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The role of developing student expertise in scientiic inquiry often falls on laboratory 
work. Domin’s taxonomy of laboratory instruction styles has been expanded with more 
detailed scrutiny of inquiry instruction. The most common form of laboratory teaching 
is the conirmation style where students follow recipes to reproduce known results in a 
straight-forward and resource-eicient manner. This style achieves few pedagogic goals of 
laboratory education and inquiry-based instruction is better suited to the acquisition of the 
skills, methodology, and procedures of scientiic inquiry. 

A guided inquiry instruction style improves on the conirmation style by reinforcing the 
point of the experimental work, even though students will still to follow-the-recipe where 
they can. Tutor support is needed when students apply what they know about the scientiic 
method to an experiment design task. In the absence of support, students are unable to 
engage in scientiic inquiry. With extensive support even novices can design and carry 
out good experiment work. Advice for and examples of the implementation of inquiry are 
provided to help the reader do this in their own teaching.

Developing student expertise 

in scientiic inquiry27
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Inluence of Professor Tina Overton

Professor Tina Overton has been a hugely signiicant inluence on all of my teaching fellow 

life. I have drawn much inspiration from her work on problem-based learning (Overton, 2001; 

2007) and the indings about the usefulness of diferent aspects of a chemistry degree course 

(Hanson and Overton, 2010). She was the leader of the irst workshop on educational research 

I attended, and she is an inspiration and a role model for all chemistry teaching specialists, not 

least Yorkshire-based female university teachers like me. 
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Introduction

The role of developing chemistry students’ inquiry skills usually inds a place as part of the laboratory 
curriculum. Laboratory work is considered to be a central component of studying chemistry. It can 
serve many purposes including illustrating concepts and phenomena, teaching experimental skills, 
and developing expertise in inquiry (Kirschner, 1992; Hofstein and Lunetta, 2004; Reid and Shah, 2007). 
Historically, laboratory teaching involved an investigative approach giving experience of systematic 
research (Hofstein and Lunetta, 1982; Reid and Shah, 2007) mirroring the apprenticeship served by a PhD 
student training to be an experimental scientist (Stewart and Lagowski, 2003). In more recent years, the 
emphasis in laboratory teaching has been put on the chemistry being performed (Meester and Maskill, 
1995, quoted in Reid and Shah, 2007). 

Classiication of laboratory activities

Diferent authors have used the same terms to describe very diferent laboratory activities. Domin’s (1999) 
taxonomy of laboratory teaching styles (Table 1) provides some clarity through a classiication of activities 
based on approach, procedure, and outcome. Fay et al. (2007) and Buck et al. (2008) have added to this 
by breaking down the inquiry domain into diferent levels of inquiry (Table 2). There is some overlap 
between the two classifcations: Domin’s expository style matches the conirmation style (inquiry level 0), 
and his inquiry style encompasses structured to authentic inquiry (inquiry levels 1–3). The discovery style 
can also be thought of as guided inquiry (inquiry level 1) because the classiication in Table 2 does not 
consider whether the outcome has been predetermined or not. Authentic inquiry, inquiry level 3 is seen 
in scientiic research where theory is used to develop experiments that allow development of new theory. 
This chapter uses the descriptive terms from Tables 1 and 2 to describe diferent laboratory activities. 

Table 1: Taxonomy of laboratory instruction styles (Domin, 1999)

Outcome Approach Procedure

Expository Predetermined Deductive† Given

Inquiry Unknown Inductive‡ Student generated

Discovery Predetermined Inductive Given

Problem-based Predetermined Deductive Student generated
 †Deductive approach: students use specific examples of a phenomenon to illustrate an underlying principle. 

‡Inductive approach: students develop an understanding of an underlying principle by studying a specific example 

of a phenomenon.

Table 2: A classiication of experiment by level and type of inquiry (Fay et al., 2007; Buck et al., 2008) 

based on what is () and is not () provided to students

Level
Problem/ 

question

Theory/ 

background

Procedure/ 

design

Analysis 

Protocol

Communication 

format
 Conclusions

0: Conirmation      

1: Structured Inquiry      

1: Guided Inquiry      

2: Open Inquiry      

3: Authentic Inquiry      
 



Teaching Chemistry in Higher Education  | 393

Developing student expertise in scientiic inquiry

The conirmation instruction style

The conirmation or expository instruction style, inquiry level 0, is also called veriication, recipe-following, 
or cook-book work. These terms describe activities where students follow detailed instructions to practice 
laboratory techniques and reproduce theoretical phenomena taught in lectures. The conirmation style 
presents the laboratory as being subservient to theory and science as “a body of information which is 
(and can be) veriied and certain” (Kirschner, 1992). In conirmation laboratories, students are typically not 
given the opportunity to develop expertise in scientiic inquiry. Criticisms of the conirmation style are 
not new (e.g. Wham, 1977) and almost all papers written about this style highlight its laws. The published 
criticisms include the following:

•	 Scientiic inquiry is a complex procedure and the principles of the scientiic method cannot 
be learned “by osmosis”, students need to be taught how it is done (Garratt and Tomlinson, 
2001); 

•	 Applying set algorithms to solve problems is not really problem solving (Bodner, 2003); 
•	 “Critical, independent, creative thinking is rarely expected or encouraged” or possible 

(Stewart and Lagowski, 2003);
•	 Students learn to ask “what is the answer supposed to be?” rather than “what is the answer?” 

(Allen et al., 1986);
•	 This type of practical often leads to “boredom and apathy towards scientiic work” (Kirschner, 

1992);
•	 Exercises can be performed with little preparation and engagement by students (Domin, 

1999; 2007); 
•	 The goals the students have for their laboratory work (inishing early, avoiding mistakes) are 

diferent to the pedagogic aims and intended learning outcomes of the work (DeKorver and 
Towns, 2015) hence these are not achieved (Hofstein and Lunetta, 2004; Abraham, 2011);

•	 Students do the majority of their learning after the practical session when they set about 
completing post-laboratory assignments (Domin, 2007). 

To sum up, conirmation exercises require low levels of cognitive engagement. Students are not involved 
in experiment planning or design so the laboratory is an unrealistic portrayal of scientiic inquiry. There 
are low levels of student engagement, and little creative, critical or independent thinking is required. 
Relatively little learning occurs, because students spend their time determining whether they have the 
correct answer instead of thinking more deeply about what they are doing. The work lacks relevance to 
real life. Nonetheless, the conirmation style of laboratory teaching persists. 

Some educators have pragmatic reasons for adopting the conirmation instruction style which are rooted 
in predictability. Where a procedure and outcome is known in advance, the practical exercise is easy to 
plan for and can make the most of available resources. Inquiry-style work is inherently less predictable 
and activities can be limited by the availability of equipment or chemicals (Seery et al., 2019; Tsaparlis 
and Gorezi, 2007). Inquiry-style work also needs greater teaching support compared to conirmation 
instruction (between 2–10 students per instructor (Tsarparlis and Gorezi, 2007; Keller and Kendal, 2017) 
compared to 40 students per class (Cheung, 2011)). These factors can make large enough barriers to 
implementation to dissuade teachers from inquiry laboratories (Cheung, 2011).

Some educators have pedagogic reasons for adopting the conirmation style. These are rooted in a 
philosophy of teaching that considers the purpose of practical work is to illustrate chemistry learned in 
class; that practical work should be subservient to learning scientiic theory. Students learn less factual 
(chemistry) knowledge when given tasks at higher levels of inquiry (Xu and Talanquer, 2013). The high 
level of cognitive load required by novices operating at higher levels of inquiry impedes learning of 
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concepts and they can struggle to apply knowledge outside of the context of the inquiry or problem 
(Kirschner et al., 2006). 

Educators acknowledging the laws in the conirmation style have tried diferent strategies to improve on 
it. One approach is to use social interaction to enhance learning in laboratories, by embedding questions in 
the laboratory instructions (Cox and Junkin, 2002) or using an argument-driven inquiry (ADI) instructional 
model involving critique and peer-feedback of data-interpretation (Walker et al., 2011). Another approach 
is to reduce the high cognitive load associated with laboratory work (Johnstone et al., 1994; Kirschner 
et al., 2006; Reid and Shah, 2007; Reid, 2008) for example through carefully planned prelaboratory tasks 
(see Agustian and Seery, 2017, for a review), dedicated skills enhancement sessions (Sedwick et al., 2018), 
or experimental seminars for discussion, comparison, reasoning and modelling of results (Kirschner, 
1992). Recontextualising knowledge where a subject is deeply fragmented is diicult (Luckett, 2009) and 
reducing the cognitive load associated with recontextualisation can be achieved when each exercise is 
presented in the same way (cf. Hall and Vardar-Ulu, 2013). However, reducing the cognitive load does not 
prevent a typical student reverting to recipe-following where it is the quickest way of completing set tasks 
(DeKorver and Towns, 2015). 

Alternatives to the conirmation instruction style

The nature of the activities, the expectations of those involved, and the nature of the assessment all 
impact on the learning environment in the laboratory (Hofstein and Lunetta, 2004) and learning a process 
like the scientiic method is best done through practice (Abraham, 2011). “To change the experience, you 

don’t need to change the experiment, just what you do with it” (quoted in Reid and Shah, 2007). For example, 
conirmation exercises can be reworked as problem-based or guided inquiry tasks (see for example 
McGarvey, 2004; Allen et al., 1986; Mohrig et al., 2007). Problem-based learning (PBL) is a subset of context-
based learning in which learning occurs through the solving of a problem (Smith, 2012; Overton, 2007). 
Students plan an experiment in order to solve the problem and learn about an aspect of the experiment 
(McGarvey, 2004) and they engage better in PBL mini-projects than in conirmation laboratory classes (Mc 
Donnell et al., 2007). As noted above, downside to this style is that the learning can be so entwined with 
the context or problem that students struggle to apply the ideas in a diferent context (Kirschner et al., 
2006).

Inquiry-based learning provides opportunities for students to engage meaningfully in scientiic 
investigation (Hofstein and Lunetta, 2004). Students can “discover” and explore a phenomenon for 
themselves through laboratory work (Albright and Beussman, 2017; Bodner et al., 1998; Kulevich et al., 
2014) with lectures on principles occurring afterwards (Abraham, 2011; Allen et al., 1986). Resources 
are easier to plan for where procedures are given or predictable (Seery et al., 2019) such as in lower 
levels of inquiry work. These exercises have better student outcomes and better student feedback than 
conirmation exercises (see for example Chatterjee et al., 2009; Sedwick et al., 2018). Spreading the inquiry 
over several weeks allows time for risk assessment and chemical and equipment purchase enabling 
students to engage in authentic inquiry (Quattrucci, 2018). 

Scafolding the stages of inquiry guides students through unfamiliar processes, reducing cognitive load, 
helping students perform better (Morgan and Brooks, 2012), and enabling them to engage in inquiry 
work (Quattrucci, 2018). Scafolding is important because switching from conirmation exercises to 
inquiry work can be diicult for students (Hall and Vardar-Ulu, 2013; Bruck and Towns, 2009). Examples 
of scafolding include thoughtfully-designed simulations that guide student inquiry of a concept (Moore 
et al., 2013), and a prerequisite experiment design module for an inquiry laboratory module (Iimoto and 
Frederick, 2011). 



Teaching Chemistry in Higher Education  | 395

Developing student expertise in scientiic inquiry

Methods

The university where I work has a strong research identity which shapes its teaching. The expectation is 
that students will end their third year laboratory modules “research-ready” and equipped to undertake a 
masters-level research project. In the irst and second year, students on all chemistry degree programmes 
follow a programme of conirmation exercises with little in the way of open-ended experiments. They 
complete a set of exercises in inorganic, organic, or physical chemistry laboratories, before rotating 
onto the next. There are typically 50 students in the laboratory with one academic and two or three 
postgraduate laboratory teachers as well as a technician. This work is set in the second year inorganic 
chemistry laboratory where students spend ive weeks before moving on. 

My aim is to develop students’ inquiry skills so that they are ready for open-ended experimentation 
and research work in their inal year. A curriculum is made up of three distinct components: knowledge, 
skills, and subject-related attributes (Barnett, 2009; Barnett et al., 2001). I used this as a lens to analyse my 
laboratory curriculum and found that the emphasis fell strongly on chemistry knowledge. The majority of 
exercises allowed students to follow recipes without much thought. The skills and attributes students were 
developing focussed on survival and inishing the work in the allotted time rather than those desirable in 
a chemist. My laboratory course was, therefore, not helping students become “research-ready”. 

My work has looked at building inquiry into the teaching laboratory within and alongside the existing 
conirmation style of instruction, without large cost implications. My irst attempts tried experiments 
with unknown outcomes. Students were given written instructions but no extra support. The work they 
produced showed they were unable to experiment instead they were anticipating a correct answer and 
had not engaged with the inquiry. Hall and Vardar-Ulu (2013) noted this too and Bruck and Towns (2009) 
highlight the diiculty students have in changing from conirmation to inquiry work. This chapter descibes 
observations from two subsequent attempts. A third attempt introducing open inquiry is described in 
detail in Burnham (2013). These studies were granted ethical approval in accordance with institution 
guidelines. 

Presentation and Discussion of Findings 

Reworking conirmation exercises as guided inquiry

The irst step in introducing inquiry was to rework the conirmation exercises as structured/guided 
inquiry exercises. The exercises were structured around a research aim or question to set a scientiic 
tone to the work (see Table 4 for an example). The post-laboratory assignments focused on addressing 
the aim/question and asked for further work suggestions on how to continue. Questions were added 
at points in the experimental instructions so that students would think about the chemistry they were 
doing. Postgraduate laboratory teachers were tasked with engaging each student in a discussion about 
the chemistry at least once during the laboratory session. The changes also included consideration of 
the cognitive load of laboratory work. New pre-laboratory assignments focussed on the experiment 
procedure and only included questions about theory required to understand it. Each exercise had the 
same structure to minimise the cognitive load associated with unfamiliar layout. Finally, activities that 
were superluous to the research aim or question were removed to give students time to stop, think, and 
relect whilst doing their work during the laboratory class. It was hoped that the guided inquiry style of 
these laboratory classes would model the scientiic method and turn students into better experimenters. 
Evidence from diferent sources was analysed in a hermeneutic spiral in order to form a description of 
the student experience in the laboratory (Bodner, 2004; Shane, 2007). This showed that students did the 
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required tasks. The pre-laboratory assignment focus was conirmed as being on the laboratory work rather 
than the underlying chemistry. In the laboratory, students talked to each other about what they were 
doing and they also asked the postgraduate laboratory teachers for help with the tasks. Students thought 
about the chemistry when prompted by the questions in the text or discussion with postgraduates, and 
postgraduates helped the students understand the chemistry they were doing. The post-laboratory 
assignment helped students understand what they had done. When posed with the question “To what 

extent do you understand the investigation having done the prelaboratory, the laboratory, and the postlab?”, 
21% of respondents replied completely, 53% quite a lot and 26% somewhat or not really. 

The aim or research question highlighted to students the point of what they were doing and the majority 
understood the investigation by the end of the postlaboratory. Similarly to the conirmation exercises 
investigated by Domin (2007), the post-laboratory assignment helped the students understand what they 
had done. Including in-text questions and in-laboratory discussion helped the students understand what 
they were doing just as in the indings of Cox and Junkin (2002) and the question driven pedagogy of 
Teixeira et al., (2010). Students generally understood the point of what they were doing with respect to the 
aim of the work, but their understanding was less outside of set tasks. Some students were interested in the 
chemistry they were doing whereas others were satisied with cutting corners providing they completed 
the required activities. Learning was therefore prompted by the required activities, and despite the intent 
for students to engage in inquiry in the laboratory, the evidence suggested students were doing the 
laboratory rather than engaging with it. 

Table 3: Interventions introduced to develop student expertise in inquiry 

(* highlights approaches discussed in this chapter)

Intervention Description

Investigation into 
the products of a 
reaction

Interpretation of the outcome of the acetylation of ferrocene using 
spectroscopic data, written up as a report to allow for the unpredictable 

distribution of reaction products 

Investigation into 
the products of a 
reaction

Interpretation of the outcome of the acetylation of ferrocene using 
spectroscopic data, written up as a report to allow for the unpredictable 

distribution of reaction products 

Reworking 
conirmation 
exercises as guided 
inquiry (Student 
Experience project)*

A common structure given to each exercise. Addition of a chemical research 
aim/question. New prelaboratory activities focusing on experiment protocol. 

Addition of inlaboratory discussion prompted by questions in the method 
and postgraduate laboratory teachers. Postlaboratory assignment using 

the data from the laboratory to answer research aim/question. Superluous 
activities removed to free up time for thinking and relection

Introducing 
experiment design 
exercises (Kitchen 
Project, Be Creative 
Lab)*

Self-study task to learn about the scientiic method before designing a 
scientiic investigation

An open inquiry 
experiment

Students presented with the symptoms of an issue with a pro-cedure and 
asked to design an investigation into the origin of the issue. Additional 

experiment design workshop and extra facilitation provided during 
experimental work (for details see Burnham, 2013)
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A strong theme was that they found these laboratory classes stressful. The stress was linked to the need 
to complete set tasks within a given time frame. Students highlighted irritating behaviours in others 
that impeded their progress in the laboratory and they felt under pressure when doing write-ups. This 
stress was present even though, on average, 90% of students inished and left the laboratory before the 
end of the allotted time. The student researcher suggested that inishing early was viewed as luck, not 
as a reward for being eicient. Postgraduates who had done the previous course noted a more relaxed 
atmosphere in the reworked sessions, however, the extra time to complete the activities appeared to have 
gone unnoticed by the students. 

The focus on an aim or research question was successful in imparting to students an awareness of the 
chemical purpose of each exercise, but students in the reworked guided inquiry laboratory were still 
recipe-following. This is unsurprising since DeKorver and Towns (2015) highlight that students will adopt 
the most straightforward approach in the laboratory. Students wanted feedback that explains where 
marks were lost, suggesting they were more concerned with individual assessments than the inquiry 
theme of the course. 

Table 4: The guided inquiry scafolding used in an experiment by Armstrong et al. (2017)

Guided inquiry component Example

Research aim/question Determine the structure of [RuH
2
(CO)(PPh

3
)

3
] using IR and NMR 

spectroscopies.

Question in the experimental 
instructions

What is the purpose of the fourth equivalent of PPh
3
 in the reaction?

Questions scafolding the 
interpretation and discussion 
of results

Comment on the purity of your [RuH
2
(CO)(PPh

3
)

3
] using your IR and 

NMR spectra as evidence.

Conclusion and further work 
suggestion

In three sentences, write a brief conclusion. Include what you learned 
from your spectra, the structure you deduced and to what extent you 
were able to achieve the research aim.
Suggest a change that could be made to the dihydride complex that 
would move either the ν(MH) or the ν(CO) in the IR spectrum in order 
to tell deinitively which peak was which.

 
Introducing experiment design exercises 

A second step in introducing inquiry into the undergraduate course was to introduce experiment design 
exercises where students learned about the scientiic method prior to designing an investigation. Smith 
(2012) ascribes the passive nature of student learning in the laboratory to a lack of experiment planning 
and Hanson and Overton’s (2010) report showed that recent graduates would have liked to have done 
more experimental design during their degree course. Two interventions were trialled; the Kitchen 
Project and the Be Creative Laboratory (BCL). In the Kitchen Project, students were asked to learn about 
the scientiic method before attending a tutor-led discussion of it. After the discussion, they designed, 
executed, and reported on an investigation done in their kitchens (similar to Jones, 2011). In the BCL, 
students were asked to learn about the scientiic method and write a 500 word summary about it. They 
then attended a workshop in which they designed an investigation or experiment based on a real-life 
scenario; inding a use for fruit waste, designing a synthesis of a DMSO complex, investigating air-quality 
in Sheield, and investigating the impact of dimethicone entering the sewage waste stream. Students 
were tasked with writing a hypothesis, designing experiments to test it, and writing a risk assessment for 
their proposed investigation. 
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The purpose of the preparatory scientiic method tasks was to lead students into designing experiments 
without extra teaching. The research question “what is the efectiveness of the scientiic method task 

in planning and reporting an experiment?” was used to design a simple evaluation of the interventions. 
Data from the Kitchen Project showed that all students had engaged with the scientiic method task and 
subsequent small group discussion with a tutor. Data from the BCL indicated that students interpreted 
the scientiic method task in diferent ways. There was no correlation between the amount of the scientiic 
method task done and the quality of the Kitchen Project investigations. This suggests that the group 
discussion was useful in smoothing-out the diferences between those who were very well prepared and 
those who had achieved less. The varied interpretations of the scientiic method task in the BCL indicates 
that a tutor-facilitated discussion of the task is essential in ensuring all students have had the opportunity 
to meet the required learning outcomes before proceeding to an experiment design task. 

Tutor assistance was found to be necessary to help students identify experiment variables in both the 
Kitchen Project and the BCL. Experiment designs were not uniform in quality. Although some showed 
awareness of the importance of repetition of measurements to get accurate and precise results, others 
were much less structured. Students in the Kitchen Project had completed the guided inquiry laboratory 
programme the year before, but their need for help showed that the guided inquiry programme and the 
scientiic method task had not prepared them to be able to design an experiment unassisted. This agrees 
with the inding from Garratt and Tomlinson (2001) that experiment design needs to be taught. 

In general, students who spent more time researching, preparing and planning their experiment did 
better quality investigations. These students had the same background as the students in my unsuccessful 
attempts to introduce inquiry, which shows that any student has the potential to do good quality 
experimental work if given the right support. The beneits of inquiry work can extend several years after 
the intervention (Szteinberg and Weaver, 2013). A Kitchen Project participant with prior experience of 
intensively-supported experiment design found that the scientiic method task merely reinforced what 
they already knew. 

The BCL students appreciated the opportunity of doing some experiment design. It is noteworthy that 
they wanted more experiment design, earlier in their degree course. This discrepancy may be the root of 
the wish of graduates that more experiment design had been included in their degree courses (Hanson 
and Overton, 2010). 

Practical implications and adaptability

Scientiic inquiry can be presented with diferent amounts of structure. Where resources are stretched, 
structured or guided inquiry scafolding can be added to conirmation exercises to give them a sense 
of purpose. Tasking students to learn about the scientiic method can feed into a class discussion of this 
before they set about designing and executing an experiment. Conirmation exercises can be transformed 
into open inquiry, problem-based inquiry, or authentic inquiry, where students set their own aims, design 
and realise an experiment, and analyse the resulting data. 

When implementing inquiry in your context, you will need to strike a balance between the desired outcome 
and the resources available to you. If resources are limited and you would like students to work with 
purpose, you can rework conirmation laboratories with a structured or guided inquiry approach. If you 
wish students to learn to about the scientiic method, you can combine research into the scientiic method 
with facilitated discussion of this. Inquiry style instruction requires careful consideration of cognitive load 
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and suitable scafolding of learning tasks to embed knowledge so that it can be applied outside of the 
inquiry context. There is a wealth of advice in the literature to be considered when implementing inquiry 
into the curriculum. Examples are given in Table 5 and you should consider the following when planning 
inquiry style instruction: 

•	 Ensure the students have a good theoretical knowledge base before starting laboratory 
work (but not the answers their experiments will give, Bruck and Towns, 2009) and consider 
introducing new techniques separately in skills-based laboratory classes (Sedwick et al., 
2018) or training sessions (Ford et al., 2008); 

•	 Good facilitation is necessary because students who are familiar with one type of experiment 
will assume that all experiment work is the same unless they are made to see otherwise 
(Mohrig et al., 2007);

•	 Help students develop reasonable expectations of the success (or lack of ) of inquiry work 
(Bruck and Towns, 2009). Using errors arising from real-life experimental work provides 
excellent learning opportunities about dealing with poor data (Davis et al., 2017); 

•	 Tailor the scafolding to the experience-level of the student because, although novice 
students beneit from strongly-guided learning activities, these can disadvantage more 
experienced students who have developed their own ways of doing things (Kirschner et al., 
2006); 

•	 Ease students into inquiry by incrementally increasing the amount of freedom they are 
given (Bruck and Towns, 2009). Introduce a learning stage before the experience stage 
(Wham, 1977) so that students can perform a trial run on a model system before doing the 
actual experiment (Newton et al., 2006);

•	 The experiment design process should be scafolded and facilitated (Etkina et al., 2010) and 
can be introduced outside of laboratory work (as with Iimoto and Frederick, 2011; Jones, 
2011).

It is important to get buy-in to an inquiry-style of instruction from all participants; students, teaching 
assistants and staf. Students need to understand the purpose of the inquiry work they are being asked 
to do. They show a preference for a more structured level of inquiry if a topic is perceived to be diicult 
(Basey and Francis, 2011). They believe they learn more and get higher grades in guided inquiry than 
in open inquiry experiments (Chatterjee et al., 2009) but they may beneit from activities that they 
have not liked (Sandi-Urena and co-workers, 2011). Basey and Francis (2011) noted that some teaching 
assistants facilitated an open inquiry laboratory in the manner of a guided inquiry laboratory. Professional 
development activities can assist teaching assistants to develop as facilitators rather than disseminators 
of knowledge (Wheeler et al., 2017a; 2017b). Colleagues need convincing that barriers to implementation 
are not insurmountable (Cheung, 2011). Student-directed project work is accompanied by signiicant 
demands on chemical, equipment, and teaching resources (Keller and Kendall, 2017) which can be 
optimised where activities are predictable (Domin, 1999). However, changing even one activity can beneit 
students (Cacciatore and Sevian, 2009). In addition, changes increase engagement with laboratory work 
(Mc Donnell et al., 2007) and the positive beneits extend for several years afterwards (Szteinberg and 
Weaver, 2013). 

Conclusions

Research and scientiic inquiry are often reserved until the late stages of a degree programme. However, 
these activities can be done by less experienced students, provided the research and inquiry processes are 
appropriately scafolded. The extended beneits of inquiry work will beneit inal year research because 
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Table 5: Examples of activities at diferent levels of inquiry (co-authors omitted for clarity)

Instruction style Examples 

0: Conirmation Cacciatore (2009) – Parameters of recipe laboratory exercise compared with a 
problem-based inquiry exercise

1: Guided Inquiry Albright (2017) – Example of a discovery (guided inquiry) exercise 
Allen (1986) – How to turn a veriication experiment into a guided inquiry 
exercise
Bodner (1998) – Results of integrating discovery laboratories into the 
curriculum
Ford (2008) – Using a mentor to guide students through the research process
Gaddis (2007) – Diferent ways of incorporating guided inquiry into the lab
Hall (2013) – Careful structuring of activities and introduction of new skills 
week-by-week in a semester-long laboratory course
MacKay (2014) – Hypothesis testing using the Wittig reaction
Newton (2006) – Scafolding a synthetic research project with a practice-run 
making a model compound
Teixeira (2010) – Questions guiding interpretation of data and design of 
subsequent experiments

Problem-based 
learning

Mc Donnell (2007) – Multi-week group PBL projects
McGarvey (2004) – Examples of PBL laboratory exercises where students 
design their own procedure to achieve certain experimental objectives
Smith (2012) – Outlining how to use PBL laboratory work in place of recipes
Torres King (2018) – A two week organic chemistry laboratory activity based 
on catalysis

2: Open Inquiry Bertram (2014) – Multi-week group projects fostering research skills
Burnham (2013) – Student-designed investigations based on teaching lab 
exercises
Herrington (2011) – Inquiry-based experiment on speciic heat capacity
Martineau (2013) – Team-based experiment design and execution to achieve 
authentic science 
Mistry (2016) – Student-designed workup to separate organic molecules

3: Authentic Inquiry Etkina (2010) – Scafolded investigative science learning environment 
allowing students to develop scientiic abilities as well as learning concepts
Quattrucci (2018) – Students identify problems and write experiments in areas 
of chemistry of interest to them

Combination of 
approaches

Seery (2019) – Scripted exercises leading into student-driven [guided and 
open] inquiry work
Walker (2011) – Argument driven inquiry. Open inquiry coupled with 
discussion and peer review sessions
Wham (1977) – Scripted exercises leading into discovery project work
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the student will be familiar with scientiic inquiry and experiment design and will therefore be a more 
active contributor to their project. My results show the importance of good facilitation when students 
design an experiment of their own, therefore, investment in teaching resource must be made in order to 
realise learning outcomes associated with developing expertise as a researcher. The role of developing 
students’ scientiic inquiry skills does not need to be conined to the laboratory, but it is in the laboratory 
where the beneits will ultimately be felt. 
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