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A B S T R A C T

Human high-level visual cortex shows a distinction between animate and inanimate objects, as revealed by fMRI. Recent studies have shown that object animacy can

similarly be decoded from MEG sensor patterns. Which object properties drive this decoding? Here, we disentangled the influence of perceptual and categorical object

properties by presenting perceptually matched objects (e.g., snake and rope) that were nonetheless easily recognizable as being animate or inanimate. In a series of

behavioral experiments, three aspects of perceptual dissimilarity of these objects were quantified: overall dissimilarity, outline dissimilarity, and texture dissimilarity.

Neural dissimilarity of MEG sensor patterns was modeled using regression analysis, in which perceptual dissimilarity (from the behavioral experiments) and cate-

gorical dissimilarity served as predictors of neural dissimilarity. We found that perceptual dissimilarity was strongly reflected in MEG sensor patterns from 80ms after

stimulus onset, with separable contributions of outline and texture dissimilarity. Surprisingly, when controlling for perceptual dissimilarity, MEG patterns did not carry

information about object category (animate vs inanimate) at any time point. Nearly identical results were found in a second MEG experiment that required basic-level

object recognition. This is in contrast to results observed in fMRI using the same stimuli, task, and analysis approach: fMRI voxel patterns in object-selective cortex

showed a highly reliable categorical distinction even when controlling for perceptual dissimilarity. These results suggest that MEG sensor patterns do not capture

object animacy independently of perceptual differences between animate and inanimate objects.

1. Introduction

Since their successful application in fMRI research, multivariate

analysis methods have recently been applied to MEG and EEG data to

gain insight into the temporal dynamics of visual and cognitive pro-

cessing. A replicable finding in this rapidly growing literature is the

finding that MEG sensor patterns carry information about object category

(e.g., animacy), peaking around 150–250ms after stimulus onset (for

review, see Contini et al., 2017). Similar category distinctions have been

observed in high-level visual cortex using fMRI (Grill-Spector and

Weiner, 2014). What are the object properties that drive this decoding,

and are these the same in fMRI and MEG?

Animate objects differ from inanimate objects in terms of their

characteristic shapes and other category-associated visual features (Levin

et al., 2001; Long et al., 2017, 2018; Schmidt et al., 2017; Zachariou

et al., 2018). These feature differences are reflected in behavioral mea-

sures of perceptual similarity, such that within- and between-category

perceptual similarity can be used to accurately predict the time it takes

observers to categorize an object as animate or inanimate (Mohan and

Arun, 2012). These perceptual differences likely contribute to categorical

distinctions in MEG, considering that object shape and perceptual

similarity are strongly reflected in MEG and EEG patterns (Isik et al.,

2014; Coggan et al., 2016; Wardle et al., 2016). Furthermore, MEG ani-

macy decoding strength is closely related, at the exemplar level, to

categorization reaction time (Ritchie et al., 2015), likely reflecting the

exemplar's perceptual typicality of the category it belongs to (Mohan and

Arun, 2012). Together, these studies raise the possibility that category

information in MEG patterns primarily reflects perceptual differences

between animate and inanimate objects.

However, animate and inanimate objects also differ in other aspects.

For example, animals are agents capable of moving by themselves, a

property that we rapidly associate with animals even when these are

viewed as static pictures. Additionally, we perceive (most) animals as

entities with goals, intentions, beliefs, and desires. Animate and inani-

mate objects also invite different actions on the part of the observer. For

example, unlike animals, inanimate objects are often things with specific

functions and manipulation patterns, such as tools, musical instruments,

or clothing. Animate and inanimate objects are thus associated with

different actions, functions, and other higher-order properties. fMRI

studies have provided evidence that category selectivity in visual cortex,

for example for tools, partly reflects these higher-order associations (for

reviews, see Amedi et al., 2017; Peelen and Downing, 2017). This raises
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the possibility that category information in MEG patterns similarly re-

flects non-perceptual differences between animate and inanimate

objects.

One way to dissociate between these accounts is to compare neural

responses to animate and inanimate objects that are perceptually

matched in terms of their 2D shape profile (e.g., snake and rope). Recent

fMRI studies adopting this approach revealed that category-specific re-

sponses in parts of ventral temporal cortex (VTC) are not fully reducible

to perceptual differences (Macdonald and Culham, 2015; Bracci and Op

de Beeck, 2016; Bryan et al., 2016; Proklova et al., 2016). In a previous

fMRI study (Proklova et al., 2016), we found that activity in large parts of

the visual cortex reflected the perceptual similarity of the objects, inde-

pendent of object category. But importantly, the animacy distinction in

parts of VTCwas preserved for objects that were closely matched in terms

of perceptual similarity (Fig. 1). If MEG activity in the 150–250ms time

window corresponds to category-selective fMRI activity in these VTC

regions, animacy information for these objects should be preserved in

MEG as well.

In order to investigate the independent contributions of perceptual

properties and object category to the MEG signal, we used representa-

tional similarity analysis (RSA; Kriegeskorte et al., 2008). Following the

analysis approach used in a previous fMRI study (Proklova et al., 2016),

the neural dissimilarity at each time point (measured with MEG) was

modeled as a linear combination of category and perceptual dissimilarity.

Perceptual dissimilarity was established using a visual search task in

which participants detected an oddball target among an array of identical

distractors (Fig. 2) by indicating whether the target was on the right or on

the left of the midline. For perceptually similar target and distractor

pairs, the reaction times will be slower (such as when searching for a

snake among ropes), while for perceptually dissimilar target and dis-

tractor pairs the reaction times will be faster (such as when looking for a

snake among planes). In this task, the identity or category of the target is

irrelevant; the task of the participants is simply to indicate where the

different-looking stimulus is located (Mohan and Arun, 2012). Perceptual

dissimilarity in this task is closely related to image properties. For

example, in a previous study using this task (Mohan and Arun, 2012),

perceptual dissimilarity correlated with pixel-wise similarity of “coarse

footprint” representations of the images (i.e., after normalizing for size,

position, and brightness, and blurred using a Gaussian function). We

chose to use perceptual dissimilarity rather than an image-based

dissimilarity measure because perceptual measures well predict how

the visual system represents image-based properties (Wardle et al., 2016;

Sripati and Olson, 2010). In addition to perceptual dissimilarity of the

original stimuli, we also measured perceptual dissimilarity for the outline

shapes and inner textures of the stimuli (Fig. 2), allowing us to test for the

time course of these separable visual properties.

Results showed that representational dissimilarity in MEG sensor

patterns strongly reflected the overall perceptual dissimilarity of the

objects, as well as dissimilarity in their outline and texture properties.

Contrary to our expectations, however, MEG sensor patterns did not

reflect the categorical distinction between animate and inanimate objects

at any time point.

2. Materials and Methods

2.1. Participants

Twenty-nine participants with normal or corrected-to-normal vision

took part in one of two experiments, including 14 volunteers who

participated in Experiment 1 (5 females, mean age¼ 25.6 years, SD¼ 4

years) and 15 volunteers who participated in Experiment 2 (8 females,

mean age¼ 25.2 years, SD¼ 3.1 years). All participants provided

informed consent and received monetary compensation for their partic-

ipation. The experimental protocols were approved by the Ethical Com-

mittee of the University of Trento, Italy.

2.2. Stimuli

The stimulus set in both experiments was identical to the one used in

an earlier fMRI study (Proklova et al., 2016) and consisted of 16 objects

(8 animate and 8 inanimate) divided into 4 shape sets (Fig. 1A). Each

shape set consisted of 2 animals and 2 inanimate objects that were

matched for overall shape features (e.g. snake-rope). In addition, four

exemplars of each stimulus were used, resulting in a total of 64 stimuli

(see Fig. 1C for the full stimulus set). In all analyses, we averaged across

the 4 exemplars of each stimulus conditions (i.e., there were 16 condi-

tions in total). In Experiment 1, one additional visual stimulus (a

hammer, see Fig. 1B) was used to serve as an oddball target. All stimuli

were matched for luminance and contrast using the SHINE toolbox

(Willenbockel et al., 2010).

Fig. 1. Stimuli and MEG paradigms. (A) Example stimuli of the 16 conditions, grouped in shape clusters. (B) In Experiment 1, individual stimuli were presented

centrally for 500ms, followed by a variable ISI of 1.5–2 s. Participants were asked to press the response button and blink whenever they saw a hammer. In Experiment

2, the procedure was largely identical to Experiment 1, except that participants performed a one-back task, pressing the button when two images of the same object

type (e.g., two different planes) appeared on two consecutive trials. (C) Full stimulus set used in the experiments.
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2.3. Experiments 1 and 2: procedure

Participants viewed the visual stimuli while sitting in the dimly lit

magnetically shielded room. The stimuli were projected on a translucent

screen located 150 cm from the participant. The stimuli were presented

centrally on the uniformly gray background and approximately spanned

a visual angle of 8�. Stimulus presentation was controlled using the

Psychophysics Toolbox (Brainard, 1997). Participants completed 12

experimental runs, with each of the 64 stimuli appearing exactly twice in

each run, in random order. The stimuli were presented for 500ms, fol-

lowed by a variable inter-stimulus interval ranging from 1.5 s to 2 s.

In Experiment 1, participants were instructed to maintain fixation and

to press the response button and blink each time they saw a picture of a

hammer. This target appeared on 20% of trials (32 target trials, randomly

distributed over the run), resulting in 160 trials in total per run. Target

trials were not analyzed. In Experiment 2, participants were asked to

perform a one-back task, pressing the response button whenever an

image of the same object type appeared on two consecutive trials (e.g.

two different snakes). Twelve repetition trials were inserted at random

points within each run, resulting in 140 trials per run. Repetition trials

were not analyzed.

2.4. MEG acquisition and preprocessing

Electrophysiological recordings were obtained using an Elekta Neu-

romag 306 MEG system (Elekta Neuromag systems, Helsinki, Finland)

equipped with 204 gradiometers and 102 magnetometers. Signals were

sampled continuously at 1000Hz rate and band-pass filtered online be-

tween 0.1 and 330Hz. The data were then preprocessed offline using

MATLAB and the Fieldrip Toolbox (Oostenveld et al., 2011). Data from

all runs were concatenated and trials were epoched from 100ms before

to 500ms after stimulus onset (for one follow-up analysis, trials were

epoched from 100ms before to 800ms after stimulus onset). Trials

containing eye-blinks and other movement-related artifacts were dis-

carded from further analysis based on visual inspection. Trial removal

was blind to condition information. The signal was baseline-corrected

with respect to the pre-stimulus window and downsampled to 100 Hz

to reduce the processing time and increase the signal-to-noise ratio

(Grootswagers et al., 2017).

2.5. Pairwise decoding analysis

For each time point, we trained linear discriminant analysis (LDA)

classifiers on response patterns across sensors to discriminate between all

possible pairs of objects. For the classification analysis, trials were

randomly assigned to four independent chunks. Classifiers were trained

on data from three chunks and tested on the fourth chunk; this analysis

was repeated four times, with each chunk serving as the test set once. To

avoid biases in classification, we balanced the training and test sets by

randomly removing trials from the condition where more trials where

available until an equal number of trials were available for both condi-

tions. To reduce trial-to-trial noise and increase the reliability of data

supplied to the classifier, new, “synthetic” trials were created by aver-

aging individual trials (Grootswagers et al., 2017): for every condition

and chunk we randomly picked 25% of the original trials and averaged

the data across them. This procedure was repeated 500 times (with the

constraint that no trial was used more than one time more often than any

other trial), producing 500 new “synthetic” trials (with each one being an

average of up to 12 trials, depending on trial numbers left after pre-

processing) for each condition and chunk that were then supplied to the

classifier. The resulting decoding accuracy time course was smoothed

with an averaging filter spanning 3 time points (i.e., 30ms). The

smoothing was performed prior to the regression analyses, such that all

statistical analyses were performed on the smoothed data. The pair-wise

decoding analysis yielded a time course of classification accuracies for

each pair of objects, reflecting the neural dissimilarity of each pair at

Fig. 2. Perceptual dissimilarity measures. Three behavioral visual search experiments were used to measure different aspects of pairwise perceptual dissimilarity of

the stimuli. In each experiment, participants had to locate the target among an array of identical distractors. The inverse reaction time in this task is taken as a measure

of perceptual dissimilarity between the target and the distractor. Dissimilarity matrices are shown for the three behavioral experiments, quantifying overall perceptual

dissimilarity (left panel), outline dissimilarity (center), and texture dissimilarity (right panel).
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every time point.

2.6. Category dissimilarity

A category dissimilarity matrix was constructed by assigning zeroes

(minimum dissimilarity) to elements of the matrix that corresponded to

pairs of objects belonging to the same category and ones (maximum

dissimilarity) for pairs of objects from different categories.

2.7. Perceptual dissimilarity

To be able to measure the contribution of perceptual dissimilarity to

the MEG signal, we created predictor matrices that reflected the

perceived dissimilarity of the objects for a set of independent observers.

In separate behavioral visual search experiments (see Proklova et al.,

2016 for a detailed report of these experiments), three perceptual

dissimilarity matrices were obtained. In one experiment, overall

perceptual dissimilarity was quantified using the stimuli used in the MEG

experiment. In two other experiments, we sought to dissociate the in-

fluence of outline and texture properties of the stimuli by using outlines

and texture patches as stimuli (Fig. 2). In all three experiments, partici-

pants detected an oddball target among an array of identical distractors

(Fig. 2) by indicating whether the target was on the right or on the left of

the midline. This was done for all possible target-distractor pairs among

the stimuli. For each pair of objects, the corresponding entry in the

perceptual dissimilarity matrix is given as the inverse reaction time

(1/RT) in the visual search task, using one of the objects as a target and

another as a distractor (Fig. 2). All RTs for correct trials were included.

2.8. Relationship between the predictor matrices

Prior to the RSA, we assessed the reliability of, and dependencies

among, the different predictor matrices. The reliability of the three

perceptual dissimilarity matrices, computed using split-half correlations

(Pearson, 100 random splits of participants), was very high: texture

(r¼ 0.90), outline (r¼ 0.98), overall (r¼ 0.95). Correlating the percep-

tual dissimilarity matrices with the category dissimilarity matrix

revealed that category dissimilarity was not related to the other three

predictors (point-biserial correlation; r¼�0.08, r¼�0.06, and

r¼�0.06 for overall, outline, and texture dissimilarity, respectively),

indicating that the matching of visual properties between animate and

inanimate objects was successful. As expected, the three perceptual

dissimilarity predictors were related to each other: Overall perceptual

dissimilarity correlated with both outline dissimilarity (Pearson r¼ 0.82)

and texture dissimilarity (r¼ 0.32). Outline and texture dissimilarity

were comparably less correlated (r¼ 0.18), suggesting that they capture

different aspects of overall perceptual dissimilarity. Interestingly, a linear

combination of outline dissimilarity (75% weighting) and texture

dissimilarity (25% weighting) closely resembled the overall perceptual

dissimilarity (see Proklova et al., 2016, for details). Considering this

inter-dependency between the perceptual dissimilarity matrices, we

performed two separate regression analyses: one with category and

overall perceptual dissimilarity as predictors, and one with category

dissimilarity, outline dissimilarity and texture dissimilarity as predictors.

2.9. Neural dissimilarity

Following the approach used in previous MEG studies, we used

pairwise decoding accuracy as a measure of neural dissimilarity, where

higher decoding accuracy corresponds to greater neural dissimilarity

(Cichy et al., 2014; Wardle et al., 2016). Classifier details are described in

the Pairwise decoding analyses section (2.5). The classifier accuracy at

each time point was assessed as the percentage of correctly classified

trials (with chance performance being 50%) andwas used as ameasure of

neural dissimilarity between the two conditions. This classification pro-

cedure was performed for all pairs of conditions, resulting in a 16� 16

neural dissimilarity matrix for each time point.

In addition, as an alternative neural dissimilarity measure we used

linear discriminant t-value (LD-t), a version of cross-validated Mahala-

nobis distance (Nili et al., 2014; Walther et al., 2016). To obtain an LD-t

value for each pair of stimuli, the data were divided into two parts

(training and testing set), and an LDA classifier was trained to discrimi-

nate between the two stimuli (see above). The testing set was then pro-

jected on the discriminant dimension, and the t-value was computed

describing how well the two stimuli are discriminated. This measure was

calculated using the RSA toolbox (Nili et al., 2014). The 16� 16 LD-t

neural dissimilarity matrix was obtained for each time point.

Neural dissimilarity was computed for magnetometers and gradiom-

eters separately, and all subsequent analyses are reported for both sensor

types. Previous MEG studies on visual category decoding have either used

both sensor types together (e.g., Cichy et al., 2014), only magnetometers

(e.g., Kaiser et al., 2016a, 2016b), or only gradiometers (e.g., Ritchie et al.,

2015). Here, we decided to report data from magnetometers and gradi-

ometers separately to demonstrate consistency of the results across sensor

types (similar results were obtained when analyzing all sensors together).

2.10. Modelling the neural dissimilarity

After constructing neural dissimilarity matrices for each time point, as

well as category and perceptual dissimilarity matrices, we performed two

regression-based representational similarity analyses (RSA) to determine

the contribution of category dissimilarity and different aspects of

perceptual dissimilarity to the MEG signal. All dissimilarity matrices

were z-scored before estimating the regression coefficients. In the first

analysis, the neural dissimilarity at each time point was modeled as a

linear combination of category and overall perceptual dissimilarity

(Fig. 3A). This analysis was performed separately for each participant,

resulting in two regression weights for each time point per participant. In

the second analysis, the neural dissimilarity at each time point was

modeled as a linear combination of category, outline, and texture

dissimilarity (Fig. 3B). This produced three beta weights per participant

for each time point. The time courses of the resulting beta estimates for

each predictor were then tested against zero.

2.11. Sensor-space searchlight analysis

To identify time periods and sensors in which the contribution of

category or perceptual dissimilarity to neural dissimilarity was signifi-

cant, we performed a sensor-space searchlight analysis. Using the same

approach as in the previous analyses, we ran two representational simi-

larity searchlights. For these analyses, the pairwise decoding analysis was

repeated for local sensor neighborhoods of ten sensors each. For each

sensor location, neighborhoods were defined by selecting the sensor and

its nine nearest neighboring sensors in the MEG gradiometer configura-

tion; individual neighborhoods were thus overlapping in sensor space.

For each sensor neighborhood the neural dissimilarity was computed for

every post-stimulus time point. Then, to reduce the number of statistical

comparisons, the neural dissimilarity matrices for each neighborhood

were averaged in time bins of 50ms, ranging from stimulus onset to

500ms post-stimulus (resulting in 10 time bins).

The resulting neural dissimilarity matrices were then modeled at each

time window as (1) a linear combination of category dissimilarity and

overall perceptual dissimilarity, resulting in two beta estimate maps, and

(2) a linear combination of category dissimilarity, outline dissimilarity,

and texture dissimilarity, producing three beta estimate maps. The

resulting beta estimates were mapped onto a scalp representation. The

scalp maps for each predictor were then averaged across participants and

tested against zero.

2.12. Statistical analysis

For all tests, statistical significance was assessed using the threshold-
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free cluster enhancement procedure (TFCE) (Smith and Nichols, 2009)

with default parameters, using multiple-comparison correction based on

a sign-permutation test (with null distributions created from 10,000

bootstrapping iterations) as implemented in the CoSMoMVPA toolbox

(Oosterhof et al., 2016). The threshold was set at Z> 1.64 (i.e., p< 0.05,

one-tailed), as further clarified in the individual sections. Significance in

the searchlight analysis was assessed separately for each time window

using the TFCE procedure to reveal the sensors in which the contribution

of a particular predictor to the neural dissimilarity was significantly

above zero.

2.13. Data and code availability statement

Data and code are available upon request and on OSF (https://osf.

io/52mxv/) and GitHub (https://github.com/ozonda/MEG_Visua

l_Animacy).

3. Results

3.1. Behavioral results

Participants were very accurate in the oddball detection task of

Experiment 1 (mean¼ 97%, SD¼ 2%) and the one-back repetition

detection task of Experiment 2 (mean¼ 94%, SD¼ 1%). Responses were

faster in Experiment 1 (mean¼ 0.47 s, SD¼ 0.06 s) than Experiment 2

(mean¼ 0.73 s, SD¼ 0.12 s).

3.2. Decoding stimulus conditions

To assess the quality of the MEG data and evaluate whether stimulus

condition could be decoded from the MEG sensor patterns, we averaged

the off-diagonal elements of the MEG dissimilarity matrix for each time

point. This was done separately for Experiments 1 and 2, as well as for

each of the two sensor types (magnetometers and gradiometers), pro-

ducing four time courses of average pairwise stimulus decodability

Fig. 3. Representational similarity analysis. (A) For the first RSA, at each time point, the neural dissimilarity matrix was constructed by calculating the pairwise

decoding accuracy for all pairs of stimuli. This neural dissimilarity matrix was then modeled as a linear combination of overall perceptual dissimilarity and category

dissimilarity. (B) For the second RSA, the neural dissimilarity at each time point was modeled using outline, texture, and category dissimilarity as predictors.

Fig. 4. Time courses of average decodability of all stimulus pairs. Average pairwise stimulus decodability in Experiment 1 (left panel) and Experiment 2 (right

panel), shown separately for two sensor types (solid line for gradiometers and dashed line for magnetometers). Circles indicate time bins where decoding accuracy was

significantly greater than chance (0.5), with filled circles showing significant time points for gradiometers and empty circles for magnetometers.
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(Fig. 4). In both experiments, and for both sensor types, decoding was at

chance until about 50ms, after which the decoding curve rose sharply,

becoming significant at 60ms (or at 70ms for magnetometers in

Experiment 2) and peaking at 120ms. This pattern is similar to the

pattern observed in previous studies (for review, see Contini et al., 2017).

For both sensor types, average pairwise decoding accuracy was higher in

Experiment 2, suggesting that the demands of a one-back task (e.g.,

enhanced attention to the objects, deeper object processing, and

involvement of working memory) increases neural discriminability.

Overall, these results replicate earlier MEG decoding studies and show

that the individual stimuli could be decoded successfully from the MEG

signal.

3.3. Representational similarity analysis

To examine the separate contribution of overall perceptual dissimi-

larity (based on RTs in the visual search task) and category dissimilarity

to neural dissimilarity, we performed a representational similarity anal-

ysis (RSA) modelling the neural dissimilarity at each time point as the

linear combination of these two predictors (see Materials and Methods;

Fig. 3A). This analysis produced one beta estimate time course for each

predictor. The results of this analysis for both experiments are shown in

Fig. 5A, separately for the two types of sensors. For both magnetometers

and gradiometers, the beta estimate for overall perceptual dissimilarity

(shown in red) reached significance at 80ms, peaking at 130ms. The

beta estimate for category dissimilarity (shown in blue) did not reach

significance at any time point. In a second analysis, the neural dissimi-

larity was modeled as a combination of category, outline, and texture

dissimilarity (Fig. 3B). This analysis produced three time courses that are

shown in Fig. 5B. The outline predictor contributed significantly to

neural dissimilarity, starting at 80ms and peaking at 150ms, followed by

a smaller peak at 250ms. The time course of the texture predictor was

significantly above chance starting from 90ms, with a peak at 130ms.

The beta estimate for category dissimilarity did not reach significance at

any time point.

Nearly identical results were obtained in Experiment 2, in which

subjects performed a one-back task (Fig. 5, right column). The first RSA

again revealed a strong contribution of overall perceptual dissimilarity,

peaking at 120ms for magnetometers and at 130ms for gradiometers

(Fig. 5A, right column). In the second RSA, outline dissimilarity signifi-

cantly contributed to the neural dissimilarity with a peak at 150ms for

both magnetometers and gradiometers (Fig. 5B, right column). Texture

(shown in orange) peaked at 110ms for both types of sensors. In both

analyses the category predictor again did not reach significance at any

time point, confirming the results of Experiment 1 with a different and

more engaging task that required attention to object identity.

It is possible that the previously described measure of neural

dissimilarity (i.e., pairwise decoding accuracy) was not sensitive to

reveal category effects. fMRI studies have suggested that the cross-

validated Mahalanobis distance may be a more reliable measure of

neural dissimilarity (Walther et al., 2016). Thus, we repeated all analyses

using the neural dissimilarity matrices constructed using this measure

(see Materials and Methods). The RSA results using this alternative

neural dissimilarity measure are shown in Fig. 6. The pattern of results

was nearly identical to the one obtained using decoding accuracy.

In a further analysis, to maximize statistical power to detect category

information, we combined the data of the two experiments, resulting in

N¼ 29. Moreover, to explore the possibility that category information

emerges after 500ms, we repeated the analysis for a longer time window,

until 800ms after stimulus onset. The results of these analyses are shown

in Fig. 7. In the first RSA (Fig. 7A), the overall perceptual dissimilarity

beta estimate peaked at 130ms for both types of sensors and for both

decoding accuracy (left column) and cross-validated Mahalanobis dis-

tance (right column) as measures of neural dissimilarity. In the second

RSA (Fig. 7B), the regression weights for outline dissimilarity peaked at

140ms for magnetometers and at 150ms for gradiometers for both

dissimilarity measures. Texture dissimilarity beta estimates peaked at

120ms for both sensor types. Category dissimilarity was not significant at

any time point.

Finally, we averaged category dissimilarity betas across a 200 ms

time window (100 ms - 300ms) in which category decoding was

strongest in previous studies (e.g., Carlson et al., 2013; Cichy et al.,

Fig. 5. RSA results using decoding accuracy. (A)

The time courses of regression weights for two sensor

types (solid line for gradiometers and dashed line for

magnetometers) showing the contributions of cate-

gory dissimilarity (in blue) and overall perceptual

dissimilarity (in red) to neural dissimilarity for

Experiment 1 (left column) and Experiment 2 (right

column). (B) The time courses of regression weights

reflecting the contributions of category dissimilarity

(in blue), outline dissimilarity (in light blue) and

texture dissimilarity (in orange). Circles indicate time

bins where beta estimates were significantly greater

than zero, with filled circles showing significant time

points for gradiometers and empty circles for

magnetometers.
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2014) and used Bayesian statistics to test the evidence for the null hy-

pothesis that there was no category information in this time window. A

Bayesian t-test revealed strong evidence for the null hypothesis

(BF0þ¼ 13.6).

3.4. Representational similarity searchlight

The absence of category information in the previous analyses could in

principle be due to differences in the spatial scales of perceptual and

Fig. 6. RSA results using cross-validated Mahala-

nobis distance. (A) Contributions of category

dissimilarity (in blue) and perceptual dissimilarity (in

red) to neural dissimilarity for two sensor types (solid

line for gradiometers and dashed line for magnetom-

eters). Results of Experiment 1 (left panel) and

Experiment 2 (right panel). (B) The same analysis for

three predictors (outline dissimilarity, texture

dissimilarity, category dissimilarity). Circles indicate

time bins where beta estimates were significantly

greater than zero, with filled circles showing signifi-

cant time points for gradiometers and empty circles

for magnetometers.

Fig. 7. RSA results for both experiments combined

(N¼29). (A) Contributions of category dissimilarity

(in blue) and perceptual dissimilarity (in red) to

neural dissimilarity for two sensor types (solid line for

gradiometers and dashed line for magnetometers).

Results of both experiments combined using decoding

accuracy as the measure of neural dissimilarity (left

panel), and cross-validated Mahalanobis distance

(right panel). (B) The same analysis for three pre-

dictors (outline dissimilarity, texture dissimilarity,

category dissimilarity). Circles indicate time bins

where beta estimates were significantly greater than

zero, with filled circles showing significant time

points for gradiometers and empty circles for

magnetometers.
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category processing: perhaps perceptual properties are well reflected in

coarse patterns across all sensors, whereas more subtle categorical re-

sponses are only reflected in localized patterns emerging across a few

sensors. We therefore performed a sensor-space representational simi-

larity searchlight analysis. This analysis was done using the data from

gradiometers, because these sensors have greater spatial specificity and

showed numerically greater pairwise discriminability (e.g., Fig. 4). Given

that the pattern of results in Experiments 1 and 2 was highly similar we

pooled data from Experiments 1 and 2 for the searchlight analysis to

maximize power.

For each channel, we defined a neighborhood of ten adjacent chan-

nels and computed the neural dissimilarity matrix for this neighborhood

(see Materials and Methods). We then used the RSA approach described

earlier, modelling the neural dissimilarity for each channel as a combi-

nation of category and perceptual dissimilarity. This procedure was

repeated for each 50ms time window (see Materials and Methods),

resulting in 10 searchlight maps showing the contribution of perceptual

and category dissimilarity to neural dissimilarity at different sensor lo-

cations. In accordance with the previous analyses, this analysis did not

reveal any sensors or time windows in which the contribution of category

dissimilarity to neural dissimilarity was significantly above zero

(Fig. 8A). In contrast, the contribution of perceptual dissimilarity again

reached significance in the 50–100ms time window and stayed signifi-

cant throughout all subsequent time windows, starting in a group of

posterior sensors and progressing to more anterior sensors at

100–250ms, peaking at 150–200ms and gradually receding towards the

posterior sensors again (Fig. 8B). These results suggest that the MEG

neural dissimilarity across multiple channel locations predominantly

reflects perceptual, but not category dissimilarity, also when looking at

more localized sensor patterns.

Finally, we ran a second RSA searchlight, using category, outline and

texture dissimilarity as predictors of neural dissimilarity. The results of

this analysis are shown in Fig. 9. As in the previous analysis, no sensors in

any time window exhibited a significant contribution of category

dissimilarity to MEG neural dissimilarity (Fig. 9A). By contrast, the

outline dissimilarity beta estimates reached significance at 50–100ms

after stimulus onset in a group of left posterior sensors, spreading to more

anterior sensors at 100–150ms and peaking at 150–200ms, staying

significant in posterior channels throughout all time windows (Fig. 9B).

Similarly, texture dissimilarity beta estimates reached significance in a

cluster of central posterior sensors at 50–100ms and stayed significant at

multiple channel locations in all the next time windows, peaking at

150–200ms (Fig. 9C).

3.5. Comparison with fMRI

The absence of category information in MEG contrasts with the sig-

nificant category information we observed in a previous fMRI study that

used the same stimuli, task, and analysis procedure (Proklova et al.,

2016). However, the category information in the fMRI study came from a

searchlight group analysis revealing localized clusters of significant

voxels in visual cortex. The conclusion that results differ between

methods would be strengthened if we could establish that the previous

fMRI findings were reliably and generally observed in visual cortex. To

provide further evidence for category information in the fMRI study, we

reanalyzed the fMRI data and directly compared these results with the

current MEG results (N¼ 29). Because an in-depth comparison across

methods (e.g., Cichy et al., 2016) is beyond the scope of the current

study, we restricted the comparison to regions and time points that are

known from previous research to be sensitive to object category: we thus

compared fMRI results in ventral object-selective cortex (OSC1) with

MEG results averaged across the 100–300ms time window. The reli-

ability of the neural dissimilarity matrices was high for both methods

Fig. 8. RSA searchlight results: category and

perceptual dissimilarity. (A) Searchlight maps

showing the regression weights reflecting the contri-

bution of category dissimilarity to MEG patterns

across channels (gradiometers) and ten time windows.

The beta estimates for category were not significantly

above zero in any of the sensors for all time windows.

(B) Searchlight maps showing the perceptual dissim-

ilarity regression weights across gradiometers for ten

time windows. Asterisks indicate sensor locations

where beta estimates were significantly greater than

zero.

1 OSC was defined using a standard functional localizer, contrasting intact

objects with scrambled objects. The 1000 most object-selective voxels within an

anatomical inferior temporal mask (Wfu_PickAtlas) were selected for the

analysis.
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(fMRI: r¼ 0.78; MEG: r¼ 0.92; split-half correlation of RDMs across

participants, averaged across 100 random splits).

As can be seen in Fig. 10, neural dissimilarity in OSC (fMRI) was

predicted both by categorical and perceptual dissimilarity. Both these

effects were highly reliable (t16> 6, p< 0.0001; for both tests) and

observed in 16/17 participants. This was in contrast to the MEG results,

which showed a highly significant contribution of perceptual dissimi-

larity (t28¼ 19.2, p< 0.0001) but no positive contribution of categorical

dissimilarity (t28¼�1.9). The interaction shown in Fig. 10 was also

significant (F1,88¼ 146; p< 0.0001), with a significantly higher category

beta in fMRI than in MEG (t44¼ 7.7, p< 0.001) and a higher perceptual

beta in MEG than in fMRI (t44¼ 9.5, p< 0.001).

These results show (1) that the previously reported category ef-

fects in fMRI also exist in a large region defined independently with a

standard object-selective cortex localizer; (2) that category effects in

fMRI are highly reliable; and (3) that the absence of category infor-

mation in the MEG signal is unlikely to be due to unreliable MEG

data.

Fig. 9. RSA searchlight results: category, outline

and texture dissimilarity. (A) Beta estimate maps

showing the contribution of category dissimilarity to

MEG patterns across channels (gradiometers) and ten

50-ms time windows. The beta estimates for category

did not reach significance in any of the sensors or time

windows. (B) Beta estimate maps showing the

contribution of outline dissimilarity to the MEG signal

across gradiometers for ten time windows. (C) Beta

estimates reflecting contribution of texture dissimi-

larity to neural dissimilarity. Asterisks indicate sensor

locations where beta estimates were significantly

greater than zero.

Fig. 10. Comparison of MEG and fMRI. Contributions of category dissimi-

larity (in blue) and perceptual dissimilarity (in red) to neural dissimilarity in

MEG (left panel) and fMRI (right panel). MEG betas were averaged across

100–300ms after stimulus onset. fMRI results came from functionally defined

object-selective cortex (OSC).
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4. Discussion

In this study, we used a carefully designed stimulus set to disentangle

categorical from perceptual properties in driving MEG sensor patterns.

Replicating previous reports, MEG sensor patterns carried information

about individual objects (Carlson et al., 2011, 2013; van de Nieu-

wenhuijzen et al., 2013; Cichy et al., 2014; Isik et al., 2014; Clarke et al.,

2015; Ritchie et al., 2015; Coggan et al., 2016; Kaiser et al., 2016a).

Using representational similarity analysis, we then related MEG neural

dissimilarity to the objects' perceptual and categorical dissimilarity. This

analysis revealed the time course of the objects’ overall perceptual

dissimilarity as well as the separate contributions of outline shape and

inner texture; each of these independently contributed to MEG neural

dissimilarity but with overlapping time courses. Contrary to our predic-

tion, there was no category information in the MEG patterns even though

participants easily recognized the objects at the basic level, as evidenced

by behavioral performance in Experiment 2 and post-experiment

debriefing.

These results can be compared with those of a recent fMRI study using

the same stimulus set, task, and analysis approach (Proklova et al., 2016).

Similar to the current MEG findings, outline shape and texture also

contributed independently to multi-voxel fMRI patterns in visual cortex,

with these regions partly overlapping. However, unlike the current MEG

results, fMRI showed a highly-reliable contribution of object category to

neural dissimilarity in object-selective cortex (Fig. 10). Our results

therefore show that the representation of animacy for shape-matched

objects in high-level visual cortex does not give rise to distinct

scalp-level patterns as observed with MEG. It should be noted, however,

that considering the fact that the animacy of our stimuli during this task is

represented in the brain (Proklova et al., 2016), it remains a possibility

that other types of analysis (e.g., decoding in source-space; van de

Nieuwenhuijzen et al., 2013) or additional preprocessing of the MEG

data (Grootswagers et al., 2017) could still retrieve this information.

Nevertheless, our results suggest that any such information is likely to be

very weak relative to information about visual properties.

There could be several reasons for the discrepancy between fMRI and

MEG. The most salient difference is the vastly different spatial scales of

these methods: the response patterns that are used to compute neural

dissimilarity in fMRI span at most a few centimeters of cortex in local

regions of the brain, while in MEG response patterns are measured across

the whole scalp. Our results indicate that MEG pattern analysis does not

have sufficient spatial resolution to discriminate between fine-grained

animate and inanimate neural activity patterns in ventral temporal cor-

tex and thus point to limitations of MEG pattern analysis in relation to

fMRI pattern analysis – response patterns measured at these different

spatial scales apparently reflect different types of information during

object processing. This discrepancy between information contained in

local fMRI patterns and scalp-level MEG patterns precludes the

straightforward integration of fMRI and MEG pattern analysis results, for

example using the representational similarity analysis framework (Cichy

et al., 2014, 2016). For example, if we would correlate the representa-

tional dissimilarity matrix (RDM) of OSC (measured with fMRI) with

RDMs across time (measured with MEG) in our experiment, the revealed

correlation time course would not include the animacy representation in

OSC and would thus give a distorted time course of the region during

object processing.

Another possible reason for the discrepancy between fMRI and MEG

is the temporal averaging of fMRI but not MEG. If activity patterns

evoked by different object exemplars are not aligned in time, this would

reduce decoding accuracy in MEG more than in fMRI. In the current

study, for example, it is possible that the time it takes to activate the

representation of animacy for well-matched stimuli differs across exem-

plars, thus blurring out effects of category in MEG (but not fMRI). Still,

while this could create a smoother time course, we think that it is un-

likely to explain the complete absence of category information inMEG, as

observed here.

Our results show that MEG sensor patterns in the 150–250ms range

reflect perceptual properties, including outline shape and inner texture,

derived from response times in a visual search task. Previous behavioral

work has shown that this perceptual similarity measure can be used to

predict animate-inanimate categorization times when using stimuli that

naturally confound visual features and category (Mohan and Arun,

2012). For example, a side-view picture of a cow is quickly categorized as

animate because it is perceptually relatively similar to other animals

(e.g., sheep, horse, dog) and relatively dissimilar from inanimate objects.

These findings, combined with our current results, suggest that previous

MEG reports of animacy decoding in the 150–250ms range likely re-

flected the perceptual differences between animate and inanimate ob-

jects. In the current stimulus set, the perceptual similarity measure no

longer reflects categorical influences (Proklova et al., 2016), allowing us

to dissociate these two components and reveal that MEG sensor patterns

at 150–250ms reflect perceptual object properties rather than object

category per se.

Previous studies provided some evidence for a contribution of se-

mantic object properties to the MEG signal even at relatively early la-

tencies (<250ms; Clarke et al., 2015; Coggan et al., 2016; Kaiser et al.,

2016b). These studies differed from the current study in several impor-

tant ways. First, none of these studies controlled for perceptual similarity

using human judgments or task performance. It is likely that the semantic

factors in these studies (e.g., the property “has legs”; Clarke et al., 2015)

would still express in perceptual similarity differences in tasks like the

visual search task used here. Second, two of these studies included

human faces (Coggan et al., 2016) or bodies (Kaiser et al., 2016b). The

human visual system is particularly sensitive to such stimuli (Stein et al.,

2012), showing highly selective and localized face- and body-selective

responses in fMRI (Kanwisher, 2010).

Notably, these face- and body-selective responses are right lateralized

in most participants (Willems et al., 2010), thus resulting in distinct scalp

topographies (Thierry et al., 2006) that are likely more easily decodable

than the bilateral animate-inanimate organization investigated here (no

significant lateralization of animacy was observed in Proklova et al.,

2016, see their Fig. 3B). Similarly, the animate stimuli used in the current

study (birds, reptiles, insects) give a lower response than mammals in

right-lateralized face- and body-selective regions (Downing et al., 2006),

which may reflect their lower score on a proposed animacy continuum

(Sha et al., 2015). These considerations leave open the possibility that

MEG sensor patterns contain information about more human-like ani-

mals (e.g., mammals), even after shape matching.

More generally, our results should not be interpreted as evidence

against the possibility to decode other semantic information from MEG

(or EEG) patterns. For example, MEG decoding of words referring to

landmark objects versus tools might be possible considering that repre-

sentations of these objects are localized in distant parts of high-level vi-

sual cortex and are activated independently of visual features (Peelen

et al., 2013; He et al., 2013). Indeed, recent MEG studies have success-

fully decoded abstract representations of magnitude (Teichmann et al.,

2018a) and (implied) object color (Teichmann et al., 2018b). Future

studies should test the decoding of other perceptually-matched cate-

gories in both fMRI and MEG to investigate under what scenarios se-

mantic information is decodable in both methods.

To conclude, the current study shows that MEG sensor patterns are

highly sensitive to two independent perceptual features (outline shape

and texture) of visually presented objects, quantified using behavioral

perceptual similarity measures. By contrast, MEG sensor patterns appear

insensitive to the conceptual-level distinction between animate and

inanimate objects, unlike fMRI voxel patterns in ventral temporal cortex.
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