

image was adopted for the purpose of calculating ventilated 

lung volumes (L) of inhaled perfluoropropane. The trachea 

and main bronchi were excluded from the analysis through 

manual segmentation. A paired t test was conducted to as-

sess for significant change in measured ventilated volumes 

between the fully sampled and retrospectively 1.8× under-

sampled images. Measurements of lung VDP were calcu-

lated as the difference between total lung volume and lung 

ventilated volume, where total and ventilated lung volume 

were calculated from coregistered 1H‐MRI and 19F‐MRI 

datasets by a semiautomated approach using in‐house soft-

ware developed in Matlab.

3 |  RESULTS

Figure 2 shows the results of simulations investigating the 

relationship between SPGR acquisition parameters and  
19F‐MRI scan SNR performance. Figure 2A shows the impact 

of flip angle and acquisition bandwidth on SNR (shown in 

colorscale) and SAR (z‐axis) for scans performed with a nom-

inal B1 of 4 μT. Maximal SNR is observed at an acquisition 

bandwidth of 500 Hz/pixel and a flip angle of 40°. The data 

demonstrate a sharp decrease of SNR with reduction of flip 

angle slightly below optimal, but a less marked reduction with 

flip angle increasing above the theoretical optimum. Thus, the 

use of a flip angle slightly higher than the predicted optimal 

value was considered beneficial for our in vivo applications, 

where B1 inhomogeneity is present. Figure 2B shows the im-

pact of B1 amplitude on optimal values of TR, where relative 

SNR is shown in colorscale and plots are drawn for three SAR 

limits (2, 4, and 10 W/kg, respectively). Scan performance 

shows the greatest dependence on B1 amplitude below 2 μT, 

with diminishing SNR gains for B1 amplitudes above this 

threshold. The impact of SAR limits on acquisition param-

eters is apparent as an abrupt increase in TR and flip angle 

above a threshold B1 amplitude, as scan duty cycle is reduced 

to accommodate elevated SAR arising from higher B1.

Figure 3A demonstrates typical 19F‐MR images from 

one participant, acquired in 4.5 s (NSA = 1) using a 3D 

‖yi−DFm‖2

2
+�‖Ψm‖

1

F I G U R E  1  Phase encoding undersampling schemes shown for 

1.8×, 2.4×, and 3.0× CS schemes; CS, compressed sensing
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SPGR scan with optimized acquisition parameters. The B1 

amplitude was 4 μT, with power deposition kept within local 

torso limits (10 W/kg) as specified by IEC 60601‐2‐33.22 

Mean SNR was 7.7. A single slice from the 3D 19F‐MRI 

dataset, superimposed on an anatomical 1H image, is shown 

in Figure 3B.

Figure 4 shows a single coronal slice from a fully sampled 

lung volume (NSA = 4, scan duration = 18 s) in one healthy 

participant, alongside comparative images resulting from 

retrospectively applied compressed sensing (undersampling 

ratios of 1.8×, 2.4×, and 3.0×). Subtraction images demon-

strate that the 1.8× undersampled dataset closely matches the 

fully sampled dataset. Greater differences can be observed 

between the fully sampled and undersampled datasets as the 

acceleration factor increases beyond 1.8×, with increasing 

root mean square error between the fully sampled and ac-

celerated image pairs. The root mean square error values in 

Figure 4 have been expressed as multiples of that for the 1.8× 

undersampling for ease of comparison. Similar results were 

obtained across the eight participants (SNR 10.8 ± 3.8 and 

11.2 ± 3.7 for fully and retrospectively undersampled data-

sets, respectively), such that the 1.8× undersampling ratio 

was considered most appropriate for acceleration purposes. 

Single coronal slices from 3D datasets from three repre-

sentative participants are shown in Figure 5, with the 1.8× 

undersampled datasets demonstrating negligible differences 

when compared to the fully sampled datasets. Table 1 shows 

SNR, ventilated volume, and VDP measurements calculated 

from fully sampled and retrospectively accelerated datasets 

for each of the eight participants in the group. Ventilated 

volume and VDP values calculated from retrospectively ac-

celerated datasets were close to those calculated from fully 

sampled datasets, though the majority of ventilated volume 

measurements calculated from 1.8× undersampled datasets 

were slightly lower than those calculated from fully sampled 

data, and corresponding VDP measurements slightly higher 

in undersampled datasets compared to fully sampled data. 

These differences were not statistically significant.

Figure 6A shows single coronal slices from prospective 

1.8× accelerated 3D acquisitions from three participants, 

F I G U R E  2  A, Relative scan SNR (colorscale) achievable in a fixed acquisition time over a range of flip angles and acquisition bandwidths 

for a 3D SPGR acquisition sequence. Scan SAR (shown in the vertical axis) was limited to local and torso SAR limits of 10 W/kg by extension of 

scan repetition time. SAR isolines highlight positions of 2, 4, and 10 W/kg. B,  Relative scan SNR (colorscale) achievable over a range of excitation 

B1 values (x‐axis) with optimal (shortest achievable) TR for SAR = 2, 4, and 10 W/kg. The point at which maximum SNR is reached is marked (×) 

for each SAR level; SAR, specific absorption rate; SNR, signal‐to‐noise ratio; SPGR, spoiled gradient echo; TR, repetition time

F I G U R E  3  A, Coronal slices from a 3D 19F SPGR acquisition of 4.5‐s duration, acquired from a healthy volunteer. Mean SNR was 7.7. B, 

Healthy volunteer lung image generated from combined single slices of 3D 19F and 1H SPGR scans; SNR, signal‐to‐noise ratio; SPGR, spoiled 

gradient echo
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alongside corresponding fully sampled datasets acquired in 

a separate breath hold. The accelerated datasets have com-

parable visual appearance to the undersampled datasets. 

Subtraction images between the fully sampled and accelerated 

datasets were not generated as data were acquired in separate 

breath holds and thus lung spatial alignment and inflation are 

not matched. The SNR of prospectively acquired undersam-

pled datasets was 13.4 ± 4.0, comparable to the fully sampled 

datasets in these participants, 14.1 ± 5.0. Figure 6B shows an 

entire prospectively accelerated 19F‐MRI dataset from one of 

the three participants, demonstrating whole‐lung coverage in 

a 10‐s duration scan. Table 2 shows SNR, ventilated volume, 

and VDP measurements calculated from fully sampled and 

prospectively accelerated datasets for each of the three par-

ticipants in the group.

A paired‐samples t test demonstrated no significant dif-

ference in lung ventilated volume measurements made from 

eight fully sampled (mean = 5.0 L, SD = 1.2 L) and 1.8× 

retrospectively undersampled (mean = 4.9 L, SD = 1.1 L)  

lung 19F‐MRI datasets (p = .59). The lung ventilated  

volume measurements calculated from 1.8× prospectively  

undersampled acquisitions in three participants (mean = 5.0 L,  

SD = 0.6 L) closely matched those from the fully sampled 

acquisitions in these participants (mean = 5.1 L, SD = 0.7 L) 

and the difference in volume between the two groups was not 

statistically significant (p = .11). Figure 7 shows (A) correla-

tion and (B) Bland‐Altman plots of ventilated volume mea-

sured from fully sampled and 1.8× undersampled datasets for 

the eight participants. The bias between undersampled and 

fully sampled datasets by Bland‐Altman analysis (0.05 L) 

was not statistically significant.

Figure 8 shows a 3D image dataset reconstructed from 

a single average (NSA = 1) of the dataset used to generate 

Figure 3, with 1.8× retrospective undersampling. The scan 

duration of a corresponding prospective acquisition with this 

undersampling scheme would be 2.5 s. The images show 

good visual correspondence with the fully sampled images 

shown in Figure 3.

4 |  DISCUSSION

We have modeled 19F‐MRI scan performance to optimize 

imaging of inhaled perfluoropropane with a SPGR pulse se-

quence at 3.0 T and demonstrated the potential for 19F‐MRI  

scan acceleration through compressed sensing methods in 

a group of healthy participants. The interdependent rela-

tionship between MR acquisition parameters is particularly 

marked for perfluoropropane imaging because of inherently 

short relaxation rates (T1 and T2
*) and operation at or near 

SAR limit boundaries. Our SNR calculations enable deter-

mination of optimal acquisition parameter values based on 

hardware performance, providing a robust and comprehen-

sive understanding of their interdependence.

The short T1 of perfluoropropane has the advantage of 

permitting short TR, and thus a high degree of signal av-

eraging, with minimum TR determined by the SAR lim-

its of our hardware configuration. Our calculations show 

that short TR (<10 ms) and large flip angles (40° to 50°) 

are required for maximal scan efficiency, and that the short 

T2
* of perfluoropropane causes acquisition bandwidth and 

F I G U R E  4  19F lung images reconstructed from NSA = 4 

fully sampled healthy volunteer scan data and from retrospective 

undersampled reconstructions of the same dataset (undersampling of 

1.8×, 2.4×, and 3.0×), and images of the difference between CS and 

fully sampled images shown at 5× vertical scale. Relative root mean 

square error provides an index of similarity between fully sampled 

and undersampled images, scaled to the 1.8× dataset; CS, compressed 

sensing; NSA, number of signal averages
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excitation pulse duration to have a strong impact on scan 

performance. A reduction in RF pulse duration through 

increased B1 amplitude offers diminishing returns to scan 

efficiency above approximately 2 μT on our hardware con-

figuration. This effect is significant as scanner multinuclear 

(nonproton) RF amplifiers typically have considerably 

lower power output than their 1H counterparts, such that the 

maximum achievable B1 may be modest for 19F torso coils.
19F‐MR images of inhaled perfluoropropane acquired 

from our group of healthy participants showed a mean SNR 

of 11.7 ± 4.1 for a scan performed within a single breath hold 

(18 s, NSA = 4) with 1‐cm isotropic acquisition resolution. A 

direct SNR comparison of our scan performance with previ-

ously published 19F‐MRI studies is challenging as a result of 

differences in RF coil hardware, scanner field strength, and 

scan voxel sizes and of a lack of comprehensive information 

regarding choice of scan parameters. Nonetheless, the optimi-

zation approach we describe provides a framework to ensure 

maximal scan performance is achieved for a given hardware 

configuration. In addition, we have demonstrated that gains 

F I G U R E  5  Coronal slices from 

3D 19F acquisitions (NSA = 4) from 

three representative participants, showing 

fully sampled acquisitions (top), images 

reconstructed from 1.8× retrospective 

undersampling (center), and difference 

images between fully sampled and 

undersampled reconstructions at 5× vertical 

scale (bottom); NSA, number of signal 

averages

Participant

Fully sampled Retrospectively accelerated

SNR VV / L VDP / % SNR VV / L VDP / %

A 13.5 4.67 0.6 13.8 4.49 1.1

B 5.8 4.70 1.5 6.4 4.35 1.5

C 15.9 5.65 0.5 17.0 5.47 2.7

D 8.6 7.76 2.1 7.9 7.26 3.7

E 7.9 4.36 2.4 8.9 3.92 2.6

F 7.6 6.33 1.7 9.1 5.89 1.7

G 14.3 3.82 2.9 14.4 3.48 2.3

H 13.1 6.27 0.4 12.5 6.07 0.7

Mean 10.8 5.45 1.5 11.3 5.12 2.0

Abbreviations: SNR, signal‐to‐noise ratio; VDP, ventilation defect percentage; VV, lung ventilated volume.

T A B L E  1  Signal‐to‐noise ratio, lung ventilated volume, and ventilation percentage defect measurements calculated from fully‐sampled and 

retrospectively accelerated scan datasets from eight healthy volunteer participants
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F I G U R E  6  A, Coronal slices from 3D fully sampled and prospectively 1.8× accelerated scans (NSA = 4), acquired from three healthy 

volunteers in separate breath holds. Difference images are not shown because of lack of registration between images resulting from minor 

difference in lung inflation levels between breath holds). B, A 3D 19F‐MRI scan acquired with 1.8× prospective acceleration (NSA = 4) in a scan of 

10‐s duration, showing whole‐lung coverage at 1‐cm isotropic resolution; NSA, number of signal averages

Participant

Fully sampled Prospectively accelerated

SNR VV/L VDP/% SNR VV/L VDP/%

I 10.0 5.27 1.3 9.9 5.13 1.9

J 19.7 5.75 0.8 17.7 5.56 1.2

K 12.5 4.33 0.3 12.6 4.29 2.7

Mean 14.1 5.12 0.8 13.4 4.99 1.9

Abbreviations: SNR, signal‐to‐noise ratio;VDP, ventilation defect percentage; VV, lung ventilated volume.

T A B L E  2  Signal to noise ratio, lung ventilated volume, and ventilation defect percentage measurements calculated from fully sampled and 

prospectively accelerated scan datasets from three healthy volunteer participants
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in temporal resolution are achievable through the use of com-

pressed sensing methods. Specifically, the application of a 

1.8× undersampling scheme and compressed sensing recon-

struction is able to preserve image quality and apparent SNR. 

As well as improving temporal resolution in dynamic imag-

ing, the acceleration offered by compressed sensing has po-

tential to reduce breath hold duration (particularly significant 

for patients unable to comply with longer breath holds), or to 

improve SNR by enabling a greater degree of signal averag-

ing during breath hold. The achievable acceleration for this 
19F‐MRI protocol is, as expected, not as great as in previous 

hyperpolarized gas MRI studies,18,19 reflecting the inherently 

lower signal generated by thermally polarized perfluoropro-

pane and the relatively small phase‐encoding matrix used. 

Nonetheless, our data clearly demonstrate the utility of com-

pressed sensing for 19F‐MRI of perfluoropropane, despite 

these limitations.

Our data show the majority of VDP values calculated from 

1.8× undersampled datasets were slightly higher than those 

calculated from fully sampled data, though the difference in 

VDP between the two groups was not statistically significant. 

Scan acceleration introduced subtle signal intensity changes 

in 19F‐MRI scans that had a small effect on the position of the 

boundary between ventilated and nonventilated regions, man-

ifest as a small decrease in lung ventilated volume. The VDP 

measurements of the prospectively accelerated group did not 

show a statistically significant difference from those of the 

retrospectively accelerated group (t test, p  = .87). Future 

F I G U R E  7  A, correlation and B, Bland‐Altman plots showing comparison of ventilated volumes measured calculated from fully sampled 

and 1.8× retrospectively undersampled datasets. The correlation plot shows an isoline between measurements. The calculated correlation 

coefficient was 0.982. The Bland‐Altman plot shows estimated bias (0.05 L, — — —) and 95% limits of agreement (±0.47 L, · · ·)

F I G U R E  8  Retrospective 1.8× undersampling of the NSA = 1 dataset shown in Figure 3 (shown with the same window and level scaling as 

Figure 3), corresponding to a 2.5‐s acquisition duration for a prospective acquisition; NSA, number of signal averages
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studies employing fully sampled and accelerated 19F‐MRI on 

patients with ventilation defects arising from respiratory dis-

ease will provide insight into the extent to which this effect 

might impact measurements made from a clinical cohort and 

allow testing of mitigation strategies if required (for example, 

alteration of region of interest threshold boundary based on 

degree of acceleration). Nonetheless, the difference in mean 

VDP between accelerated and fully sampled scans remains 

small (2.0% versus 1.5%, respectively).

Studies have demonstrated that non‐Cartesian acquisition 

techniques such as ultra short echotime (UTE) imaging29 hold 

value in 19F‐MRI of perfluoropropane as short echo times 

minimize T2
*‐related signal losses. These approaches might 

also provide opportunities for higher acceleration factors. 

Further gains in scan performance may be achieved through 

the use of multichannel receive array coils, improving sen-

sitivity through a smaller effective receive coil volume and 

enabling additional scan acceleration via parallel imaging 

methods. The efficacy of multichannel receive hardware for 
19F‐MR imaging has already been successfully demonstrated 

in studies of patients with chronic obstructive pulmonary dis-

ease.7 The possibility of using this approach in combination 

with compressed sensing methods14 holds significant poten-

tial for additional scan acceleration and optimization.

The ability to breathe perfluoropropane with oxygen 

over a prolonged, dynamic image acquisition has recently 

shown promise in providing a quantitative measure of ven-

tilation defects in patients with COPD.7 Such dynamic im-

aging has an advantage over hyperpolarized gas MRI in 

that the thermally polarized perfluoropropane exhibits scan 

signal intensity that is proportional solely to its concen-

tration and relaxation properties within the lungs, whereas 

signal intensity of a hyperpolarized gas exhibits loss of po-

larization through RF‐mediated and T1‐mediated effects. 

The short duration of our optimized scan protocol may be 

suited to dynamic imaging.
19F‐MRI of inhaled perfluoropropane represents a nascent 

field, offering new opportunities for assessing pulmonary 

ventilation properties in both healthy volunteers and patients 

with respiratory disease. The optimization approach em-

ployed in our studies can be applied to different RF coil hard-

ware configurations (including the combined use of array 

receive coils), different scanner manufacturers and models, 

and different scan acquisition methods to produce a tailored, 

optimized scan protocol. Improvements in scan optimization 

and acceleration offer considerable scope for future clinical 

application of this technique.
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