
This is a repository copy of NITPicker: selecting time points for follow-up experiments.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152333/

Version: Published Version

Article:

Ezer, Daphne and Keir, Joseph (2019) NITPicker: selecting time points for follow-up
experiments. BMC Bioinformatics. 166 (2019). ISSN 1471-2105

https://doi.org/10.1186/s12859-019-2717-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Ezer and Keir BMC Bioinformatics (2019) 20:166

https://doi.org/10.1186/s12859-019-2717-5

METHODOLOGY ARTICLE Open Access

NITPicker: selecting time points for
follow-up experiments
Daphne Ezer1,2* and Joseph Keir3

Abstract

Background: The design of an experiment influences both what a researcher can measure, as well as how much
confidence can be placed in the results. As such, it is vitally important that experimental design decisions do not
systematically bias research outcomes. At the same time, making optimal design decisions can produce results
leading to statistically stronger conclusions. Deciding where and when to sample are among the most critical aspects
of many experimental designs; for example, we might have to choose the time points at which to measure some
quantity in a time series experiment. Choosing times which are too far apart could result in missing short bursts of
activity. On the other hand, there may be time points which provide very little information regarding the overall
behaviour of the quantity in question.

Results: In this study, we develop a tool called NITPicker (Next Iteration Time-point Picker) for selecting optimal time
points (or spatial points along a single axis), that eliminates some of the biases caused by human decision-making,
while maximising information about the shape of the underlying curves. NITPicker uses ideas from the field of
functional data analysis. NITPicker is available on the Comprehensive R Archive Network (CRAN) and code for drawing
figures is available on Github (https://github.com/ezer/NITPicker).

Conclusions: NITPicker performs well on diverse real-world datasets that would be relevant for varied biological
applications, including designing follow-up experiments for longitudinal gene expression data, weather pattern
changes over time, and growth curves.

Keywords: Time series, Longitudinal, Experimental design, Functional data analysis, RNA-seq, Dynamics

Background
In many areas of experimental science, scientists are inter-

ested in the behaviour of some system under a wide

range of conditions. For instance, a plant biologist might

be interested in measuring gene expression in a set of

mutant plant varieties under various environmental con-

ditions, such as varying temperature, watering treatments

and light intensities, in what is called a factorial (or multi-

factor) experimental design (Fig. 1a), but these types of

experiments can be very expensive [1].

To complicate matters evenmore, there are a large num-

ber of experiments which do not simply measure some

discrete quantity, but instead aim to measure a function.

Typically, researchers are interested in the behaviour of a

*Correspondence: dezer@turing.ac.uk
1Department of Statistics, University of Warwick, CV4 7AL Coventry, UK
2The Alan Turing Institute, NW1 2DB London, UK
Full list of author information is available at the end of the article

quantity over time (or, in some cases, space). For example,

many genes’ expression levels vary over time in intricate

ways, especially since genes are often expressed in bursts.

The shape of the burst provides insight into the regula-

tory mechanisms governing it [2, 3]. Even the degree to

which a gene is sensitive to an environmental condition is

often time-dependent; for instance, there are a different

set of Arabidopsis thaliana genes that are sensitive to light

at night and during the day [4].

Ideally, a scientist would want to sample at a large num-

ber of time points under each experimental condition,

but this might not be feasible, especially if the experi-

ments are expensive to run. In such circumstances, the

scientist might conduct a small number of high resolution

time course experiments, and then use the information

gathered to select a subset of time points for further inves-

tigation under the entire range of experimental conditions

(Fig. 1b). For example, many high resolution time course

experiments have recently been published as part of large
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2717-5&domain=pdf
http://orcid.org/0000-0002-1685-6909
https://github.com/ezer/NITPicker
mailto: dezer@turing.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 2 of 10

A

B

C

D

Fig. 1 Time point selection is an important part of experimental design. a Here is an example of a multi-factor experimental design. b Given a set of
high resolution time courses, sampled at τn we try to find a subset of time points tm for future follow-up investigations. c In this paper, we define
good time points as those that enable us to best infer the shape of the function. d The time points in a high resolution time course are represented
by nodes. In the case shown (i), there are four time points in the high resolution time course. (ii) In the follow-up experiment, time points 2 and 4 are
chosen, corresponding to a particular path through the network. The length of this path is the sum of edge(0, 2), edge(2, 4) and edge(4, 5)

projects or consortia, including the high resolution time

courses of fruit fly [5], roundworm [6], or mammalian

lung development [7], but a small lab that is interested

in repeating the experiment under slightly different con-

ditions might not be able to afford to use as many time

points. Choosing the right subset of time points is clearly

important from the point of view of accuracy, but it will

also determine what kinds of gene expression perturba-

tions can be observed in the follow-up experiments. For

example, if a gene were to have a burst of expression in

the first experiment, it would be reasonable for the biol-

ogist to select the time point corresponding to the peak

of the burst for follow-up experiments (Fig. 1c). Then,

if the gene shifts the timing of its peak gene expres-

sion in the experimental condition, this change would

be detected by the experiment, although it would not

be possible to relate this to a change in the timing of

the peak expression using this measurement alone. On

the other hand, if the peak gene expression is the same,

but the shape of the distribution changes, the biologist

would not be able to detect any change at all (Fig. 1c).

Clearly, it would be beneficial to select time points that

help us accurately determine the full gene expression pro-

file, while remaining sensitive to the expected types of

perturbations.

In this paper, we develop a new statistical tool, called

NITPicker, which selects informative time points for

follow-up experiments given a set of example curves

from a high resolution time course (Fig. 1d). NITPicker

uses methods from functional data analysis to find these

optimal points, and improves on current approaches for

selecting time points for follow-up experiments. The

growing field of functional data analysis is focused on

developing new statistical techniques to analyse data sam-

pled from continuous curves [8, 9]. In our case, in order

to determine the relative importance of each time point

for follow-up experiments, we need to know what types

of curves we might observe under different experimen-

tal conditions. If all possible curves are equally likely to

be observed in the new experimental conditions, then any

set of time points would be equally sensible to select for

the follow-up experiments. In reality, we can expect the

observed curves to arise from some non-uniform prob-

ability density function of curves, whose parameters we

must attempt to infer from the example curves that are

available.

Some previous methods for selecting time points for

follow-up experiments imagine that all the biological

material is collected at each of the original time points

and stored, but that the material from each time point

is sequenced sequentially based on previous outcomes

[10, 11]. However, this is rarely a practical experimen-

tal strategy, as it can result in a large amount of wasted

time and effort, since biological material is collected at

every time point, including those points which are not

used in the later analysis. Also, sequencing in parallel

can be much quicker and less expensive than sequencing

sequentially.

The recent Time Point Selection (TPS) method devel-

oped by [12] is a substantial improvement in that it

does not depend on this sequential experimental design

strategy, and it considers the full shape of the gene

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 3 of 10

expression profile, a strategy also used by NITPicker

(Fig. 1d). However, it has three downsides that might limit

its use in practice. First, it uses a greedy search strategy for

finding time points, which might be prone to finding local

optima rather than global optima. In NITPicker, we iden-

tify that an optimisation problem described by [12] is in

fact the same as a simpler problem in computer science –

finding the shortest path through a directed acyclic graph

– which can be solved directly by a dynamic programming

algorithm (specifically, a modified Viterbi algorithm).

Second, TPS attempts to find the time points which

lead to the most accurate fit for the data in the train-

ing set, so it might not generalise to new gene expression

profiles that differ even slightly from the training set.

As such, it is useful for follow-up experiments which

attempt to repeat the original experiment at a lower res-

olution. However, in many experimental situations, we

are interested in selecting the time points which pro-

vide the most information about how the curve changes

in experimental conditions. For this reason, in NIT-

Picker we use the training set to develop a probabil-

ity distribution of gene expression curves [13], which

allows us to address the slightly different (and more fre-

quently encountered) question of finding the optimal time

points for detecting and modelling perturbations of the

data.

Third, TPS directly uses gene expression profiles from

the high resolution time course to select the new time

points, a strategy which is potentially vulnerable to exper-

imental noise. On the one hand, we can imagine a scenario

in which, for some period of time, the data is very noisy,

before later settling down. In this case, TPS is almost

certain to select time points in the noisy region (allow-

ing us to more accurately model the noise), despite this

providing very little useful information. On the other

hand, individual anomalies in the data might cause TPS to

select the associated time points. Since NITPicker uses a

probability density over gene expression curves [13], this

decreases the risk of overfitting the training set, avoid-

ing the latter problem. We also adapt NITPicker for use

in the former scenario, by fitting the inverse coefficient of

variation rather than the data itself.

Ji and Muller [14] developed a similar method to TPS,

which has expanded utility since it can find the best time

points for performing a linear regression, something that

we do not address in this manuscript. Another benefit

is that they smooth the functions using functional Prin-

ciple Component Analysis (fPCA), which we also apply.

However, they also suffer from some of the same issues as

TPS. Namely, (i) they do not find a probability distribu-

tion in the space of functions, but instead fit to the input

data directly and (ii) they use either an exhaustive search

that is extremely slow or a greedy algorithm that does not

guarantee optimality, rather than a dynamic programming

algorithm that finds the optimal solution in a reasonable

runtime.

In summary, NITPicker does not get trapped in

local optima, addresses a wider range of experimental

design questions, and is less sensitive to noise in the

training set.

Results

NITPicker can select time points that describe the shape of

a curve

NITPicker is a tool that uses a small number of high

resolution time course experiments to select a small

set of time points to analyse in follow-up experiments.

In order to determine how well NITPicker performs in

practice, we apply it to three real-world examples that

address the three different experimental design questions

corresponding to the f1, f2 and f3 metrics defined the

“Methods” section. More specifically, these metrics corre-

spond with the goals of selecting a subset of time points

that i) accurately describe the shape of the curve ii) accu-

rately describe the difference between an experimental

and control condition and iii) perform goals (i) and (ii) but

with preference towards regions of the time series that are

less noisy.

First, we test the performance of NITPicker when min-

imising f1, which means that we are trying to accu-

rately model the shape of the curves. As this is the

same problem proposed by [12], we compared the per-

formance of NITPicker to their TPS method, using

three different datasets – the same lung gene expression

dataset used in [12], the gene expression of direct tar-

gets of the circadian clock gene ELF4 in a longitudinal

Arabidopsis study across two days at different tempera-

tures [15], and the gene expression profiles of develop-

mental genes in a C. elegans developmental time-course

[6] (Fig. 2a). In this case, we are presented with an RNA-

seq experiment in only one experimental condition, but

containing a large number of genes. Within each dataset,

the selected subset of genes have similar functional roles,

so a reasonable hypothesis appears to be that the cor-

responding gene expression curves are all drawn from a

single probability distribution over curves. To determine

if this is an accurate model, we randomly split the dataset

into two equal partitions of genes – a training set and

a testing set. We then use NITPicker or TPS to select

the a subset of eight time points based on the training

set, and calculate the L2-error on the genes in the test-

ing set. We repeated this procedure fifty times for each

dataset. NITPicker performs equally well as TPS on the

less structured lung data, and significantly better than

TPS on the more structured Arabidopsis and C. elegans

datasets. This result held even when only a third of the

data was used for training and two-thirds was used for

testing (Fig. 2b).

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 4 of 10

A

B

Fig. 2 Time point selection for gene expression data. a The gene expression curves in the lung, C. elegans, and Arabidopsis datasets used to test
NITPicker. b After selecting 8 time points using the training data, the log(L2-error) was calculated on the test data. The training and testing sets were
split 50-50, unless specified

NITPicker can select time points that distinguish between

experimental and control conditions

In functional data analysis, two of the standard datasets

for testing new algorithms are the Canada weather dataset

[8] and the Berkeley growth dataset [16], both of which

provide additional examples of real world data with a

functional form. Biologists are often interested in how

genes and environments interact to produce phenotypes.

We have already shown how NITPicker can be applied

to gene expression data, but now we show that it can

be applicable in understanding environmental data (such

as temperature over time) and phenotypic data (growth

curves).

The Canada dataset contains the average temperature

measured eachmonth across a number of Canadian cities,

and we use this to test NITPicker’s performance when

minimising f2 (see “Defining good time points” subsec-

tion in the methods section for the definitions of the

mathematical quantities referred to here). Suppose that

we are interested in the difference in weather between

cities in Canada and Resolute, one of its most northerly

and coldest cities. In other words, we will be finding the

value of f2, where g is the weather of Resolute and w is the

weather of the other Canadian cities. Suppose (for the sake

of illustrating our methods) that we are in a position to

sample the weather patterns in some new cities in Canada,

but we can only afford to measure the weather in 5 of the

12 months. The raw data is shown in Fig. 3a, showing that

we can generate a sensible probability density function for

temperature curves in Canada. The best months to sample

according to NITPicker are drawn as vertical lines.

To test the accuracy of the approach, we randomly split

the cities into two equally sized groups – a training set and

a testing set. We use the training set to select a subset of

time points using NITPicker, and then we test the strength

of these time points on the test set of cities. More specif-

ically, we evaluate the L2-distance between the curves

produced by sampling at all points and those produced by

sampling only at the time points selected by NITPicker.

We find that NITPicker-selected time points perform bet-

ter on the testing set than either randomly sampled points

or evenly sampled points (Fig. 3b), an example illustrating

this is shown in Fig. 3c. This demonstrates that NITPicker

can be used successfully to select time points that help

distinguish between a control curve and a distribution of

curves from experimental conditions.

NITPicker can avoid time points with noisy values

Growth curves are important in a number of different dis-

ciplines in biology, from childhood development [16] to

plant sciences [17]. The third dataset represents growth

data from a group of boys and girls (Fig. 3d) – despite the

unusual shape of the curves, it is possible to develop a rea-

sonable probability distribution of growth curves (Fig. 3e).

The largest variance in growth rates is found in the early

years; however, from the point of view of distinguishing

the two populations, the most informative difference in

growth rates between boys and girls is seen during ado-

lescence. Suppose that we want to sample at time points

that can help us accurately determine the difference in

growth rates between girls and boys. In other words, we

don’t mind if the shape of the curve is less accurate in

periods of time with lots of variability, but we wish to

accurately estimate the shape of the difference between

girls and boys in periods of timewith less variability within

each population – for this we are interested in minimising

f3 (see Fig. 3f, and see “Defining good time points” sub-

section for the definition of f3). The point of this exercise

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 5 of 10

−
3
0

−
2
0

−
1
0

0
1
0

2
0

3
0

month

a
v
g

.
te

m
p

e
ra

tu
re

 (
C

)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Resolute (control)
other Canadian cities
sampled functions

replicate

L
2

-e
rr

o
r type

NITPick

Random

Even

A

C i ii iii

B

F GD E

5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

age (yrs)

g
ro

w
th

 r
a

te
 (

c
m

/y
r)

girl
boy

5 10 15

0
5

1
0

1
5

2
0

2
5

age (yrs)

g
ro

w
th

 r
a

te
 (

c
m

/y
r)

 −
 s

a
m

p
le

d

5 10 15

−
1

0
−

5
0

5
1
0

age (yrs)

in
ve

rs
e

 c
o

e
ff

ic
ie

n
t

o
f

va
ri

a
ti
o

n
 −

 s
a

m
p

le
d

All points NITPick Random Even

6
0

7
0

8
0

9
0

point selection strategy

%
 a

c
c
u

ra
c
y

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

0
1

0
2
0

3
0

month

d
if
fe

re
n

c
e

 i
n

 t
e

m
p

e
ra

tu
re

 (
C

)

Jan Mar May Jul Sep Nov

0
1

0
2
0

3
0

month

d
if
fe

re
n

c
e

 i
n

 t
e

m
p

e
ra

tu
re

 (
C

)

Jan Mar May Jul Sep Nov

0
1

0
2
0

3
0

month
d

if
fe

re
n

c
e

 i
n

 t
e

m
p

e
ra

tu
re

 (
C

)

Jan Mar May Jul Sep Nov

Fig. 3 Applying NITPicker. aMonthly temperatures from a set of cities in Canada are shown in black. For the purpose of this paper, we consider the
‘control’ condition to be the temperature of Resolute, Canada, which is shown in red. A probability distribution of curves was constructed on the
basis of the temperature curves for all cities – curves sampled from this probability distribution are indicated in dashed-blue lines. The vertical lines
represent the ‘best time points’ to sample from, according to NITPicker. b For each of ten replicates, we selected the time points to sample using half
the city curves, and scored the selection of time points on the other half of the city curves. For each city in the test set, we calculated the L2-error
between the curve generated by sampling every month and the curve generated by linear interpolation between the selected subset of time
points. c Here we present an example of how we evaluate a test set for a selection of time points (vertical bars) selected by NITPicker (i), random (ii),
and evenly sampled (iii). The coloured-in area displays the error that arrises from sampling only at the designated time points. d The growth rate of
boys and girls from the Berkeley growth dataset were used to develop probability distributions of curves for boys and girls, with sampled curves
shown in e. fWe were interested in estimating the shape of the inverse coefficient of variation, shown in this figure. The selected time points are
shown as vertical bars in D-F. gWe used half the boy curves and half the girl curves to select time points to sample from, and to train a DD-classifier
[18, 19], and then calculated the percent accuracy on the other half of the boy and girl curves. This procedure was repeated 30 times with each
method of selecting time points (selecting all the time points, 5 time points with NITPicker, 5 time points randomly, and 5 time points evenly)

is to select time points that help us estimate the shape

of the difference between girl and boy curves; however,

as by-product of the procedure we might hope that we

can select time points that are reasonable at predicting

whether an individual growth curve comes from a boy or

a girl. Similar to our analysis for the Canada dataset, we

split the curves into training and testing sets, but this time

we not only select a set of time points using the training

set, but we also train a classifier commonly used to clas-

sify functional data [18, 19]. Although, as expected, the

best classifier used all the time points, NITPicker-selected

time points could be used to develop amore accurate clas-

sifier than selecting time points either evenly or randomly

(Fig. 3g).

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 6 of 10

Discussion
In this paper we have presented NITPicker, an algo-

rithm for selecting a subset of time points in time course

experiment in a variety of experimental design situa-

tions. In contrast to previous strategies [10–12], NIT-

Picker takes full advantage of the functional nature of

the data to produce a non-parametric probability distri-

bution over curves [13], which is then used to select the

optimal time points. This approach minimises the risk

of over-fitting the data, while also being better adapted

to the situation in which the new time points are being

selected for use in experiments which are run under dif-

ferent conditions to those used to collect the original

data.

The goal of NITPicker is to select points so that, if you

interpolate between data sampled at these time points,

you form an accurate representation of the underlying

curve. This goal is distinct from the closely related, but

fundamentally different goal of finding a small set of

points that allow the researcher to reconstruct the rest

of the curve, which is sometimes referred to as trajec-

tory reconstruction (Additional file 1: Figure S1a). For

instance, it is possible that a time point’s value might

be highly correlated to a much later time point’s value,

so that in theory only one of these time points must

be sampled, and the value at the second time point can

be inferred. In this case, a method such as the one

proposed by [14] might suggest sampling at a smaller

number of time points; however, a downside is that

the scientist would not be able to directly observe the

curve, so they would need to trust that the previously

observed correlations between time points will continue

to hold under new experimental conditions. If the goal

of the scientist is to sample at a few points, and then

reconstruct the underlying curve using a predetermined

method (such a spline fitting), then NITPicker is the

appropriate tool.

Similarly, NITPicker does not find the time points that

are the best time points for distinguishing between con-

trol groups and experimental groups, because the goal is

to accurately characterise the profile of the temporal dif-

ferences between the experimental and control group over

time. Many biologists are not interested in diagnosing

the type of exposure, but are instead interested in learn-

ing how the experimental groups differ from one another.

However, we show that as a side effect, the time points

that are selected can distinguish between experimental

groups better than random or evenly selected time points

(Fig. 3). If the goal of the researcher is to be able to distin-

guish between experimental and control groups, a binary

classifier would be a more appropriate tool.

NITPicker is especially designed to find good time

points for new experiments, so if there are lots of tem-

poral shifts in the curves it will find time points that will

be useful in the case of similar types of temporal shifts

(Additional file 2: Figure S2b). This might be especially

useful for researchers who study systems where the same

features are expected to appear in all samples over the

time series, but the timing of those features might vary.

The output of NITPicker depends on which curves

are included in the analysis. To ensure that the selected

time points are most reflective of biologically interest-

ing behaviours, the biologist can choose to only include

curves that are less noisy or that are most relevant for

the biological question at hand. For example, a biologist

might focus on genes that are regulated by a certain tran-

scription factor or that have a specific gene ontology of

interest. To filter noisy curves, it might be a good idea to

use a tool like edge [20] to identify curves that smoothly

change their level over the time course. Finally, a biolo-

gist may have some strategy to quantify the importance

of genes, and these weights can be provided to NIT-

Picker. NITPicker can take as few as three high resolution

time series as input, and this creates reasonable probabil-

ity distributions of simple curves (See Additional file 1:

Figure S1). However, it is important to always visualise

the probability distributions of curves using the getPer-

turbation function in the NITPicker package, to ensure

that these seem to accurately reflect the observed data.

The more high resolution curves are available under dif-

ferent experimental conditions, the more likely it will

be that the optimal time points are selected for future

experiments.

NITPicker uses a dynamic programming algorithm to

select the optimal time points, which provides an effi-

cient method that is guaranteed to find the optimal

solution (unlike the greedy algorithm used in TPS [12]).

One of the downsides of using this dynamic program-

ming algorithm is that it only outputs the predicted opti-

mal set of time points, but does not provide an easy

way of evaluating the confidence in this prediction. We

tested NITPicker on a variety of simulated and real-life

datasets, and demonstrated the flexibility of this tool

by addressing different experimental design questions in

each case.

Conclusion
NITPicker provides a useful tool for selecting informative

time points that avoids the pitfalls of ad hoc human deci-

sions. Specifically, it can select the optimal time points to

address a variety of different experimental goals, includ-

ing accurately predicting the shape of a curve, accurately

predicting the perturbations to some base-line curve, or

selecting time points which are most informative (i.e.

avoiding regions of random noise). By choosing time

points using NITPicker, researchers are likely to obtain

results with more statistical power, while at the same time

avoiding bias.

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 7 of 10

Methods

Defining good time points

In order to compare the strengths and weaknesses of each

heuristic, we need to clearly define of what constitutes

a good time point to select. One possible strategy would

be to try to select a set of time points that are best able

to distinguish the shape of the curves. For this we select

a criteria very similar to that presented by [12] and [14]

in that we want to minimise the L2-distance between the

curve generated by sampling at all the time points, and

the curve generated by sampling only at a subset of time

points. However, the other methods minimise this dis-

tance over all curves in the training set – instead, we use

the training set to generate a probability density over the

space of curves, and then minimise the expected distance.

Some of the advantages of this approach have already been

mentioned in the introduction.

First, we will describe the functions that the NITPicker

algorithmminimises, so that the overall goal of NITPicker

is clear from the beginning. We will start by describing

the input functions (w) in terms of a set of parameters (μ).

However, there are many ways of parameterising a func-

tion – for instance, any function can be represented as a

linear combination of a Fourier, B-spline, or polynomial

basis, and the parameters that specify the function would

be the relevant coefficients (such as a0, a1, and a2 in y(t) =
a0 + a1x(t) + a2x

2(t) if the function was a quadratic func-

tion). At this stage, we do not describe how the functions

are parameterised, but our choice is described in detail in

“Defining a non-parametric probability density function

of curves” section. In brief, we parameterise the curves

by the functional principle components of the x-axis and

y-axis deformations from the mean curve.

Suppose that we have an initial high resolution time

course, with data sampled at times τ = {τ1, τ2, ...τN }. We

must select a subset of these time points, which we will

call t = {t1, t2, ...tM}, so as to minimise the expected error:

f1(t) :=
∫

||w(t; τ ,μ) − w(t; t,μ)||2
L2(t,[τ1,τN])

P(μ)dμ

(1)

where w(t; t,μ) is a gene expression function evaluated

at the time t, parameterised by a set of parameters μ

and interpolated between time points in the set t (either

through a linear interpolation or spline), and P(μ)dμ is a

probability measure on the space of parameters (i.e. P(μ)

is the probability density associated with the set of param-

eters μ). We use the standard notation for L2 norms, that

is, given a function w(t;μ) of time t and some parameters

μ we define

||w(t;μ)||L2(t,[τ1,τ2]) :=
(∫ τ2

τ1

(w(t;μ))2 dt

)
1
2

In many cases we are not necessarily interested in the

shape of the curve, but rather the difference between the

control and an experimental condition. Let g(t, ν) be the

gene expression curve in the control condition, parame-

terised by ν and sampled at time points t. Then we want

to minimize the expected error in the difference:

f2(t) :=
∫∫

||
(

g(t; t, ν) − w(t; t,μ)
)

− (g(t; τ , ν)

− w(t; τ ,μ))||2L2(t,[τ1,τN])P1(μ)P2(ν)dμdν

(2)

If there is only one ‘control’ curve (for instance, if the

scientists have not included replicates), then there would

only be one possible value for the parameters ν and the

equation is simplified to:

f2(t) :=
∫

||
(

g(t; t) − w(t; t,μ)
)

−
(

g(t; τ) − w(t; τ ,μ)
)

||2L2(t,[τ1,τN])P(μ)dμ

(3)

Note that f1 is a special case of f2 where g(t; t) = 0.

If there are periods of time with different amounts of

random variability, then we might wish to sample less fre-

quently in areas that have lots of variability – we might

accept having less accuracy in predicting the shape of the

curves in noisy regions if we can accurately model their

shapes in regions with less noise. To accomplish this, we

should attempt to find the shape of the curve represent-

ing the difference between the control and experimental

conditions normalised by the variance. In other words, we

minimise the expected error in the inverse of the coefficient

of variation. We first define z:

z(t; t, τ , ν,μ) :=
(

g(t; t, ν) − w(t; t,μ)
)

−
(

g(t; τ , ν) − w(t; τ ,μ)
) (4)

and then:

f3(t) :=
∫∫

∣

∣

∣

∣

∣

∣

∣

∣

z(t; t, τ , ν,μ)
√
Var(z(t; t, τ , ν,μ))

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(t,[τ1,τN])

P1(μ)P2(ν)dμdν

(5)

where the variance is itself a function of t: it is the vari-

ance of the function z(t; τ , t, ν,μ) with respect to the

probability measure P1(μ)dμP2(ν)dν.

There are many criteria that might be used to deter-

mine the “optimal” set of time points to select, but for the

purpose of this manuscript we focus on these three cri-

teria, as they are intuitive, relatively simple, and – as we

shall see later – the best solution can be computed exactly

with a dynamic programming algorithm. Note also that

our algorithm can easily be adapted to deal with many

other criteria. For example, if it is important to accurately

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 8 of 10

measure both the curve and its first s derivatives, then

we can simply replace the L2 norms in the above expres-

sions with the norms associated with the Sobolev spaces

Hs. Additionally, if the scientist can quantify the impor-

tance of each gene, they can add weights, for instance

by multiplying each xi(t) in f1 by its corresponding

weight.

Defining a non-parametric probability density function of

curves

In order to effectively find the subset of time points

that minimise f1, f2, or f3, we need a method to derive,

from a set of example curves, the probability of observing

particular curves in future experiments.

First, suppose that we have chosen some way of param-

eterising curves using a set of parameters μ. Let ga(t)

be the curve produced in the a-th high resolution time

course experiment, and let μga be the associated param-

eters. Given the whole set of such parameters associated

with all the high resolution time courses, we want to gen-

erate a probability density function P(μ) on the parameter

space.

In some cases, a scientist might have a model in mind

that describes the functions – in this case they can

directly fit the parameters. However, in most cases we’ve

encountered scientists do not have such a model, nor

can one be justified on theoretical grounds, so we need

a non-parametric way of defining a probability distribu-

tion of functions given a set of examples. In the disci-

pline of functional data analysis, techniques have been

developed to define these probability distributions – see

[13] – a process that involves first aligning the functions

(“registration”) and then parameterising the horizontal

and vertical shifts (using functional Principle Compo-

nent Analysis). Both the horizontal and vertical shifts

are parameterised, so curves that are sampled from the

probability density function of curves will have similar x-

axis and y-axis deformations as the original curves. For

completeness, we will summarise their protocol below

(Additional file 3: Figure S3).

First, we take a set of known functions (our set of high

resolution functions, ga(t)) and align them. In order to

effectively align the gene expression curves in a shape pre-

serving way, we define a distance between curves in terms

of the square root slope function (SRSF):

q(t) = sign(ḟ (t))

√

|ḟ (t)|

Note that, given q(t) and the initial value f (0), we can

recover the corresponding function f (t) via f (t) = f (0) +
∫ t
0 q(s)|q(s)|ds.
Now, we define the y-distance between functions h1 and

h2 as

Dy(h1, h2) := inf
γ∈Ŵ

||q1(t)−(q2◦γ)(t)
√

γ̇ (t)||L2(t,[τ1,τn]) (6)

where γ is a function defining the amount of x-axis

warp, and Ŵ ⊂ L2 is the set of warping functions. γ ∈
Ŵ must have some special properties: (i) γ (t) ∈[0, 1]
(ii) γ is monotonically increasing (i.e its slope is pos-

itive) (iii) ||γ (t)||L2(t) = 1. Because of this last point,

the warping functions must lie on the unit sphere in

L2, which can be thought of as an infinite-dimensional

sphere.

Given a function g(mean) (see [13] for the appropriate

g(mean)), a dynamic programming algorithm is used to

find a vector of functions γ = (γa(t)), where γa corre-

sponds to the warping function found when computing

Dy(g(mean), ga) (see Eq. 6). It also provides us with a set of

aligned functions fa and a corresponding set of aligned q

functions qa. SRSF is a continuous alignment algorithm

that ensures that the aligned curves are differentiable, so it

does not lead to alignment artefacts observed when apply-

ing feature registration or discrete dynamic time warping

algorithms.

We would like use the set of warping functions γa
to define a probability density function on (some sub-

set of) Ŵ. However, Ŵ is not a linear space: given two

warping function γ1 and γ2, their sum γ1 + γ2 cannot

be interpreted as a warping function, since it will not

lie on the unit sphere in L2. Hence, we cannot imme-

diately apply functional Principal Component Analysis.

Instead, we linearise the space Ŵ by first finding the cen-

troid of the points γa on the surface of the sphere (the

“Karcher mean”, γ(mean)). Note that this is itself a func-

tion of t. Next, we use the exponential map at γ(mean),

which provides us with a map from the tangent space

at γ(mean) (which is a linear space) to the sphere itself.

More precisely, given a tangent vector to the sphere, we

find the point on the sphere reached by exponentiating

this tangent vector, using the Lie-group structure (under

composition) of the unit sphere in L2. In this way, we

can associate a vector in the tangent space at γ(mean) to

each of the warping functions γa. This linearisation step

should not affect small perturbations, but may exagger-

ate the differences between pairs of outliers– any two

curves that differ substantially from the other curves

will be considered farther apart from each other than in

reality.

Now, to decrease the dimensionality of the space (and to

decrease the number of free parameters in the model), we

can perform a functional Principle Component Analysis

(fPCA) of this linearised space, then fit an independent

normal distribution along each principle axis. This gives

us a probability density on the tangent space. Finally, we

can use the exponential map again to map this probability

density function directly onto the sphere.

An fPCA can also be performed on the y-axis deforma-

tions. This time, the functions defining the y-axis defor-

mations are simply functions in L2, which is already a

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 9 of 10

linear space, so we don’t need to perform the linearisation

step.

fPCA is a method that finds an eigenbasis of functions

(principle components), and orders them by the amount

of variance that they can explain. Each function can then

be expressed as a linear combination of the top princi-

ple component functions, plus an error term. Neglecting

the error term has the effect of smoothing the result-

ing curves. Therefore, this step also makes the method

more resilient to experimental noise. One of the reasons

we treat x-axis and y-axis deformations separately is that

fPCA only considers variance in terms of y-axis deforma-

tions, not x-axis deformations. Ji andMuller [14] also uses

fPCA, but without separating the x- and y-axis deforma-

tions first. Also, [14] use it for smoothing, rather than for

parameterising a probability density of functions.

In summary, this strategy results in μ being defined

as the space of fPCA coordinates, associated with both

x- and y-deformations. P(μ) is then given by the multi-

variate normal distribution with a diagonalised covariance

matrix.

To estimate the integrals involved in the definitions

of f1, f2 or f3, we take J samples from the probability

distributions defined above. For example, we estimate f (t) as

fest(t) =
1

J

J
∑

j=1

||w(t; τ ,μj) − w(t; t,μj)||2L2(t,[τ1,τN])

where μj is the set of parameters corresponding to the j-

th sample drawn from P(μ). By default we set J to 1000.

Note that since we are minimising f, the factor of 1
J can be

dropped.

The benefit of this approach is that it allows the user

define very complicated functions for w(g,μ) and P(μ),

and still be able to apply NITPicker. The downside of this

approach is its random nature, which means that we don’t

know the error between the actual value of the integral

and this estimate, although we can be confident that f(est)
is close to f if J is sufficiently large.

NITPicker algorithm

A dynamic programming algorithm can be employed to

find the set of m time points t that minimise f (t) (where

f = f1, f2 or f3). In essence, the problem is identical to

finding the path that minimises the distance in a directed

acyclic graph that contains exactly m edges, which can

be calculated with a modified Viterbi algorithm (Fig. 1d).

Consider a graph with N + 2 ordered nodes – a ‘start’

node, N nodes that represent each time point in the high

resolution time course, and an ‘end’ node. For ease of nota-

tion, we index the start node with 0 and the end node with

N + 1. Each node is connected by edges that point to all

the nodes that are ahead of it, and we set the value of the

edge joining node i to node k to be:

edge(i, k) =
J

∑

j=1

||[w(t; τ ,μj)−w(t; {τi, τk},μj)] ||2L2(t,[τi,τk])

(7)

In other words, the value of the edge joining node i to node

k is the L2-error caused by selecting times τi and τk and

none of the times in between.

Now we need to find the shortest path with K edges that

goes from the start node to the end node. An N by N by K

table can be assembled where each element is:

�(i, j, k) = min
ℓ=0,1,...,i

(

�(ℓ, j− 1, k − 1) + edge(i, j)
)

(8)

and �(0, j, 0) = 0, �(i > 0, j, 0) = ∞. In other words, the

value of �(i, j, k) is the minimum error when going from

τ0 to τi and then immediately to τj, using exactly k edges.

The value of fest(t) is �(N + 1,N + 1,K). As we con-

struct the table �, we also save another matrix �min, with

entries given by �min(j, k) = mini �(i, j, k). The value of

�min(j, k) is then the minimum L2-error when going from

τ0 to τj using k steps. We also construct a similar N by

K matrix �trace(j, k), with entries given by the value of i

which minimises �(i, j, k). This can then be used to find

the time points: we set tk = �trace(N + 1, k), and then

tk−1 = �trace(tk , k − 1).

Note that the value of edge(i, j) actually depends on the

previous R time points if a spline of degree R is used. How-

ever, the index of the previous R best nodes given edge

(i, j) can be easily computed from the traceback matrix,

although this makes NITPicker run much more slowly.

Furthermore, using a spline of degree greater than one can

produce edge-effects, especially in the beginning of the

sequence as we use the deBoor algorithm to calculate the

spline [21]. This problem can be reduced by running the

dynamic programming algorithm twice – once forward

and once backwards.

Additional files

Additional file 1: Figure S1: Examples of probability densities of
functions with three example curves. NITPicker can be run with as few as
three high resolution time courses. In order to see if it performs reasonably
under these circumstances, we randomly chose triplets of skewed
Gaussian curves with varied means (right), skews (middle) and standard
deviations (left) and these are shown in red. Sampled curves (100) from the
probability density of functions are shown in grey. These seem like
reasonable predictions given the input data. (PDF 422 kb)

Additional file 2: Figure S2: Why a biologist might want to use the time
point selection criteria used by NITPicker. The smooth black and red curves
show the original high resolution time course data. The horizontal dotted
lines indicate the time points that might be selected under the indicated
method. (A) NITPicker selects points that describe the shape of the curve,
rather than points that can be used to reconstruct the curve. It might be
possible to infer the shape of the curve with fewer points than suggested
by NITPicker (top), but you would not have direct observations as to the

https://doi.org/10.1186/s12859-019-2717-5
https://doi.org/10.1186/s12859-019-2717-5

Ezer and Keir BMC Bioinformatics (2019) 20:166 Page 10 of 10

shape of the curve (unlike NITPicker–bottom), so this relies on greater trust
that the model will continue to hold under new experimental conditions.
(B) Other methods find the best time points for the observed data, so they
might overfit (top). In this case, NITPicker would observe that there is a lot
of variability in the peak in the early time course and would pick more
evenly spaced time points in this region for follow up experiments
(bottom). (PDF 18 kb)

Additional file 3: Figure S3: Flowchart of algorithm for generating a
probability densities of functions. This is the exact same procedure used by
[13], but is included here for completeness. First, the curves are aligned in
order to dissect and quantify the x-axis and y-axis shifts in the curves. Then,
these x-axis and y-axis shifts are parameterised by their functional Principle
Components, and this is used to generate curves that have similar x-axis
and y-axis shifts to the original curves. (PDF 11 kb)

Abbreviations

CRAN: Comprehensive R archive network; fPCA: Functional principle
component analysis; NITPicker: Next iteration time-point picker; SRSF: Square
root slope function; TPS: Time point selection

Acknowledgements

We would like to thank my colleagues at the Sainsbury Laboratory in
University of Cambridge and the Cambridge plant science department, and
Dr. Philip Wigge for helping encourage participation. We would also like to
thank Shahin Travakoli for his advice on the manuscript.

Funding

This research was funded by a Trinity College Junior Research Fellowship,
University of Cambridge; Alan Turing Institute Research Fellowship under
EPSRC Research grant (TU/A/000017); EPSRC Innovation Fellowship
(EP/S001360/1). The funding bodies did not play any roles in the design of the
study, the collection, analysis, and interpretation of data or in writing the
manuscript.

Availability of data andmaterials

All data come from supplemental tables of the cited manuscripts. The gene
expression data is available in the supplementary material of [6, 12, 15] and the
weather and growth datasets can be found in the fda package in R.

Authors’ contributions

DE proposed the project, analysed the data, developed and programmed the
method and wrote the manuscript. JK helped develop the method and wrote
the manuscript. All authors have read and approved the manuscript.

Ethics and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Statistics, University of Warwick, CV4 7AL Coventry, UK. 2The
Alan Turing Institute, NW1 2DB London, UK. 3Department of Applied
Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA
Cambridge, UK.

Received: 22 October 2018 Accepted: 6 March 2019

References

1. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J,
Bergman R. Experimental design and optimization. Chemom Intell Lab
Syst. 1998;42(1-2):3–40.

2. Nicolas D, Phillips NE, Naef F. What shapes eukaryotic transcriptional
bursting? Mol BioSyst. 2017;13(7):1280–90.

3. Ezer D, Moignard V, Göttgens B, Adryan B. Determining Physical
Mechanisms of Gene Expression Regulation from Single Cell Gene
Expression Data. PLoS Comput Biol. 2016;12(8):e1005072.

4. Rugnone ML, Faigon Soverna A, Sanchez SE, Schlaen RG, Hernando CE,
Seymour DK, Mancini E, Chernomoretz A, Weigel D, Mas P,
Yanovsky MJ. LNK genes integrate light and clock signaling networks at
the core of the Arabidopsis oscillator. Proc Natl Acad Sci. 2013;110(29):
12120–5.

5. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L,
Artieri CG, Van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L,
Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D,
Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B,
Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N,
Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J,
Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA,
Kaufman TC, Oliver B, Celniker SE. The developmental transcriptome of
Drosophila melanogaster. Nature. 2011;471(7339):473–9.

6. Boeck ME, Huynh C, Gevirtzman L, Thompson OA, Wang G, Kasper DM,
Reinke V, Hillier LW, Waterston RH. The time-resolved transcriptome of C.
Elegans. Genome Res. 2016;26(10):1441–50.

7. Ardini-Poleske ME, Clark RF, Ansong C, Carson JP, Corley RA, Deutsch
GH, Hagood JS, Kaminski N, Mariani TJ, Potter SS, Pryhuber GS,
Warburton D, Whitsett JA, Palmer SM, Ambalavanan N, the LungMAP
Consortium. LungMAP: The Molecular Atlas of Lung Development
Program. Am J Physiol Lung Cell Mol Physiol. 2017;313(5):L733–L740.

8. Ramsay J, Silverman BW, Vol. 9. Functional Data Analysis; 2005, p. 428.
9. Wang J-L, Chiou J-M, Mueller H-G. Review of Functional Data Analysis.

Ann Rev Stat Appl. 2016;3:257–95.
10. Rosa BA, Zhang J, Major IT, Qin W, Chen J. Optimal timepoint sampling

in high-throughput gene expression experiments. Bioinformatics.
2012;28(21):2773–81.

11. Singh R, Palmer N, Gifford D, Berger B, Bar-Joseph Z. ICML ’05
Proceedings of the 22nd international conference on Machine learning.
Bonn; 2005. p. 832–39 https://doi.org/10.1145/1102351.1102456.

12. Kleyman M, Sefer E, Nicola T, Espinoza C, Chhabra D, Hagood JS,
Kaminski N, Ambalavanan N, Bar-Joseph Z. Selecting the most
appropriate time points to profile in high-throughput studies. eLife.
2017;6:e18541.

13. Tucker JD, Wu W, Srivastava A. Generative models for functional data
using phase and amplitude separation. Comput Stat Data Anal. 2013;61:
50–66.

14. Ji H, Muller H. Optimal designs for longitudinal and functional data. J R
Stat Soc Ser B Stat Methodol. 2017;79(3):859–76.

15. Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V,
Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. The evening
complex coordinates environmental and endogenous signals in
Arabidopsis. Nat Plants. 2017;3:17087.

16. Tuddenham RD, Snyder MM. Physical growth of California boys and girls
from birth to eighteen years. Publ Child Dev Univ Calif. 1954;1(2):183–364.

17. Hunt R, Causton DR, Shipley B, Askew AP. A modern tool for classical
plant growth analysis. Ann Bot. 2002;90(4):485–8.

18. Cuesta-Albertos JA, Febrero-Bande M, Oviedo de la Fuente M. The
ddg-classifier in the functional setting. Test. 2016;26:119–42.

19. Li J, Cuesta-Albertos JA, Liu RY. DD-classifier: Nonparametric classification
procedure based on DD-plot. J Am Stat Assoc. 2012;107(498):737–53.

20. Leek JT, Monsen E, Dabney AR, Storey JD. Edge: extraction and analysis
of differential gene expression. Bioinformatics. 2006;22(4):507–8.

21. R J, de Boor C. A Practical Guide to Splines,. Math Comput.
1980;34(149):325.

https://doi.org/10.1186/s12859-019-2717-5
https://doi.org/10.1145/1102351.1102456

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	NITPicker can select time points that describe the shape of a curve
	NITPicker can select time points that distinguish between experimental and control conditions
	NITPicker can avoid time points with noisy values

	Discussion
	Conclusion
	Methods
	Defining good time points
	Defining a non-parametric probability density function of curves
	NITPicker algorithm

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

