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 18 

ABSTRACT 19 

With every glimpse of our eyes, we sample only a small and incomplete fragment of the 20 

visual world, which needs to be contextualized and integrated into a coherent scene 21 

representation. Here we show that the visual system achieves this contextualization by 22 

exploiting spatial schemata, that is our knowledge about the composition of natural 23 

scenes. We measured fMRI and EEG responses to incomplete scene fragments and used 24 

representational similarity analysis to reconstruct their cortical representations in space 25 

and time. We observed a sorting of representations according to the fragments' place 26 

within the scene schema, which occurred during perceptual analysis in the occipital place 27 

area and within the first 200ms of vision. This schema-based coding operates flexibly 28 

across visual features (as measured by a deep neural network model) and different types 29 

of environments (indoor and outdoor scenes). This flexibility highlights the mechanism's 30 

ability to efficiently organize incoming information under dynamic real-world conditions. 31 

 32 

IMPACT STATEMENT 33 

In scene-selective occipital cortex and within 200ms of processing, visual inputs are sorted 34 

according to their typical spatial position within a scene.35 
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 36 

INTRODUCTION 37 

During natural vision, the brain continuously receives incomplete fragments of information 38 

that need to be integrated into meaningful scene representations. Here, we propose that 39 

this integration is achieved through contextualization: the brain uses prior knowledge about 40 

where information typically appears in a scene to meaningfully sort incoming information. 41 

A format in which such prior knowledge about the world is represented in the brain 42 

is provided by schemata. First introduced to philosophy to explain how prior knowledge 43 

enables perception of the world (Kant, 1781), schemata were later adapted by psychology 44 

(Barlett, 1932; Piaget, 1926) and computer science (Minsky, 1975) as a means to 45 

formalize mechanisms enabling natural and artificial intelligence, respectively.  46 

In the narrower context of natural vision, scene schemata represent knowledge 47 

about the typical composition of real-world environments (Mandler, 1984). Scene 48 

schemata for example entail knowledge about the distribution of objects across scenes, 49 

where objects appear in particular locations across the scene and in particular locations 50 

with respect to other objects (Kaiser et al., 2019a; Torralba et al., 2006; Võ et al., 2019; 51 

Wolfe et al., 2011).  52 

The beneficial role of such scene schemata was first investigated in empirical 53 

studies of human memory performance, where memory performance is boosted when 54 

scenes are configured in accordance with the schema (Brewer and Treyens, 1981; 55 

Mandler and Johnson, 1976; Mandler and Parker, 1976). 56 

Recently however, it has become clear that scene schemata not only organize 57 

memory contents, but also the contents of perception. For example, knowledge about the 58 

structure of the world can be used to generate predictions about a scene’s content (Bar, 59 

2009; Henderson, 2017), or to efficiently organize the concurrent representation of multiple 60 

scene elements (Kaiser et al., 2019a; Kaiser et al., 2019b). This position is reinforced by 61 
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behavioral studies demonstrating a beneficial role of schema-congruent naturalistic stimuli 62 

across a variety of perceptual tasks, such as visual detection (Biederman et al., 1982; 63 

Davenport and Potter, 2004; Stein et al., 2015) and visual search (Kaiser et al., 2014; 64 

Torralba et al., 2006; Võ et al., 2019).  65 

 Here, we put forward a novel function of scene schemata in visual processing: they 66 

support the contextualization of fragmented sensory inputs. If sensory inputs are indeed 67 

processed in relation to the schema context, scene fragments stemming from similar 68 

typical positions within the scene should be processed similarly and fragments stemming 69 

from different positions should be processed differently. Therefore, the neural 70 

representations of scene fragments should be sorted according to their typical place within 71 

the scene.    72 

We tested two hypotheses about this sorting process. First, we hypothesized that 73 

this sorting occurs during perceptual scene analysis, which can be spatiotemporally 74 

pinpointed to scene-selective cortex (Baldassano et al., 2016; Epstein, 2014) and the first 75 

250ms of processing (Cichy et al., 2017; Harel et al., 2016). Second, given that schema-76 

related effects in behavioral studies (Mandler and Parker, 1976) are more robustly 77 

observed along the vertical dimension, where the scene structure is more rigid (i.e., the 78 

sky is almost always above the ground), we hypothesized that the cortical sorting of 79 

information should primarily occur along the vertical dimension.  80 

To test these hypotheses, we used a novel visual paradigm in which participants 81 

were exposed to fragmented visual inputs, and recorded fMRI and EEG data to resolve 82 

brain activity in space and time. 83 

84 
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 85 

RESULTS 86 

In our study, we experimentally mimicked the fragmented nature of naturalistic visual 87 

inputs by dissecting scene images into position-specific fragments. Six natural scene 88 

images (Fig. 1a) were each split into six equally-sized fragments (3 vertical  2 horizontal), 89 

resulting in 36 conditions (6 scenes  6 fragments). In separate fMRI (n=30) and EEG 90 

(n=20) experiments, participants viewed these fragments at central fixation while 91 

performing an indoor/outdoor categorization task to ensure engagement with the stimulus 92 

(Fig. 1b). Critically, this design allowed us to investigate whether the brain sorts the 93 

fragments with respect to their place in the schema in the absence of explicit location 94 

differences (Fig 1c). 95 

To quantify the sorting of fragments during cortical processing we used 96 

spatiotemporally resolved representational similarity analysis (Cichy et al., 2014; 97 

Kriegeskorte et al., 2008). We first extracted representational dissimilarity matrices 98 

(RDMs) from the fMRI and EEG data, which indexed pairwise dissimilarities of the 99 

fragments’ neural representations (for details on RDM construction see Figure 2 – Figure 100 

Supplement 1). In the fMRI (Fig. 2a), we extracted spatially-resolved neural RDMs from 101 

scene-selective occipital place area (OPA) and parahippocampal place area (PPA), and 102 

from early visual cortex (V1) (for temporal response profiles in these regions see Figure 2 103 

– Figure Supplement 2). In the EEG (Fig. 2b), we extracted time-resolved neural RDMs 104 

from -200ms to 800ms relative to stimulus onset from posterior EEG electrodes (for other 105 

electrode groups see Figure 2 – Figure Supplements 3-5).  106 

 107 
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 108 

Fig. 1: Experimental design and rationale of schema-based information sorting. a, 109 

The stimulus set consisted of six natural scenes (three indoor, three outdoor). Each scene 110 

was split into six rectangular fragments. b, During the fMRI and EEG recordings, 111 

participants performed an indoor/outdoor categorization task on individual fragments. 112 

Notably, all fragments were presented at central fixation, removing explicit location 113 

information. c, We hypothesized that the visual system sorts sensory input by spatial 114 

schemata, resulting in a cortical organization that is explained by the fragments’ within-115 

scene location, predominantly in the vertical dimension: Fragments stemming from the 116 

same part of the scene should be represented similarly. Here we illustrate the 117 

hypothesized sorting in a two-dimensional space. A similar organization was observed in 118 

multi-dimensional scaling solutions for the fragments’ neural similarities (see Figure 1 – 119 

Figure Supplement 1 and Video 1). In subsequent analyses, the spatiotemporal 120 

emergence of the schema-based cortical organization was precisely quantified using 121 

representational similarity analysis (Fig. 2). 122 

 123 

We then quantified schema effects using separate model RDMs for horizontal and 124 

vertical locations (Fig. 2c). These location RDMs reflected whether pairs of fragments 125 
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shared the same location or not. We additionally constructed a category model RDM, 126 

which reflected whether pairs of fragments stemmed from the same scene or not.  127 

Critically, if cortical information is indeed sorted with respect to scene schemata, we 128 

should observe a neural clustering of fragments that stem from the same within-scene 129 

location – in this case, the location RDM should predict a significant proportion of the 130 

representational organization in visual cortex. 131 

To test this, we modeled neural RDMs as a function of the model RDMs using 132 

general linear models, separately for the fMRI and EEG data. The resulting beta weights 133 

indicated to which degree location and category information accounted for cortical 134 

responses in the three ROIs and across time. 135 

The key observation was that the fragments’ vertical location predicted neural 136 

representations in OPA (t[29]=4.12, p<0.001, pcorr<0.05), but not in V1 and PPA (test 137 

statistics for all analyses and ROIs are reported in Supplementary file 1) (Fig. 2d) and 138 

between 55ms and 685ms (peak: t[19]=9.03, p<0.001, pcorr<0.05) (Fig. 2e). This vertical-139 

location organization was consistent across the first and second half of the experiments 140 

(see Figure 2 – Figure Supplement 6) and across all pairwise comparisons along the 141 

vertical axis (see Figure 2 – Figure Supplement 7). No effects were observed for horizontal 142 

location, consistent with more rigid spatial scene structure in the vertical dimension 143 

(Mandler and Parker, 1976). This result provides a first characterization of where and 144 

when incoming information is organized in accordance with scene schemata: in OPA and 145 

rapidly after stimulus onset, scene fragments are sorted according to their origin within the 146 

environment. 147 

The schema-based organization co-exists with a prominent scene-category 148 

organization: In line with previous findings (Lowe et al., 2018; Walther et al., 2009), 149 

category was accurately predicted in OPA (t[29]=3.12, p=0.002, pcorr<0.05) and PPA 150 
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(t[29]=4.26, p<0.001, pcorr<0.05) (Fig. 2d), and from 60ms to 775ms (peak: t[19]=6.39, 151 

p<0.001, pcorr<0.05) (Fig. 2e). 152 

 153 

 154 

Fig. 2: Spatial schemata determine cortical representations of fragmented scenes. a, 155 

To test where and when the visual system sorts incoming sensory information by spatial 156 

schemata, we first extracted spatially (fMRI) and temporally (EEG) resolved neural 157 

representational dissimilarity matrices (RDMs). In the fMRI, we extracted pairwise neural 158 

dissimilarities of the fragments from response patterns across voxels in the occipital place 159 

area (OPA), parahippocampal place area (PPA), and early visual cortex (V1). b, In the 160 

EEG, we extracted pairwise dissimilarities from response patterns across electrodes at 161 

every time point from -200ms to 800ms with respect to stimulus onset. c, We modelled the 162 

neural RDMs with three predictor matrices, which reflected their vertical and horizontal 163 

positions within the full scene, and their category (i.e., their scene or origin). d, The fMRI 164 

data revealed a vertical-location organization in OPA, but not V1 and PPA. Additionally, 165 
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the fragment’s category predicted responses in both scene-selective regions. e, The EEG 166 

data showed that both vertical location and category predicted cortical responses rapidly, 167 

starting from around 100ms. These results suggest that the fragments’ vertical position 168 

within the scene schema determines rapidly emerging representations in scene-selective 169 

occipital cortex. Significance markers represent p<0.05 (corrected for multiple 170 

comparisons). Error margins reflect standard errors of the mean. In further analysis, we 171 

probed the flexibility of this schematic coding mechanism (Fig. 3). 172 

 173 

To efficiently support vision in dynamic natural environments, schematic coding 174 

needs to be flexible with respect to visual properties of specific scenes. The absence of 175 

vertical location effects in V1 indeed highlights that schematic coding is not tied to the 176 

analysis of simple visual features. To more thoroughly probe this flexibility, we additionally 177 

conducted three complementary analyses (Fig. 3). 178 

First, we tested whether schematic coding is tolerant to stimulus features relevant 179 

for visual categorization. Categorization-related features were quantified using a deep 180 

neural network (DNN; ResNet50), which extracts such features similarly to the brain (Wen 181 

et al., 2018). We removed DNN features by regressing out layer-specific RDMs 182 

constructed from DNN activations (see Materials and Methods for details) (Fig. 3a); 183 

subsequently, we re-estimated location and category information. 184 

After removing DNN features, category information was rendered non-significant in 185 

both fMRI and EEG signals. When directly comparing category information before and 186 

after removing the DNN features, we found reduced category information in PPA 187 

(t[29]=2.48, p=0.0096, pcorr<0.05) and OPA (t[29]=1.86, p=0.036, pcorr>0.05), and a strong 188 

reduction of category information across time, from 75ms to 775ms (peak t[19]=13.0, 189 

p<0.001, pcorr<0.05). Together, this demonstrates that categorization-related brain 190 

activations are successfully explained by DNN features (Cichy et al., 2016, 2017; Groen et 191 

al., 2018; Güclü and van Gerven, 2015; Wen et al., 2018), indicating the appropriateness 192 

of our DNN for modelling visual brain activations. Despite the suitability of our DNN model 193 
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for modelling categorical brain responses, vertical location still accounted for the neural 194 

organization in OPA (t[29]=2.37, p=0.012, pcorr<0.05) (Fig. 3b) and between 75ms and 195 

335ms (peak: t[19]=5.06, p<0.001, pcorr<0.05) (Fig. 3c). Similar results were obtained using 196 

a shallower feed-forward DNN (see Figure 3 – Figure Supplement 1). This result suggests 197 

that schematic coding cannot be explained by categorization-related features extracted by 198 

DNN models. 199 

DNN features are a useful control for flexibility towards visual features, because 200 

they cover both low-level and high-level visual features, explaining variance across fMRI 201 

regions and across EEG processing time (see Figure 3 – Figure Supplement 2; see also 202 

Cichy et al., 2016; Gücli & van Gerven, 2015). However, to more specifically control for 203 

low-level features, we used two commonly employed low-level control models: pixel 204 

dissimilarity and GIST descriptors (Oliva and Torralba, 2001). These models neither 205 

explained the vertical location organization nor the category organization in the neural data 206 

(see Figure 3 – Figure Supplement 3). Finally, as an even stronger control of the low-level 207 

features encoded in V1, we used the neural dissimilarity structure in V1 (i.e., the neural 208 

RDMs) as a control model, establishing an empirical neural measure of low-level features. 209 

With V1 housing precise low-level feature representations, this measure should very well 210 

capture the features extracted during the early processing of simple visual features. 211 

However, removing the V1 dissimilarity structure did neither abolish the schematic coding 212 

effects in the OPA nor in the EEG data (see Figure 3 – Figure Supplement 3). This shows 213 

that even if we had control models that approximated V1 representations extremely well – 214 

as well as the V1 representations approximate themselves – these models could not 215 

explain vertical location effects in downstream processing. Together, these results provide 216 

converging evidence that low-level feature processing cannot explain the schematic 217 

coding effects reported here. 218 

 219 



 11 

 220 

Fig. 3: Schematic coding operates flexibly across visual and conceptual scene 221 

properties. a, To determine the role of categorization-related visual features in this 222 

schematic organization, we regressed out RDMs obtained from 18 layers along the 223 

ResNet50 DNN before repeated the three-predictor general linear model (GLM) analysis 224 

(Fig. 2c). b/c, Removing DNN features abolished category information in fMRI and EEG 225 

signals, but not vertical location information. d, To test for generalization across different 226 

scene types, we restricted location predictor RDMs to comparisons across indoor and 227 

outdoor scenes. Due to this restriction, category could not be modelled. e/f, In this 228 

analysis, vertical location still predicted neural organization in OPA and from 70ms. g, 229 

Finally, we combined the two analyses: we first regressed out DNN features prior and then 230 

modelled the neural RDMs using the restricted predictor RDMs (d). h, In this analysis, we 231 

still found significant vertical location information in OPA. i, Notably, vertical location 232 

information in the EEG signals was delayed to after 180ms, suggesting that at this stage 233 

schematic coding becomes flexible to visual and conceptual attributes. Significance 234 

markers represent p<0.05 (corrected for multiple comparisons). Error margins reflect 235 

standard errors of the mean.  236 

 237 
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Second, we asked whether schematic coding operates flexibly across visually 238 

diverse situations. To test this explicitly we restricted RDMs to comparisons between 239 

indoor and outdoor scenes, which vary substantially in visual characteristics (Oliva and 240 

Torralba, 2003) (Fig. 3d).  241 

Vertical location still predicted cortical organization in OPA (t[29]=3.05, p=0.002, 242 

pcorr<0.05) (Fig. 3e) and from 70ms to 385ms (peak: t[19]=7.47, p<0.001, pcorr<0.05) (Fig. 243 

3f). The generalization across indoor and outdoor scenes indicates that schematic coding 244 

operates similarly across radically different scenes, suggesting that the mechanism can 245 

similarly contextualize information across different real-life situations. 246 

Finally, for a particularly strong test of flexibility, we tested for schematic coding 247 

after removing both DNN features and within-category comparisons (Fig. 3g). In this 248 

analysis, OPA representations were still explained by the fragments’ vertical location 249 

(t[29]=2.38, p=0.012, pcorr<0.05) (Fig. 3h). Notably, early schema effects were rendered 250 

non-significant, while vertical location still predicted representations after 180ms (peak: 251 

t[19]=4.41, p<0.001, pcorr<0.05) (Fig. 3i), suggesting a high degree of flexibility emerging at 252 

that time. Interestingly, across all analyses, vertical location information was exclusively 253 

found in OPA and always peaked shortly after 200ms (see Supplementary file 2), 254 

suggesting that schematic coding occurs during early perceptual analysis of scenes. 255 

256 
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 257 

DISCUSSION 258 

Together, our findings characterize a novel neural mechanism for contextualizing 259 

fragmented inputs during naturalistic vision. The mechanism exploits schemata to sort 260 

sensory inputs into meaningful representations of the environment. This sorting occurs 261 

during perceptual scene analysis in scene-selective OPA and within the first 200ms of 262 

vision, and operates flexibly across changes in visual properties.  263 

That schema-based coding can be localized to OPA is consistent with the region’s 264 

important role in visual scene processing. Transcranial magnetic stimulation studies 265 

suggest that OPA activation is crucial for various scene perception tasks, such as scene 266 

discrimination (Dilks et al., 2013; Ganaden et al., 2013), navigating through scenes (Julian 267 

et al., 2016) and anticipating upcoming scene information (Gandolfo and Downing, 2019). 268 

Functional MRI work suggest that computations in the OPA include the analysis of spatial 269 

scene layout (Dillon, et al., 2018; Henriksson et al., 2019) and the parsing of local scene 270 

elements like objects and local surfaces (Kamps et al., 2016). Future studies are needed 271 

to clarify which of these computations mediate the schema-based coding described here. 272 

As the current study is limited to a small set of scenes, more research is needed to 273 

explore whether schema-based coding generalizes to more diverse contents. It is 274 

conceivable that schema-based coding constitutes a more general coding strategy that 275 

may generalize to other visual contents (such as faces; Henriksson et al., 2015) and non-276 

visual processing domains: when sensory information is fragmented and spatial 277 

information is unreliable, the brain may use schematic information to contextualize sensory 278 

inputs. This view is in line with Bayesian theories of perception where the importance of 279 

prior information for perceptual inference grows with the noisiness and ambiguity of the 280 

sensory information at hand (Ernst and Banks, 2002; Kersten et al., 2004).  281 
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The schema-based sorting of scene representations provides a mechanism for 282 

efficient communication between perceptual and cognitive systems: when scene 283 

information is formatted with respect to its role in the environment, it can be efficiently read 284 

out by downstream processes. This idea is consistent with the emerging view that cortical 285 

representations depend on functional interactions with the environment (Bonner and 286 

Epstein, 2017; Groen et al., 2018; Malcolm et al., 2016; Peelen and Downing, 2017). 287 

Under this view, formatting perceptual information according to real-world structure may 288 

allow cognitive and motor systems to efficiently read out visual information that is needed 289 

for different real-world tasks (e.g., immediate action versus future navigation). As the 290 

schema-based sorting of scene information happens already during early scene analysis, 291 

many high-level processes have access to this information. 292 

Lastly, our results have implications for computational modelling of vision. While 293 

DNNs trained on categorization accurately capture the representational divide into different 294 

scene categories, they cannot explain the schema-based organization observed in the 295 

human visual system. Although this does not mean that visual features extracted by DNN 296 

models in principle are incapable of explaining schema-based brain representations, our 297 

results highlight that current DNN models of categorization do not use real-world structure 298 

in similar ways as the human brain. In the future, augmenting DNN training procedures 299 

with schematic information (Katti et al., 2019) may improve their performance on real-world 300 

tasks and narrow the gap between artificial and biological neural networks.  301 

 To conclude, our findings provide the first spatiotemporal characterization of a 302 

neural mechanism for contextualizing fragmented visual inputs. By rapidly organizing 303 

visual information according to its typical role in the world, this mechanism may contribute 304 

to the optimal use of perceptual information for guiding efficient real-world behaviors, even 305 

when sensory inputs are incomplete or dynamically changing.306 
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 307 

MATERIALS AND METHODS 308 

 309 

Key Resources Table 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

software, 
algorithm 

CoSMoMVPA Oosterhof et 
al., 2016 

RRID:SCR_01
4519 

 

For data 
analysis 

software, 
algorithm 

fieldtrip Oostenveld 
et al., 2011 

RRID:SCR_00
4849 
 

For EEG data 
preprocessing 

software, 
algorithm 

MATLAB  Mathworks 
Inc. 

RRID:SCR_00
1622 

 

For stimulus 
delivery and 
data analysis 

software, 
algorithm 

Psychtoolbox 3 Brainard, 
1997 

RRID:SCR_00
2881 
 

For stimulus 
delivery 

software, 
algorithm 

SPM12 www.fil.ion.ucl.
ac.uk/spm/soft
ware/spm12/ 

RRID:SCR_00
7037 
 

For fMRI data 
preprocessing 

 310 

Participants 311 

Thirty adults (mean age 23.9 years, SD=4.4; 26 females) completed the fMRI experiment and 312 

twenty (mean age 24.0 years, SD=4.3; 15 females) completed the EEG experiment. All 313 

participants had normal or corrected-to-normal vision. They all provided informed consent 314 

and received monetary reimbursement or course credits for their participation. All 315 

procedures were approved by the ethical committee of the Department of Education and 316 

Psychology at Freie Universität Berlin (reference 140/2017) and were in accordance with 317 

the Declaration of Helsinki. 318 

Stimuli 319 
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The stimulus set (Fig. 1a) consisted of fragments taken from three images of indoor 320 

scenes (bakery, classroom, kitchen) and three images of outdoor scenes (alley, house, 321 

farm). Each image was split horizontally into two halves, and each of the halves was 322 

further split vertically in three parts, so that for each scene six fragments were obtained. 323 

Participants were not shown the full scene images prior to the experiment. 324 

Experimental design 325 

The fMRI and EEG designs were identical, unless otherwise noted. Stimulus presentation 326 

was controlled using the Psychtoolbox (Brainard, 1997; RRID:SCR_002881). In each trial, 327 

one of the 36 fragments was presented at central fixation (7° horizontal visual angle) for 328 

200ms (Fig. 1b). Participants were instructed to instructed to maintain central fixation and 329 

categorize each stimulus as an indoor or outdoor scene image by pressing one of two 330 

buttons.  331 

In the fMRI experiment, the inter-trial interval was kept constant at 2,300ms, 332 

irrespective of the participant’s response time. In the EEG experiment, after each response 333 

a green or red fixation dot was presented for 300ms to indicate response correctness; 334 

participants were instructed to only blink after the feedback had occurred. Trials were 335 

separated by a fixation interval randomly varying between 1500ms and 2000ms.  336 

In the fMRI, participants performed six identical runs. Within each run, each of the 36 337 

scene fragments was shown four times, resulting in 144 trials. Additionally, each run contained 29 338 

fixation trials, where only the central fixation dot was shown. Runs started and ended with brief 339 

fixation periods; the total run duration was 7:30 minutes. In the EEG, each of the 36 fragments 340 

was presented 40 times during the experiment, for a total of 1440 trials, divided into 10 341 

runs. Three participants performed a shorter version of the experiment, with only 20 342 

repetitions of each image (720 trials in total).  343 

In both experiments, participants performed very well in the indoor/outdoor 344 

categorization task (fMRI: 94% correct, 658ms mean response time, EEG: 96%, 606ms). 345 
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Differences in task difficulty across fragments were not related to the neural effects of 346 

interest (Figure 2 – Figure Supplement 8).     347 

fMRI recording and preprocessing 348 

MRI data was acquired using a 3T Siemens Tim Trio Scanner equipped with a 12-channel head 349 

coil. T2*-weighted gradient-echo echo-planar images were collected as functional volumes 350 

(TR=2s, TE=30ms, 70° flip angle, 3mm3 voxel size, 37 slices, 20% gap, 192mm FOV, 64×64 matrix 351 

size, interleaved acquisition). Additionally, a T1-weighted image (MPRAGE; 1mm3 voxel size) was 352 

obtained as a high-resolution anatomical reference. During preprocessing, the functional volumes 353 

were realigned and coregistered to the T1 image, using MATLAB (RRID:SCR_014519) and SPM12 354 

(www.fil.ion.ucl.ac.uk/spm/; RRID:SCR_014519).  355 

fMRI region of interest definition 356 

We restricted our analyses to three regions of interest (ROIs). We defined scene-selective 357 

occipital place area (OPA; Dilks et al., 2013) and parahippocampal place area (PPA; Epstein and 358 

Kanwisher, 1998) using a functional group atlas (Julian et al., 2012). As a control region, we 359 

defined early visual cortex (V1) using a probabilistic atlas (Wang et al., 2015). All ROIs were 360 

defined in standard space and then inverse-normalized into individual-participant space. For each 361 

ROI, we concatenated the left- and right-hemispheric masks and performed analyses on the joint 362 

ROI. 363 

EEG recording and preprocessing 364 

The EEG was recorded using an EASYCAP 64-channel system and a Brainvision 365 

actiCHamp amplifier. The electrodes were arranged in accordance with the standard 10-10 366 

system. The data was recorded at a sampling rate of 1000Hz and filtered online between 367 

0.03Hz and 100Hz. All electrodes were referenced online to the Fz electrode. Offline 368 

preprocessing was performed in MATLAB, using the FieldTrip toolbox (Oostenveld et al., 369 

2011; RRID:SCR_004849). The continuous EEG data were epoched into trials ranging from 370 
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200ms before stimulus onset to 800ms after stimulus onset, and baseline corrected by 371 

subtracting the mean of the pre-stimulus interval for each trial and channel separately. 372 

Trials containing movement-related artefacts were automatically identified and removed 373 

using the default automatic rejection procedure implemented in Fieldtrip. Channels 374 

containing excessive noise were removed based on visual inspection. Blinks and eye 375 

movement artifacts were identified and removed using independent components analysis 376 

and visual inspection of the resulting components. The epoched data were down-sampled 377 

to 200Hz. 378 

Representational Similarity Analysis 379 

To model the representational structure of the neural activity related to our stimulus set, 380 

we used representational similarity analysis (RSA; Kriegeskorte et al., 2008). We first 381 

extracted neural RDMs separately for the fMRI and EEG experiments, and then used the 382 

same analyses to model their organization. To retrieve the fragments’ position within the 383 

original scene, as well their scene category, we used a regression approach, where we 384 

modeled neural dissimilarity as a linear combination of multiple predictors (Proklova et al., 385 

2016, 2019).  386 

Constructing neural dissimilarity – fMRI 387 

For the fMRI data, we used cross-validated correlations as a measure of pairwise neural 388 

dissimilarity. First, patterns for each ROI were extracted from the functional images 389 

corresponding to the trials of interest. After shifting the activation time course by 3 TRs (i.e., 6s, 390 

accounting for the hemodynamic delay), we extracted voxel-wise activation values for each trial, 391 

from the TR that was closest to the stimulus onset on this trial (for results across 6 TRs with 392 

respect to trial onset, see Figure 2 – Figure Supplement 2). To account for activation 393 

differences between runs, the mean activation across conditions was subtracted from each 394 

voxel’s values, separately for each run. For each ROI, response patterns across voxels were used 395 
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to perform multivariate analyses using the CoSMoMVPA toolbox (Oosterhof et al., 2016; 396 

RRID:SCR_014519). Then, for each TR separately, we performed correlation-based (Haxby et al., 397 

2001) multi-voxel pattern analyses (MVPA) for each pair of fragments. These analyses were cross-398 

validated by repeatedly splitting the data into two equally-sized sets (i.e., half of the runs per set). 399 

For this analysis, we correlated the patterns across the two sets, both within-condition (i.e., the 400 

patterns stemming from the two same fragments and from different sets) and between-401 

conditions (i.e., the patterns stemming from the two different fragments and from different sets). 402 

These correlations were Fisher-transformed. Then, we subtracted the within- and between-403 

correlations to obtain a cross-validated correlation measure, where above-zero values reflect 404 

successful discrimination. This procedure was repeated for all possible splits of the six runs. 405 

Performing this MVPA for all pairs of fragments yielded a 36×36 representational dissimilarity 406 

matrix (RDM) for each ROI. RDMs’ entries reflected the neural dissimilarity between pairs of 407 

fragments (the diagonal remained empty).  408 

Constructing neural dissimilarity – EEG 409 

For the EEG data, we used cross-validated classification accuracies as a measure of pairwise 410 

neural dissimilarity. We thus constructed RDMs across time by performing time-resolved 411 

multivariate decoding analyses (Contini et al., 2017). RDMs were built by computing pair-412 

wise decoding accuracy for all possible combinations of the 36 stimuli, using the 413 

CoSMoMVPA toolbox (Oosterhof et al., 2016). As we expected the highest classification in 414 

sensors over visual cortex (Battistoni et al., 2018; Kaiser et al., 2016), only 17 occipital and 415 

posterior sensors (O1, O2, Oz, PO3, PO4, PO7, PO8, POz, P1, P2, P3, P4, P5, P6, P7, 416 

P8, Pz) were used in this analysis. We report results for other electrode groups in Figure 2 417 

– Figure Supplement 3-5. For each participant, classification was performed separately for 418 

each time point across the epoch (i.e., with 5ms resolution). The analysis was performed 419 

in a pair-wise fashion: Linear discriminant analysis classifiers were always trained and 420 
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tested on data from two conditions (e.g., the middle left part of the alley versus the top 421 

right part of the farm), using a leave-one-trial-out partitioning scheme. The training set 422 

consisted of all but one trials for each of the two conditions, while one trial for each of the 423 

two conditions was held back and used for classifier testing. This procedure was repeated 424 

until every trial was left out once. Classifier performance was averaged across these 425 

repetitions. The pairwise decoding analysis resulted in a 36-by-36 neural RDM for each 426 

time point. A schematic description of the RDM construction can be found in Figure 2 – 427 

Figure Supplement 1. 428 

Location and category predictors 429 

We predicted the neural RDMs in a general linear model (GLM; see below) with three 430 

different predictor RDMs (3636 entries each) (Fig. 2c): In the vertical location RDM, each 431 

pair of conditions is assigned either a value of 0, if the fragments stem from the same 432 

vertical location, or the value 1, if they stem from different vertical locations (for results with 433 

an alternative predictor RDM using Euclidean distances see Figure 2 – Figure Supplement 434 

9). In the horizontal location RDM, each pair of conditions is assigned either a value of 0, if 435 

the fragments stem from the same horizontal location, or a value of 1, if they stem from 436 

different horizontal locations. In the category RDM, each pair of conditions is assigned 437 

either a value of 0, if the fragments stem from the same scene, or a value of 1, if they stem 438 

from different scenes. 439 

In an additional analysis, we sought to eliminate properties specific to either the 440 

indoor or outdoor scenes, respectively. We therefore constructed RDMs for horizontal and 441 

vertical location information which only contained comparisons between the indoor and 442 

outdoor scenes. These RDMs were constructed in the same way as explained above, but 443 

all comparisons within the same scene type of scene were removed (Fig. 3d).  444 

Modelling neural dissimilarity 445 
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To reveal correspondences between the neural data and the predictor matrices, we used 446 

GLM analyses. Separately for each ROI (fMRI) or time point (EEG), we modelled the 447 

neural RDM as a linear function of the vertical location RDM, the horizontal location RDM, 448 

and the category RDM. Prior to each regression, the neural RDMs and predictor RDMs 449 

were vectorized by selecting all lower off-diagonal elements – the rest of the entries, 450 

including the diagonal, was discarded. Values for the neural RDMs were z-scored. 451 

Separately for each subject and each time point, three beta coefficients (i.e., regression 452 

weights) were estimated. By averaging across participants, we obtained time-resolved 453 

beta estimates for each predictor, showing how well each predictor explains the neural 454 

data over time.  455 

Furthermore, we performed an additional GLM analysis with a vertical location 456 

predictor and a horizontal location predictor, where comparisons within indoor- and 457 

outdoor-scenes were removed (Fig. 3d-f); these comparisons were also removed from the 458 

criterion. Using the same procedure as in the previous GLM analysis, we then estimated 459 

the beta coefficients for each predictor at each time point, separately for each subject. For 460 

this analysis, a category RDM could not be constructed, as all comparisons of fragments 461 

from the same scene were eliminated. 462 

Controlling for deep neural network features 463 

To control for similarity in categorization-related visual features, we used a deep neural 464 

network (DNN) model. DNNs have recently become the state-of-the-art model of visual 465 

categorization, as they tightly mirror the neural organization of object and scene 466 

representations (Cichy et al., 2016, 2017; Cichy and Kaiser, 2019; Groen et al., 2018; 467 

Güclü and van Gerven, 2015; Wen et al., 2018). DNNs are similar to the brain as they are 468 

trained using excessive training material while dynamically adjusting the “tuning” of their 469 

connections. Here, we used a DNN that has been trained to categorize images (see 470 

below) on a large number of images and categories, therefore providing us with a high-471 
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quality model of how visual features are extracted for efficient categorization. By 472 

comparing DNNs activations and brain responses to the scene fragments, we could 473 

quantify to which extent features routinely extracted for categorization purposes account 474 

for schema-based coding in the human visual system.  475 

In a two-step approach, we re-performed our regression analysis after removing the 476 

representational organization emerging from the DNN. First, we used a regression model 477 

to remove the contribution of the dissimilarity structure in the DNN model. This model 478 

included one predictor for each layer extracted from the DNN (i.e., one RDM for each 479 

processing step along the DNN). Estimating this model allowed us to remove the neural 480 

organization explained by the DNN while retaining what remains unexplained (in the 481 

regression residuals).  Second, we re-ran the previous regression analyses (see above), 482 

but now the residuals of the DNN regression were used as the regression criterion, so that 483 

only the organization that remained unexplained by the DNN was modeled. 484 

As a DNN model, we used a pre-trained version (trained on image categorization for 485 

the ImageNet challenge) of the ResNet50 model (He et al., 2016), as implemented in 486 

MatConvNet (Vedaldi and Lenc, 2015). This model’s deeper, residual architecture 487 

outperforms shallower models in approximating visual cortex organization (Wen et al., 488 

2018). ResNet50 consists of 16 blocks of residual layer modules, where information both 489 

passes through an aggregate of layers within the block, and bypasses the block; then the 490 

residual between the processed and the bypassing information is computed. Additionally, 491 

ResNet50 has one convolutional input layer, and one fully-connected output layer. Here, to 492 

not inflate the number of intercorrelated predictor variables, we only used the final layer of 493 

each residual block, and thus 18 layers in total (16 from the residual blocks, and the input 494 

and output layers). For each layer, an RDM was built using 1-correlation between the 495 

activations of all nodes in the layer, separately for each pair of conditions. For regressing 496 

out the DNN RDMs, we added one predictor for each available RDM. In Figure 3 – Figure 497 
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Supplement 1, we show that an analysis using the AlexNet architecture (Krizhevsky et al., 498 

2012) yields comparable results; in Figure 3 – Figure Supplement 2, we additionally 499 

provide information about the DNN model fit across regions and time points. 500 

Statistical testing 501 

For the fMRI data, we tested the regression coefficients against zero, using one-tailed, one-502 

sample t-tests (i.e., testing the hypothesis that coefficients were greater than zero). Multiple-503 

comparison correction was based on Bonferroni-corrections across ROIs. A complete report 504 

of all tests performed on the fMRI data can be found in Supplementary file 1. For the EEG 505 

data, we used a threshold-free cluster enhancement procedure (Smith and Nichols, 2009) 506 

to identify significant effects across time. Multiple-comparison correction was based on a 507 

sign-permutation test (with null distributions created from 10,000 bootstrapping iterations) 508 

as implemented in CoSMoMVPA (Oosterhof et al., 2016). The resulting statistical maps 509 

were thresholded at Z>1.64 (i.e., p<.05, one-tailed against zero). Additionally, we report 510 

the results of one-sided t-tests for all peaks effects. To estimate the reliability of onset and 511 

peak latencies we performed bootstrapping analyses, which are reported in 512 

Supplementary Items 2/3.  513 

Data availability 514 

Data are publicly available on OSF (DOI.ORG/10.17605/OSF.IO/H3G6V). 515 
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 706 

Figure 1 – Figure Supplement 1 707 

 708 

MDS visualization of neural RDMs. a/b, A multi-dimensional scaling (MDS) of the 709 

fragments’ neural similarity in OPA (a) and after 200ms of processing (b) revealed a 710 

sorting according to vertical location, which was visible in a two-dimensional solution. This 711 

visualization suggests that schemata are a prominent organizing principle for 712 

representations in OPA and after 200ms of vision. A time-resolved MDS for the EEG data 713 

can be found in Video 1.       714 

715 
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 716 

Figure 2 – Figure Supplement 1 717 

 718 

Details on neural dissimilarity construction. Pairwise neural dissimilarity values were 719 

into representational dissimilarity matrices (RDMs), so that for every time point one 36X36 720 

matrix containing estimates of neural dissimilarity was available. Here, an example RDM at 721 

200ms post-stimulus is shown, which exemplifies the ordering of fragment combinations 722 

for all RDMs. 723 
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 724 

Figure 2 – Figure Supplement 2 725 

 726 

fMRI response time courses. a, Functional MRI data were analyzed in three regions of 727 

interest (here shown on the right hemisphere): primary visual cortex (V1), occipital place 728 

area (OPA), and parahippocampal place area (PPA). Each of these ROIs showed reliable 729 

net responses to the fragments, peaking 3 TRs after stimulus onset. The activation time 730 

courses were baseline-corrected by subtracting the activation from the first two TRs. b, 731 

GLM analysis across the response time course. Most prominently after 3 TRs, the neural 732 

organization in OPA was explained by the fragments’ vertical location, reflecting a neural 733 

coding in accordance with spatial schemata. Additionally, scene category predicted neural 734 

organization in OPA and PPA. Error margins reflect standard errors of the mean. 735 

Significance markers represent p<0.05 (corrected for multiple comparisons across ROIs).736 
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 737 

Figure 2 – Figure Supplement 3 738 

 739 

Pairwise decoding across electrode groups. Based on previous studies on multivariate 740 

decoding of visual information, we restricted our main analysis to a group of posterior 741 

electrodes (where we expected the strongest effects). For comparison, we also analyzed 742 

data in central and anterior electrode groups. The central group consisted of 20 electrodes 743 

(C3, TP9, CP5, CP1, TP10, CP6, CP2, Cz, C4, C1, C5, TP7, CP3, CPz, CP4, TP8, C6, 744 

C2, T7, T8) and the anterior group consisted of 26 electrodes (F3, F7, FT9, FC5, FC1, 745 

FT10, FC6, FC2, F4, F8, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, FCz, FC4, FT8, F6, F2, 746 

AF4, AF8, Fpz). RDMs were constructed in an identical fashion to the posterior group used 747 

for the main analyses (Figure 2 – Figure Supplement 1). We computed general 748 

discriminability of the 36 scene fragments in the three groups by averaging all off-diagonal 749 

elements of the RDMs. As expected, the resulting time courses of pair-wise discriminability 750 

revealed the strongest overall decoding in the posterior group, followed by the central and 751 

anterior groups. RSA results for these electrodes are found in Figure 2 – Figure 752 

Supplements 4/5. Significance markers represent p<0.05 (corrected for multiple 753 

comparisons). Error margins reflect standard errors of the mean.  754 
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 755 

Figure 2 – Figure Supplement 4 756 

 757 

RSA using central electrodes. a/b, Repeating the main RSAs for the central electrode 758 

group yielded a similar pattern as the posterior group, revealing both vertical location 759 

information (from 85ms to 485ms) and category information (from 100ms to 705ms). c/d, 760 

Removing DNN features abolished category information, but not vertical location 761 

information, most prominently between 185ms and 350ms. This result is consistent with 762 

the schematic coding observed for posterior signals. Significance markers represent 763 

p<0.05 (corrected for multiple comparisons). Error margins reflect standard errors of the 764 

mean.  765 
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 766 

Figure 2 – Figure Supplement 5 767 

 768 

RSA using anterior electrodes. a/b, Also responses recorded from the anterior group 769 

yielded both vertical location information (from 85ms to 350ms) and category information 770 

(from 165ms to 610ms). c/d, In contrast to the other electrode groups, removing DNN 771 

features rendered location and category information insignificant, suggesting that they are 772 

not primarily linked to sources in frontal brain areas. This observation also excludes 773 

explanations based on oculomotor confounds. Significance markers represent p<0.05 774 

(corrected for multiple comparisons). Error margins reflect standard errors of the mean.  775 
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 776 

Figure 2 – Figure Supplement 6 777 

 778 

Vertical location effects across experiment halves. We interpret the vertical location 779 

organization in the neural data as reflecting prior schematic knowledge about scene 780 

structure. Alternatively, however, the vertical location organization could in principle result 781 

from learning the composition of the scenes across the experiment. In the latter case, one 782 

would predict that vertical location effects should primarily occur late in the experiment 783 

(e.g., in the second half), and less so towards the beginning (e.g., in the first half). To test 784 

this, we split into halves both the fMRI data (three runs each) and the EEG data (first 785 

versus second half of trials) and for each half modeled the neural data as a function of the 786 

vertical and horizontal location and category predictors. a, For the fMRI data, we found 787 

significant vertical location information in the OPA for in the first half (t[29]=3.46, p<0.001, 788 

pcorr<0.05) and a trending effect for the second half (t[29]=2.07, p=0.024, pcorr>0.05). No 789 

differences between the splits were found in any region (all t[29]<0.90, p>0.37). b, For the 790 

EEG data, we also found very similar results for the two spits, with no significant 791 

differences emerging at any time point. Together, these results suggest that the vertical 792 

location organization cannot solely be explained by extensive learning over the course of 793 

the experiment. Significance markers represent p<0.05 (corrected for multiple 794 

comparisons). Empty markers represent p<0.05 (uncorrected). Error margins reflect 795 

standard errors of the mean.  796 
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 797 

Figure 2 – Figure Supplement 7 798 

 799 

Pairwise comparisons along the vertical axis. To test whether vertical location 800 

information can be observed across all three vertical bins, we modelled the neural data as 801 

a function of the fragments’ vertical location, now separately for each pairwise comparison 802 

along the vertical axis (i.e., top versus bottom, top versus middle, and middle versus 803 

bottom). a, For the fMRI data, we only found consistent evidence for vertical location 804 

information in the OPA: top versus bottom (t[29]=4.10, p<0.001, pcorr<0.05), top versus 805 

middle (t[29]=2.13, p=0.021, pcorr>0.05), middle versus bottom (t[29]=2.06, p=0.024, 806 

pcorr>0.05). Although the effect was numerically bigger for top versus bottom, we did not 807 

find a significant difference between the three pairwise comparisons in OPA (F[2,58]=2.71, 808 

p=0.075). b, For the EEG data, we found significant vertical location information for all 809 

three comparisons. Here, the middle-versus-bottom comparison yielded the weakest 810 

effect, which was significantly smaller than the effect for top versus bottom from 120ms 811 

and 195ms and significantly smaller than the effect for top versus middle from 110ms to 812 

285ms. Together, these results suggest that schematic coding can be observed 813 

consistently across the different comparisons along the vertical axis, although 814 

comparisons including the top fragments yielded stronger effects. Significance markers 815 

represent p<0.05 (corrected for multiple comparisons). Empty markers represent p<0.05 816 

(uncorrected). Error margins reflect standard errors of the mean.   817 

818 
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 819 

Figure 2 – Figure Supplement 8 820 

 821 

Controlling for task difficulty. a, To control for task difficulty effects in the indoor/outdoor 822 

classification task, we computed paired t-tests between all pairs of fragments, separately 823 

for their associated accuracies and response times. We then constructed two predictor 824 

RDMs that contained the t-values of the pairwise tests between the fragments: For each 825 

pair of fragments, these t-values corresponded to dissimilarity in task difficulty (e.g., 826 

comparing two fragments associated with similarly short categorization response times 827 

would yield a low t-value, and thus low dissimilarity). This was done separately for the 828 

fMRI and EEG experiments (matrices from the EEG experiment are shown). The accuracy 829 

and response time RDMs were mildly correlated with the category RDM (fMRI: accuracy: 830 

r=0.10, response time: r=0.15; EEG: accuracy: r=0.17, response time: r=0.16), but not with 831 

the vertical location RDM (fMRI: both r<0.01, EEG: both r<0.01). After regressing out the 832 

task difficulty RDMs, we found highly similar vertical location and category information as 833 

in the previous analyses (Fig. 3b/c). b, In the fMRI, only category information in OPA was 834 

significantly reduced when task difficulty was accounted for. c, In the EEG, towards the 835 

end of the epoch –  when participants responded – location and category information were 836 

decreased. This shows that the effects of schematic coding – emerging around 200ms 837 

after onset – cannot be explained by differences in task difficulty. The dashed significance 838 

markers represent significantly reduced information (compared to the main analyses, Fig. 839 

3b/c) at p<0.05 (corrected for multiple comparisons).840 
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Figure 2 – Figure Supplement 9 842 

 843 

Categorical versus Euclidean vertical location predictors. We defined our vertical 844 

location predictor as categorical, assuming that top, middle, and bottom fragments are 845 

coded distinctly in the human brain. An alternative way of constructing the vertical location 846 

predictor is in terms of the fragments’ Euclidean distances, where fragments closer 847 

together along the vertical axis (e.g., top and middle) are represented more similarly than 848 

fragments further apart (e.g., top and bottom). a, For the fMRI data, we found that the 849 

categorical and Euclidean predictors similarly explained the neural data, with no statistical 850 

differences between them (all t[29]<1.15, p>0.26). b, For the EEG data, we found that both 851 

predictors explained the neural data well. However, the categorical predictor revealed 852 

significantly stronger vertical location information from 75ms to 340ms, suggesting that, at 853 

least in the EEG data, the differentiation along the vertical axis is more categorical in 854 

nature. Significance markers represent p<0.05 (corrected for multiple comparisons). Error 855 

margins reflect standard errors of the mean.  856 
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 857 

Figure 3 – Figure Supplement 1 858 

 859 

AlexNet as a model of visual categorization. a, In addition to the ResNet50 DNN, we 860 

also used the more widely used AlexNet DNN architecture (pretrained on the ImageNet 861 

dataset, implemented in the MatConvNet toolbox) as a model for visual categorization. 862 

AlexNet consists of 5 convolutional and 3 fully-connected layers. We created 8 RDMs, 863 

separately for each layer of the DNN. b/c, Removing the AlexNet DNN features rendered 864 

category information non-significant in fMRI and EEG signals. However, we still found 865 

vertical location information in OPA and from 65ms to 375ms. c-e, When additionally 866 

restricting the analysis to comparisons between indoor and outdoor scenes, the fragments’ 867 

vertical location still predicted neural activations in OPA and from 95ms to 375ms. In sum, 868 

these results are highly similar to the results obtained with the ResNet50 model (Fig. 869 

3b/c/h/i). Significance markers represent p<0.05 (corrected for multiple comparisons). 870 

Error margins reflect standard errors of the mean.  871 
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 872 

Figure 3 – Figure Supplement 2 873 

 874 

DNN model fit. a/b, Goodness of fit (R2) across ROIs (a) and time (b) of the GLMs used to 875 

regress out DNN features, obtained from ResNet50 (left) or AlexNet (right). For the EEG 876 

time series, mean R2 across the baseline period were subtracted. Note that GLMs based 877 

on the ResNet50 RDMs had more predictor variables, which may contribute to their better 878 

fit. Error bars represent standard errors of the mean. 879 

880 
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 881 

Figure 3 – Figure Supplement 3 882 

 883 

Low-level control models. We used three control models that explicitly account for low-884 

level visual features: a pixel-dissimilarity model, GIST descriptors, and the fragments’ 885 

neural dissimilarity in V1. Critically, all three models did not account for the fragments’ 886 

vertical location organization. Moreover, unlike the DNN models, the low-level models 887 

were also unable to account for the fragments’ categorical organization. a/b, Results after 888 

regressing out the pixel dissimilarity model, which captured the fragments’ pairwise 889 

dissimilarity in pixel space (i.e., 1- the correlation of their pixel values). c/d, Results after 890 

regressing out the GIST model, which captured the fragments’ pairwise dissimilarity in 891 

GIST descriptors (i.e., in their global spatial envelope). e/f, Results after regressing out the 892 

V1 model, which captured the fragments’ pairwise neural dissimilarity in V1 (i.e., the 893 

averaged RDM across participants) and thereby provides a brain-derived measure of low-894 

level feature similarity. Significance markers represent p<0.05 (corrected for multiple 895 

comparisons). Error margins reflect standard errors of the mean.  896 
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 897 

Supplementary file 1 898 

Complete statistical report for fMRI results. The table shows test statistics and p-values 899 

for all tests performed in the fMRI experiment (Fig. 2/3). Values reflect t-tests one-sided t-900 

tests against zero. All p-values are uncorrected; in the main manuscript, only tests 901 

surviving Bonferroni-correction across the three ROIs (marked in color) are considered 902 

significant. 903 
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 904 

Supplementary file 2 905 

Estimating peak latencies. The table shows means and standard deviations (in brackets) 906 

of peak latencies in ms for vertical location and category information in the main analyses 907 

(Fig. 2/3). To estimate the reliability of peaks and onsets (Supplementary file 3) of location 908 

and category information in the key analyses, we conducted a bootstrapping analysis. For 909 

this analysis, we choose 100 samples of 20 randomly chosen datasets (with possible 910 

repetitions). For each random sample, we computed peak and onset latencies; we then 911 

averaged the peak and onset latencies across the 100 samples. Peak latencies were 912 

defined as the highest beta estimate in the time course. Notably, the peak latency of 913 

vertical location information remained highly stable across analyses.914 
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 915 

Supplementary file 3 916 

Estimating onset latencies. The table shows means and standard deviations (in 917 

brackets) of onset latencies in ms for vertical location and category information in the main 918 

analyses (Fig. 2/3). Onset latencies were quantified using the bootstrapping logic 919 

explained above (Supplementary file 2). Onsets were defined by first computing TFCE 920 

statistics for each random sample, with multiple-comparison correction based on 1,000 null 921 

distributions. The onset latency for each sample was then defined as the first occurrence 922 

of three consecutive time points reaching significance (p<0.05, corrected for multiple 923 

comparisons). 924 
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 925 

Video 1 926 

Time-resolved MDS visualization of the neural RDMs. To directly visualize the 927 

emergence of schematic coding from the neural data, we performed a multi-dimensional 928 

scaling (MDS) analysis, where the time-resolved neural RDMs (averaged across 929 

participants) were projected onto a two-dimensional space. The RDM time series was 930 

smoothed using a sliding averaging window (15ms width). Computing MDS solutions 931 

across time yielded a movie (5ms resolution), where fragments travel through an arbitrary 932 

space, eventually forming a meaningful organization. Notably, around 200ms, a division 933 

into the three vertical locations can be observed. The movie is attached to this file 934 

(time_resolved_mds.mov).   935 


	Article File

