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1  | INTRODUC TION

It is important for the general public to gain an appreciation and 

deeper understanding of the scientific process. However, outreach 

activities may take valuable time away from research. Citizen science 

provides a way for researchers to engage the public while collecting 

valuable scientific data that can augment their research.

Citizen science campaigns have been widely used for obser-

vational studies, such as the Big Garden Birdwatch (Devictor, 

Whittaker, & Beltrame, 2010). Alternatively, citizen science projects 

can be arranged so that participants are given specific microtasks, 

such as labeling telescope images (Fortson et al., 2011; Simpson, 

Page, & De Roure, 2014) or folding proteins (Cooper et al., 2010). 

Recently, the British Broadcasting Company (BBC) Terrific Scientific 

program launched a series of mass participation science experiments 

to get primary school students to collect data of scientific value. One 

example of the data collected as part of this project relates to the 

behavior of children, including their sleep patterns before and after 

daylight savings time and the influence of exercise on their attention 

spans. In another case, the data collected were related to schools, 
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Abstract

Plants modulate their growth rates based on the environmental signals; however, it is 

difficult to experimentally test how natural temperature and light fluctuations affect 

growth, since realistic outdoor environments are difficult to replicate in controlled 

laboratory conditions, and it is expensive to conduct experiments in many environ-

mentally diverse regions. In partnership with BBC Terrific Scientific, over 50 primary 

schools from around the UK grew spring onions outside of hydroponic growth cham-

bers that they constructed. Over 2 weeks, students measured the height of the 

spring onions daily, while the hourly temperature and visibility data were determined 

for each school based on the UK Meteorological Office data. This rich time series 

data allowed us to model how plants integrate temperature and light signals to deter-

mine how much to grow, using techniques from functional data analysis. We deter-

mined that under nutrient- poor hydroponic conditions, growth of spring onion is 

sensitive to even a few degrees change in temperature, and is most correlated with 

warm nighttime temperatures, high temperatures at the start of the experiment, and 

light exposure near the end of the experiment. We show that scientists can leverage 

schools to conduct experiments that leverage natural environmental variability to 

develop complex models of plant- environment interactions.

K E Y W O R D S

citizen science, functional regression, mass participatory experiment, onion, spring onion, 

temperature, time series
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with data such as the local tree density, water quality, and electricity 

usage being collected.

In this study, we conduct a mass participatory experiment in 

primary schools and show that the data can be utilized to gener-

ate hypothesis that are testable in controlled laboratory settings. In 

particular, we focus on how plants integrate environmental signals.

Plants have complex molecular pathways that integrate light and 

temperature signals, both in response to brief temperature perturba-

tions and in response to ambient temperature over longer time peri-

ods Nagano et al. (2019). In order for these molecular studies to have 

a direct impact on agricultural practice, we need to develop models 

to predict how temperature and light changes over time to influence 

crop growth. To build such a model, it is necessary to measure the 

growth under a wide range of natural environmental conditions, but 

data of this volume are difficult to access. For instance, researchers 

might only have access to data from sequential harvests on a small 

set of fields (Martre et al., 2018; Wu, Wang, Cheng, & Meng, 2016), 

and these fields might also be affected by confounding factors such 

as soil quality or plant pathogens. Alternatively, experiments can be 

performed under a large set of conditions in a controlled laboratory 

setting, but the conditions in growth chambers have difficulty mim-

icking natural temperature and light fluctuations. While there have 

been some attempts at developing growth chambers with more nat-

uralistic diurnal changes (i.e., sinusoidal, rather than step functions), 

these cannot yet capture the full diversity of temperature and light 

fluctuations in natural environments (Annunziata et al., 2017, 2018).

One possible solution is to collect plant growth measurements 

from members of the public from diverse geographic regions, via cit-

izen science.

We decided to team up with BBC Terrific Scientific to plan an 

experiment in schools to collect high- resolution data about growth 

of spring onion over time in diverse outdoor environments. Spring 

onions were a good candidate for the experiment because height 

of spring onion is straightforward to measure and there are only a 

few major suppliers in the United Kingdom. We chose to run the 

experiment in a low- nutrient hydroponic system to simplify the 

experimental protocol for the students thereby reducing experi-

mental error. Furthermore, there is some interest in developing 

hydroponic growth systems for onions to improve taste and yield, 

and to provide more sustainable farming solutions in countries that 

have a dearth of arable land, or for use in urban agriculture (Treftz 

& Omaye, 2016).

Our mass participatory investigation enabled us to gather 

growth data from a wide range of natural environments. We found 

that primary school students were able to provide data that were 

sufficiently reliable to enable us to develop predictive models that 

were later confirmed in controlled laboratory conditions.

The data collected by the primary school students were also of 

sufficient quality to make a number of biologically relevant predic-

tions, which are consistent with the literature and with follow- up 

laboratory observations. Specifically, warm temperatures through-

out the day are correlated with growth, with plants displaying a 

slightly elevated sensitivity to temperature at night. We also show 

that growth rates of spring onion throughout the time course are 

correlated with the temperature at earlier times during the time 

course.

2  | MATERIAL S AND METHODS

2.1 | Ethical guidance and informed consent

Since the project involved young children (9-  to 11- year olds) and 

the data were accessed through a partnership with the BBC Terrific 

Scientific Program, we sought approval from the University of 

Warwick Ethics Board. As part of the informed consent processes, 

teachers needed to acknowledge that the survey data might be used 

for research purposes and that it might take up to 40 min to fill in 

the survey. Since no data were collected about the students, it was 

determined that they did not require informed consent from their 

parents. Teachers were reminded to make sure that none of their 

students were allergic to spring onions and to monitor the students 

when they used scissors.

2.2 | Experiment performed by school children

Firstly, teachers recorded meta- data about the spring onions, 

such as their country of origin and expiration date, since we did 

not have the resources available to distribute spring onions to the 

schools. On the first day of the experiment, students used a string 

to measure the circumference of the spring onion at its thickest 

point. Then, they trimmed the roots of the spring onion to 1.5 cm 

and trimmed the height to 4.5 cm. They placed the spring onions 

in growth chambers they constructed from 200 ml transparent 

plastic cups, 30 ml water, cling film, and a rubber band. Tape or 

blu tack was used to ensure that the spring onions stood upright 

(see Figure 1a). It was recommended that the growth chambers 

would be placed on the top of plastic school lunch trays that are 

usually standardized across state schools (since different sur-

faces might reflect/absorb heat differently). These chambers 

were placed outside, along one of the walls of the school, and 

a compass was used to determine the orientation of the wall. 

Every day for 2 weeks (excluding weekends), students recorded 

the height of the spring onions, measuring from the base of the 

stem and recording the time of day the measurement was taken  

(see Figure 1b). If the spring onions bent (as they sometimes  

do near the end of the time course), students were asked to 

stretch out the spring onion prior to measuring it. Students re-

corded their spring onion heights on individual tables and these 

were collated and uploaded via Qualtrics survey software by their 

teacher.

In order to ensure that the protocol was presented in a way 

that was easy for 9-  to 11- year- old children to understand, we pro-

vided the BBC with the experimental protocol to translate into age- 

appropriate written material and develop into a short demonstrative 

film. In total, 571 spring onions were grown in 57 schools, across a 

wide geographic range—from islands in north- east and north- west 



     |  3BRESTOVITSKY and EZER

Scotland to the southern tip of England, as well as in schools in Wales 

and Northern Ireland (see Figure 1b).

2.3 | Data processing and quality control of spring 
onion growth data

First, we looked for potential anomalies in the data, which might 

suggest data quality issues that could arise from recording mistakes 

made by teachers and/or students.

Two schools reported that they started the experiments on 

weekends. We have discovered that some schools run a weekend 

science club, but this nevertheless means that the tables are difficult 

to interpret since we specified weekday measurements and assumed 

there would be at most five measurements a week. One school 

 reported that the expiration date was 13 days in the future, although 

it seems unlikely that supermarkets would stock spring onions with 

such far off expiration dates (other schools reported at most 5 days). 

This school was included in all the analysis, except when analyzing 

the affect of expiration date on spring onion growth.

There was one spring onion which was reported as being 25 cm, 

which is unrealistic growth in 2 weeks. An additional three spring on-

ions grew more than 20 cm, which would mean that they grew taller 

F IGURE  1 Set- up of mass participation science experiment. (a) Students set- up the growth controlled growth chambers for their spring 

onions from readily available materials. The goal of the project was to develop a model to predict the height of the spring onion using 

temperature and visibility measurements over time. (b) This map indicates the distribution of the UK weather stations and participating 

schools. (c) These histograms demonstrate the variability in average temperature, average visibility, and average spring onion height across 

the schools
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than the plastic cups; it is unclear whether the spring onions pulled off 

the cling film or stretched it, and this might affect their growth rate. 

We decided to include these spring onions regardless, especially since 

many of the models were trained on the school's median height values.

Moreover, there were 16 cases in which the spring onions were 

reported to have shrunk by more than 1 cm over the course of a single 

day. In one case, this was clearly caused by a typing mistake—a digit 

was missing. In all but three of the other cases, the height drop appears 

within the last 4 days of the time course, when the height of the spring 

onions are more difficult to measure accurately due to bending of the 

spring onion stem. Fortunately, there were not more than two spring 

onions reported to have shrunk in any school, suggesting that this was 

not consistent error in a specific school. The measurement that ap-

peared to be a typing error was replaced by a missing value. The other 

spring onions that were reported as shrinking were included in most of 

the downstream analysis. Since we only fit the fully functional regres-

sion model to the median heights this was not an issue, as the median 

heights were all monotonically increasing over time.

There were also data quality issues related to reporting of coun-

try of origin, since there is no standardized way of reporting this 

across supermarkets. For instance, some schools reported that the 

spring onions were from “Scotland,” the “UK,” and the “EU”. Since 

Scotland is in the United Kingdom which is currently still in the 

European Union, it could be that all these spring onions are from the 

same source, but this is not necessarily true. We decided to group all 

the United Kingdom- based spring onions, and include the EU spring 

onions in the “other” category.

2.4 | Access and data processing of 
meteorological data

Using the UK Met Office DataPoint API, we wrote a script that 

downloaded and extracted the hourly temperature and visibility 

data from each Met Office weather station. To predict the tem-

perature and visibility at each school, we found the longitude and 

latitude coordinates that corresponded to the postal code of each 

school. We then interpolated between the weather stations using 

a thin plane spline regression with great circle distances, using the 

fields R package. An example of the interpolated temperatures is 

shown in Supporting Information Figure S7. Because the weather 

stations are not evenly distributed across the UK, the temperature 

predictions for schools in some geographic regions might be more 

reliable than others.

2.5 | Statistical approaches

Traditional statistics methods aim to predict a scalar (or categorical)- 

dependent variable, based on a set of scalar (or categorical)- 

independent variables. In the present case, this would correspond 

to predicting the final height of the spring onion based on the mini-

mum/maximum temperature, the average visibility, etc. However, 

some of the data we collected are inherently functional, for instance, 

the temperature as a function of time. It is possible to summarize 

this functional data by a scalar—for instance, taking the average 

temperature over the time course—but this loses the richness of the 

data. Functional regression produces predictive models of either 

scalars (final height of the spring onion) or functions (height of the 

spring onion over time) from a set of input functions (temperature 

or visibility over time). In this paper, we apply functional regression 

approaches (function- to- scalar or function- to- function regression) 

to predict the final spring onion height and the growth rates of the 

spring onions, respectively.

2.5.1 | Scalar- to- scalar and function- to- 
scalar models

Since there were significant batch effects, and there were different 

numbers of spring onions per school, we fit all models to the median 

spring onion height per school. We wished to select the most predic-

tive model and to ensure that we were not overfitting our data, so 

our selection criteria were the model that minimized the leave- one- 

out cross- validation score.

As a baseline, we calculated the leave- one- out cross- validation 

score in the case where we assigned each spring onion to the mean 

height.

Next, we looked at six possible input variables: the average tem-

perature or visibility over the 2- week time course (scalar), the aver-

age temperature or visibility over a day (function over 24 hr), and the 

temperature or visibility over the entire time course (function over 

360 hr). All models that considered one or two of these variables 

were considered. For the functional variables, two important pre- 

processing steps were performed. Firstly, a z- score was calculated 

at each time point, so that the average value and variability at each 

time point did not influence the outcome:

where x∗
t,i

 is the z- score for the data point x
t,i (which could be tem-

perature or visibility) at time point t for school i.

Secondly, we needed to transform the tabular data into a func-

tion, which was done with a cubic B- spline. (The scalar variables were 

expressed at constant functions over time, so that the same code 

could be used to calculate all values). After these pre- processing 

steps, we tried to find α and β to fit the following form:

where y is the median spring onion height per school, x*(t) is a func-

tion of the z- scores of temperature or visibility over time, α is the 

offset, and β is the weight. In the case when we looked at two vari-

ables at once:

where x∗
2
(s) is the second variable under consideration over time, 

and β2(s) is the associated weight. α and βs were selected to mini-

mize the least square error with an additional penalty term for 

x
∗

t,i
=

xt,i−mean(xt)

stdev(xt)

y=�+∫ �(t)x∗(t)dt

y=�+∫ �1(t)x
∗

1
(t)dt+∫ �2(s)x

∗

2
(s)ds



     |  5BRESTOVITSKY and EZER

smoothness of the βs. Specifically, the penalty term pc was given 

by:

λ is another free parameter and it was varied from 2–12 in incre-

ments of 0.1, and the value that minimized the leave- one- out cross- 

validation error was selected. Note that, we also needed to choose 

a basis to represent β(t). For the temperature and visibility over the 

entire time course, we chose a B- spline of degree 5, which was cho-

sen since we expect that the weights will be spatially localized, and 

we needed a sufficiently high order B- spline so that we could take 

the second derivative in order to calculate the penalty function. 

For the βs that provide a weight for the average temperature and 

light over the course of the day, we would like the value at either 

end of the function (which both represent midnight) to have the 

same value and slope, so we parameterize these in terms of a basis 

of Fourier functions with frequencies which are multiples of (one 

day)−1. For this entire analysis, we rely heavily on the fda R package 

(Ramsay, Hooker, & Graves, 2009; Ramsay & Silverman, 2005).

2.5.2 | Function- to- function model

To analyze the growth of the spring onions, we calculated the me-

dian height of the spring onions for each school, excluding schools 

that began their experiments on weekends. We fit the curves with 

monotonic cubic splines using the fda package and calculated the 

rate of growth over time from the fitted cubic spline (i.e., the first 

derivative of the monotonic cubic spline).

We used the FDboost package in R (Brockhaus, Melcher, Leisch, 

& Greven, 2017; Brockhaus, Scheipl, Hothorn, & Greven, 2015) to fit 

a model of the following form:

where the functional response variable y(t) is the rate of spring onion 

growth over time in each school. An important note in this model is 

that s is always less than t, so only past temperature can inform the 

current growth rate.

Children measured the spring onion heights whenever it was most 

convenient, so that this project would interfere with the school day as 

little as possible. This means that the time of day of data collection was 

not uniform across schools, and could even vary day- by- day within a 

school. Functional regression helps us handle the uneven time point 

sampling, because we can find the growth rate of the spring onions as 

a function of the number of hours since experimental set-up.

2.6 | Experiments performed in controlled 
growth chambers

The number of spring onions that could be tested in the laboratory 

was limited by the large amount of physical space they occupy, their 

expense compared to seeds, and the length of time for setting up 

each independent growth chamber. The latter variable is important, 

because we want to minimize the length of time between setting up 

the first and last spring onion to reduce variability arising from the 

amount of time the spring onions sat on the counter, rather than in 

the growth chamber. Even though we did not have the facilities to 

conduct large- scale experiments of spring onion growth, we were 

still able to collect preliminary data that helped us to interpret the 

results acquired by the mass participation science experiment.

In order to test the protocol, we grew 63 supermarket- purchased 

spring onions from eight batches (bags or bunches) that were se-

lected from three different supermarket chains. These were grown in 

long- day (LD) conditions (12 hr day, 12 hr night) at a constant 12°C. 

One of the supermarkets (two batches) only had spring onions that 

were pre- washed and had trimmed roots, while the other batches 

were muddy and had roots of various sizes. To test the effect of root 

trimming, we trimmed half of the roots from each of the four batches 

that came from supermarket 3, but this had no effect on spring onion 

growth. The circumferences of spring onion were also measured.

After the mass participation science experiment was over, we 

grew an additional 66 spring onions to test some of the predic-

tions made by the model. The spring onions came from 10 batches 

from the same supermarket, and each bunch was evenly distributed 

across the three experimental conditions. All the three experimental 

conditions were under LD conditions (note that in the UK the day 

length in March is approximately 12 hr, in agreement with LD con-

ditions): the control had 10°C nighttime temperatures and 16°C day 

temperatures, the “warm day” conditions were at 10°C and 20°C, 

and the “warm night” conditions were at 14°C and 16°C. It is import-

ant to have colder nighttime temperatures than daytime tempera-

tures in order to test realistic conditions. However, this also results 

in an additional confounding factor—we change both the pattern of 

temperature change over time and the size of the gap between the 

daily low and high, which might also affect growth.

In all cases, the spring onions were measured after 2 weeks.

3  | RESULTS

3.1 | School children can provide spring onion 
growth data of sufficient quality for modeling

Fifty- seven schools throughout the United Kingdom grew spring on-

ions outside for a period of 2 weeks as part of the experiment, with an 

average of about 10 replicates per school. The participating schools 

were widely distributed across the UK, included some in Northern 

Ireland, Wales, and Scotland (including the Shetland Islands and the 

Outer Hebrides) (Figure 1b). For the duration of the 2 weeks that the 

students grew the spring onions outside their school, we collected 

hourly temperature and visibility data from the MET Office weather 

stations and interpolated this to infer the hourly temperature and 

visibility at each school based on their supplied postcode.

There was a wide spread of temperatures, visibility measure-

ments, and spring onion heights (Figure 1c), with a clear correlation 

between mean temperature and spring onion height. The same 

was not true for average visibility (an indicator of light) (Figure 2a), 

pc=10� ∫
���(�(t))

�t��
dt

y(t)=�+∫
t

0

�1(s, t)x1(s)ds+∫
t

0

�2(s, t)x2(s)ds
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although this might be because the average temperature and 

 visibility are not independent, with low visibility associated with 

both extreme high and low temperatures (Supporting Information 

Figure S1).

Prior to the start of the experiment, we tested whether spring 

onions purchased at different supermarkets had different growth 

rates under identical conditions and discovered that final spring 

onion heights were no more different than that would be expected 

by chance alone (Supporting Information Figure S2). Similarly, the 

preliminary analysis suggested that the initial circumference of the 

onions was not correlated with growth (Supporting Information 

Figure S3). For this reason, we let the teachers purchase spring on-

ions from their local supermarkets.

Nevertheless, this preliminary result does not provide direct 

information regarding how spring onions from different sources or 

with different widths grow under natural conditions. We asked the 

F IGURE  2 Functional regression of spring onion growth. (a) The heights spring onion measured by each student are shown in relation to 

the average temperature and average visibility observed at each school. (b) Each school (represented by each line) has a varied temperature 

and visibility profile over time. This shows the average temperature and visibility at each our of the day (top) and over the complete 2- week 

experiment (bottom). (c) These are the results of the model that was most predictive of spring onion heights. (d) The form of the function 

and the associated weights are shown here. In this model, x1(t) corresponds to the average temperature at the time t during the day, and x2(t) 

corresponds to visibility at time t over the 2 weeks
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schools to record various information such as the country of origin 

of the spring onions, the expiration date, and the circumference. 

With the exception of one school that did not report realistic spring 

onion circumferences, and four children who we presume forgot to 

include decimal places in their results, the students appeared to have 

measured the spring onion circumferences very accurately, produc-

ing a distribution of circumferences which was almost identical to 

the distribution we measured, suggesting that the students can take 

accurate measurements (Supporting Information Figure S3C). The 

students also reported no correlation between circumference and 

final spring onion heights, as expected.

The teacher's qualitative analysis of the amount of direct sunlight 

seemed to be slightly correlated with final spring onion height, but 

this effect disappears after controlling for temperature (Supporting 

Information Figure S4). However, this does suggest that schools in 

warmer areas also placed the spring onions in sunnier places, which 

might have exaggerated the temperature differences due to the 

greenhouse effect.

Other variables were also recorded by the schools, such as the 

country of origin of the spring onions, their expiration date, and the 

cardinal direction of the growth chambers in relation to the school 

building. Often the available data about the possible confounders 

was too sparse for a thorough mathematical treatment, but quali-

tatively they did not seem to have a substantial effect (Supporting 

Information Figure S5). These results suggest that the data were 

of sufficient quality for applying a functional regression approach. 

However, the results also highlight the importance of testing the 

predictions made by these models in a controlled laboratory setting.

3.2 | Spring onion height is correlated 
with temperature and visibility in a time- 
dependent manner

Although there is a clear correlation between average temperature 

and spring onion height, it is unclear whether this effect is time- 

dependent (Figure 2a,b and Supporting Information Figure S5). 

Furthermore, studies on model organisms suggest that plants sense 

their environments at different time scales (Cortijo et al., 2017; Jung 

et al., 2016)—for instance, plants have different molecular mecha-

nisms for sensing short- term temperature fluctuations (on the scale 

of minutes) and longer- term temperature changes (on the scale of 

days).

For this reason, we considered temperature and visibility, over 

three different temporal resolutions—their average value across 

the entire time course (constant basis), their average value at each 

hour of the day (Fourier basis), and their value over the 2- week time 

course (B- spline basis). This meant that there were six total input 

variables, and the four non- constant input functions are shown in 

Figure 2b for each school. We considered all models that included up 

to two of these variables, and selected the model that was the best 

at predicting the height of the spring onion as determined by cross- 

validation to prevent overfitting (Supporting Information Figure S6). 

The most predictive model was the one that included the average 

temperature over the course of a day and visibility over the entire 

time course, which substantially improved on the baseline cross- 

validation error (244.00, as opposed to the 306.29 baseline) and had 

a Pearson's correlation of 0.52 (Figure 2c).

The weights attributed to the functional regression model sug-

gest that nighttime temperature and the visibility at the end of the 

time course are the most correlated with the final spring onion 

height (Figure 2d). It is also important to note that temperature 

throughout the time course appeared to be positively correlated 

with the final height of the spring onion. Furthermore, the differ-

ences between the values of the weights in the night and during 

the day were small.

Among the models that only include one variable, the average 

temperature at each hour of the day is the most predictive (OCV 

of 245.46 and Pearson's correlation of 0.48). The temperature over 

the 2- week period is most strongly correlated with the final spring 

height (0.50 alone and 0.59 when combined with two- week visibil-

ity), but these models might over- fit, as they produce worse results 

when cross- validation is used to evaluate the models (see Supporting 

Information Table S1 for all comparisons of cross- validation errors 

and Pearson's correlation).

3.3 | Spring onions exhibit memory of temperature

The functional regression analysis suggests that nighttime 
 temperatures are predictive of the final spring onion height, but 

it is uncertain how early temperature affects spring onion growth 

rates over time. For instance, it is possible that early temperature 

spikes cause an early growth spurt in spring onion growths, but 

that growth rates become more uniform later in the time course. 

Alternatively, it may be that early temperature levels leave a last-

ing effect on the growth rates of spring onions throughout the 

time course (see Figure 3a).

Qualitatively, it appears that the spring onions have a relatively 

constant rate of growth throughout the time course, suggesting 

a model more similar to the second alternative presented above 

(see Figure 3b). To explore this more quantitatively, we fit a fully 

functional model to predict how temperature and visibility affect 

spring onion growth rates over time, which demonstrates that 

early temperature is correlated with the growth rates through-

out the time course (see Figure 3c). Visibility barely had an effect 

on the measured growth rate, which might suggest that the cor-

relation between visibility at the end of the time course and final 

spring onion height is a spurious effect (see Figure 3c). Overall, 

these results suggest that the spring onions have a memory of 

early temperatures that influences their growth rates for the dura-

tion of the experiment.

3.4 | Experiments in controlled laboratory 
conditions are consistent with modeling output

While our previous experiments demonstrated that the children 

could accurately measure the circumference of the spring onion 
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(Figure 4a), we needed additional experiments to test whether the 

2- week long experiments provided reasonable results that could be 

replicated in controlled growth chambers.

Our models made a number of predictions, including that the 

height of the spring onion is affected by temperature throughout 

the day, but that it is slightly more affected by temperature at night 

(see Figure 2d). This model also predicts that the spring onions are 

sensitive to small changes in temperature—just a few degrees. For 

instance, the average temperature only varied by 8 degrees across 

the schools, but we still observed height differences among the 

spring onions (see Figure 2a).

This is in contrast to other possible models of how plants might 

integrate temperature to determine how much to grow. For instance, 

one might have supposed that maximal daytime temperature is 

the primary driver of spring onion growth. Alternatively, growth 

of spring onion might be rate- limited by the lowest temperature 

(Figure 4b). We can distinguish between these hypotheses and the 

one presented by the model by growing the spring onion in condi-

tions that mimic the average school temperatures. Then, we can test 

the effect of elevating the nighttime temperature by 4°C or the day-

time temperature by 4°C.

We find that elevating nighttime or daytime temperatures causes 

a significant increase in spring onion height (both p < 0.0001 with a 

one- tailed t test), so we can conclude that spring onions are sensitive 

to small temperature changes and that they do not exclusively depend 

on the daily maximum or minimum temperatures. Furthermore, the 

F IGURE  3 Fully functional regression suggests memory of early temperatures. (a) Suppose that there are two schools—one with 

an early burst of temperature and another with a late burst of temperature (i). One could imagine a growth spurt near the time where 

the temperature was elevated or one could image that the early temperature would affect the rate of growth throughout the 2- week 

period. These types of patterns can be observed by looking at the weight matrix of a fully functional regression model (ii). In the heatmap 

illustrating the beta- weights, the x- axis represents the time in relation to the growth rate and the y- axis represents the time in relation to 

the temperature. This forms a triangle, because temperatures at previous time points are potentially able to influence future growth rates, 

but the reverse is not true. (b) Qualitatively, the growth curves for the spring onions suggest near- constant growth rates throughout the 

time course. (c) The fully functional model confirms that early temperatures are important in determining the growth rate for the entire time 

course
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spring onions grown under the warm night condition were on aver-

age slightly taller than those grown in the warm day conditions, but 

this was not statistically significant, although it is consistent with the 

model. Furthermore, the model in Figure 2d suggests that the effect 

size is very small, so we would not expect to measure an observable 

difference given our limited sample size.

4  | DISCUSSION

This study demonstrated that primary school students are capable 

of collecting rich datasets about plant growth that can be useful for 

modeling how plants integrate temperature and light signals. We de-

termined that under low- nutrient hydroponic conditions, growth of 

spring onion is proportional to temperature, particularly nighttime 

temperature (although the effect size is expected to be very small), 

which is consistent with the literature. Early in the time course, the 

growth rate depends on stored energy, as the students had cut off 

the majority of the green portion of the plant, but over time growth 

depends increasingly on photosynthesis. Finally, plants primarily 

grow at night, and the recently characterized PHYB- EC- PIF4 path-

way seems to measure and respond to nighttime temperatures (Ezer 

et al., 2017; Jung et al., 2016; Legris et al., 2016).

Most of the molecular pathways describing the impact of light 

and temperature integration on growth have been performed 

on the dicot model organism Arabidopsis thaliana (Hayes et al., 

2016; Jung et al., 2016; Legris et al., 2016; Pedmale et al., 2016), 

but it is important to determine whether these results extend to 

 monocots, as these include some of the most important crops 

such as wheat, corn, and rice. Furthermore, our follow- up ex-

periments demonstrate that spring onion height can be affected  

by a 4 degree change in temperature during part of the day, 

F IGURE  4 Experimental outcomes. (a) Primary school students produce a distribution of spring onion circumferences that is similar to 

the one measured by the authors. (b) An experimental set- up was designed to help distinguish between a number of alternative hypotheses. 

The model based on the primary school data predicts the latter hypothesis. (c) The experimental results confirm the model

(a) (b)

(c)
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demonstrating that spring onions have a high degree of tempera-

ture sensitivity.

Due to logistical constraints and the short term of the exper-

iment, spring onions were grown from cuttings rather than from 

seeds, and they were grown in water rather than soil. In many ways 

this may be very different from how onions are usually grown in agri-

cultural settings; however, there is increased interest in growing on-

ions using hydroponics, either to enable more food to be produced 

in non- arable regions, or to have finer- grain control of nutrient up-

take and taste (Treftz & Omaye, 2016). In future iterations of this 

project, it would be best if it was possible to distribute seeds and 

soil to schools, or at the very least distribute spring onions to the 

schools from the same suppliers. In addition, it would have been use-

ful to record the temperatures within the growth chambers, as these 

might differ from the temperatures reported by the MET office due 

to proximity to the ground and the heat absorption properties of the 

materials of the chamber. However, in every citizen science project 

it is important for the research project to be accessible and simple, 

in order to recruit as many participants as possible, even though this 

sometimes has a detrimental effect on the quality of the data that 

can be collected. We think we struck a balance that enabled us to 

get a large number of schools to volunteer to participate in the re-

search project, while also controlling for as many factors as were 

feasible. Critically, laboratory experiments partially confirmed the 

predictions made by the model trained on the data collected by the 

students.

From an outreach perspective, this project was successful at pro-

viding an educational science activity to schools that are located in 

remote locations, where it would normally be difficult for scientists 

to engage with schools. Furthermore, we demonstrated that the 

data were of sufficient quality for fitting a growth model suggesting 

that this is a promising way to merge outreach and research goals.
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