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Abstract. The Duffing oscillator remains a key benchmark in nonlinear systems analysis and
poses interesting challenges in nonlinear structural identification. The use of particle methods or
sequential Monte Carlo (SMC) is becoming a more common approach for tackling these nonlinear
dynamical systems, within structural dynamics and beyond. This paper demonstrates the use
of a tailored SMC algorithm within a Markov Chain Monte Carlo (MCMC) scheme to allow
inference over the latent states and parameters of the Duffing oscillator in a Bayesian manner.
This approach to system identification offers a statistically more rigorous treatment of the
problem than the common state-augmentation methods where the parameters of the model are
included as additional latent states. It is shown how recent advances in particle MCMCmethods,
namely the particle Gibbs with ancestor sampling (PG-AS) algorithm is capable of performing
efficient Bayesian inference, even in cases where little is known about the system parameters a
priori. The advantage of this Bayesian approach is the quantification of uncertainty, not only
in the system parameters but also in the states of the model (displacement and velocity) even
in the presence of measurement noise.

1. Introduction

The Duffing equation presented 100 years ago by George Duffing [1] remains one of the most
studied equations in nonlinear dynamics. Part of the reason for its continued popularity is that
despite the simplicity of the differential equation it gives rise to many interesting phenomena,
including chaos. It has been possible to create systems which show Duffing like behaviour
both mechanically [2, 3] and electronically, most notably in the silverbox benchmark dataset
[4, 5]. The silverbox data has been studied extensively within the nonlinear system identification
community [6, 7, 8, 9, 10].

A comprehensive introduction to be behaviour of the Duffing oscillator can be found in [11]
where many of its main characteristics are detailed. This paper presents a Bayesian approach to
the identification of a nonlinear system that is known to be well described by the Duffing equation
in the presence of measurement noise. This identification task was attempted in [12] where a
low level of measurement noise was added and only the parameter estimation was attempted.
The contribution of this paper is to simultaneously estimate the smoothing distributions of
the states (displacement and velocity of the oscillator) alongside the parameters of the Duffing
oscillator. This is achieved by use of a particle Gibbs scheme with ancestor sampling and particle
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rejuvenation. The use of particle rejuvenation [13, 14] improves the convergence of the Gibbs
sampler with a low number of particles, since the model is degenerate — there is no process
noise on the displacement state, i.e. the covariance matrix of the process noise is singular.

The layout of the paper is as follows, a brief introduction to SMC methods for state-space
models, including the Conditional Particle Filter, is given in Section 2. The procedure for
Particle Gibbs with Ancestor Sampling is shown in Section 3, the use of a Particle Rejuvenation
scheme is also shown for handling degenerate models. The application of this methodology to
the identification of a nonlinear dynamic system, namely the Duffing oscillator, is presented in
Section 4 where the smoothing distributions of the states and the distributions of the model
parameters are recovered. Finally the results are discussed alongside directions for further work
in Section 5.

2. Sequential Monte Carlo

In a Monte Carlo approach, distributions are approximated by a number of point masses; SMC
methods [15] are a subset of this which exploit an evolving relationship between the distributions.
Originally SMC algorithms, namely the bootstrap particle filter [16], were developed for tackling
nonlinear Bayesian filtering problems which appear in nonlinear state-space models (SSMs). A
general nonlinear SSM can be considered where,

xt ∼ fθ (xt |xt−1, ut−1) (1a)

yt ∼ gθ (yt |xt, ut) (1b)

here xt is a vector of some hidden (latent) states at time t, the evolution of which is governed
by fθ (xt |xt−1, ut−1). ut is a vector of ‘control’ inputs to the model at time t, in structural
dynamics this would generally be the force input to the oscillator. These states are related to
a vector of observed variables yt through the probabilistic model defined by gθ (yt |xt, ut). In
this formulation fθ (xt |xt−1, ut−1) is the transition density of the model and gθ (yt |xt, ut) the
observation density of the model. Both of these distributions have their dependence on the
unknown model parameters θ explicitly denoted for clarity. The first distribution of interest is
the filtering distribution of an SSM, which is given by Bayes theorem,

pθ (x1:t | y1:t) =
gθ (yt |xt, ut)pθ (xt | y1:t−1)

pθ (yt | y1:t)
(2a)

pθ (xt | y1:t−1) =

∫

fθ (xt |xt−1, ut−1)pθ (xt−1 | y1:t−1)dxt−1 (2b)

By restricting the forms of fθ (xt |xt−1, ut−1) and gθ (yt |xt, ut) it is possible to obtain
closed form solutions to these equations which are the well known Kalman filter formulation
[17]. However, the restrictions in the Kalman filter model — linear dynamics and observation
equations, and Gaussian noise — are too restrictive for many systems encountered; this includes
all structural systems with nonlinearity.

The solution which allows the use of more flexible nonlinear models in SMC is to use sequential
importance sampling to approximate the filtering distribution. The filtering density (2b) is then
approximated by,

pθ (xt | y1:t) ≈
gθ (yt |xt, ut)

pθ (yt | y1:t−1)

N
∑

i=1

wi
t−1fθ (xt |xt−1, ut−1) (3)



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012051

IOP Publishing

doi:10.1088/1742-6596/1264/1/012051

3

where, throughout this paper, the superscript notation is used for indexing, for example wi
t

denotes the importance weight of the ith particle at time t. The notation adopted here is to use
indexing similar to the software package Matlab where a subscript 1 : T indicates the section of
the indices of a vector from 1 to T inclusively. For matrices the same notation is adopted but with
commas separating dimensions and following column major order. This is again approximated
using importance sampling such that the (unnormalised) importance weights of the filtering
density are given by,

w̃i
t =

gθ (yt |xt, ut)
∑N

i=1w
i
t−1fθ (xt |xt−1, ut−1)

∑N
j=1 ν

j
t−1qθ

(

xit |x
j
t−1, yt

) (4)

it remains for the proposal density qθ

(

xit |x
j
t−1, yt

)

and proposal weights νjt−1 to be chosen. In

the simplest application — a bootstrap particle filter — it is set such that,

N
∑

j=1

νjt−1qθ

(

xit |x
j
t−1, yt

)

=

N
∑

i=1

wi
t−1fθ (xt |xt−1, ut−1) (5)

i.e. the proposal weight is set to be the previous particle weight and the proposal density is
chosen to be the transition density. In this case, the unnormalised importance weights are given
by w̃i

t = gθ (yt |xt, ut), as the proposal cancels out the other term in (4). The procedure for
running a bootstrap particle filter is shown in Algorithm 1.

Algorithm 1 Bootstrap Particle Filter

1: Initialisation:
2: i← {1, . . . , N} ⊲ For N particles
3: xi1 ∼ pθ (x1)
4: w̃i

1 = gθ
(

y1 |x
i
1, u1

)

5: wi
1 =

w̃i
1∑N

j=1
w̃

j
1

⊲ Normalisation

6: For t = 2, . . . , T :

7: Resampling: ait ∼MN (wt) ⊲ Sample from Multinomial

8: Propagation: xit ∼ fθ

(

xit |x
ait
t−1, ut−1

)

9: Weighting:

10: w̃i
t = gθ

(

yt |x
i
t, ut

)

11: wi
t =

w̃i
t∑N

j=1
w̃

j
t

It is useful to collapse some of the steps in the filter down notationally to form a general SMC
algorithm where a system of particles xit (for i = 1, . . . , N particles) are propagated through time
with their ancestors ait (the particle index from which this particle transitioned) by a proposal
kernel Mθt (at, xt). These particles are then assessed through a weighting function Wθ,t (x1:t),
which calculates the normalised weights of a set of particles xit.

In Algorithm 2 the additional step of recording the paths of each particle has been included
in line 7. Here, each ancestral path xi1:t is updated by concatenating the current particle position

xit with the path of the ancestor particle x
ait
1:t−1. Here, a

i
t is shorthand for the ancestor of particle

i at time t since all the ancestors are recorded in the vector at at time t.. This records the
trajectory of that particle through time when tracing back through its ancestors. Although
only a bookkeeping step, this will be crucial when it comes to forming an effective particle



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012051

IOP Publishing

doi:10.1088/1742-6596/1264/1/012051

4

Algorithm 2 General Sequential Monte Carlo

1: Initialisation:
2: i← {1, . . . , N} ⊲ For N particles
3: xi1 ∼ pθ (x1)
4: wi

1 = Wθ,t (x1)

5: For t = 2, . . . , T :

6:
{

ait, x
i
t

}

∼Mθt (at, xt)

7: xi1:t =
{

x
ait
1:t−1, x

i
t

}

8: wi
t = Wθ,t (x1:t)

Gibbs (PG) algorithm. The ancestral paths of every particle i = 1, . . . , N for time t = 1, . . . , t
are represented by the bold notation x1:t, likewise the weights of every particle at time t is
represented by w, the vector of weights.

To make use of SMC within an MCMC scheme such as PG, it is necessary to make a slight
modification to Algorithm 2 which ensures it is a valid Markov kernel [18]. This will be referred
to here as the conditional particle Filter (CPF). In the CPF one of the particle trajectories is
held constant as a reference trajectory x′1:t. By convention, this is usually the N th particle in
the particle system. At every time step this particle is propagated forward in time as usual,
however, the value corresponding to x′t is not updated in the resampling step. This has the effect
of guiding each run of the SMC through the state-space [13].

3. Particle Gibbs with Ancestor Sampling

The PG algorithm can be thought of conceptually as a Gibbs sampler for an SSM, where samples
are drawn iteratively from the CPF, for the state trajectories conditioned on the parameters,
and then from the conditional distributions of the parameters given the states. For a more
thorough introduction, along with proofs of PG as a valid Markov kernel, the reader is directed
to Andrieu et al. [18]. A simple yet powerful modification to the PG algorithm was proposed by
Lindsten et al. [13] which they termed Particle Gibbs with Ancestor Sampling (PG-AS). In this
construction, rather than fixing the ancestors of the reference trajectory aN1:t to be N at every
time step, the ancestor for xNT is resampled at each time step t.

This change helps to tackle the path degeneracy problem encountered in PG, where all
particles share a common ancestor if looking far enough back in time. In PG this leads to the
state values close to t = 1 not being resampled very often — i.e. there is poor mixing in the
Markov chain. This will lead to slow convergence of the model. To achieve better convergence
rates the ancestors of the model are sampled such that,

P
(

aNt = i
)

∝ w̃i
t−1|T = wi

t−1 pθ
(

x′t |x
i
t−1, y1:t−1

)

(6)

where pθ
(

x′t |x
i
t−1, y1:t−1

)

is the likelihood of the reference particle given the dynamics of all the
particles i = 1, . . . , N at the previous time step — note that this includes the previous point in
the reference trajectory. Conceptually, the ancestor is sampled based on which is the most likely
parent for the reference trajectory at time t. Applying Bayes rule, this is proportional to the
prior for that particle wi

t−1 multiplied by the likelihood that the reference x′t was drawn from

the transition density for each possible ancestor pθ
(

x′t |x
i
t−1, y1:t−1

)

.
This methodology has been shown to be effective in a number of system identification tasks,

e.g. [19, 20]; however, it has been shown that if the model is nearly degenerate or degenerate then
the benefit of ancestor sampling is greatly diminished. Ancestor sampling relies on sampling
from the backward kernel of the SSM,
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pθ (xt |xt+1, y1:t) ∝ f (xt+1 |xt)pθ (xt | y1:t) (7)

In a degenerate model, all of the probability mass can be centred on only, the ancestor relating
to the reference trajectory. If this is the case only this ancestor will be sampled, i.e. aNt = N for
every time step t, and the algorithm returns to the standard PG formulation without ancestor
sampling. Since the model for a structural dynamic system is degenerate due to the absence of
process noise on the displacement state.

Lindsten et al. [14] propose a solution to this based on a modification to the target distribution
of the Gibbs sampler which they term particle rejuvenation. By also resampling a part of the
reference trajectory with the ancestors at each time step the degeneracy in the model can be
avoided as the reference is ‘loosened up’. To introduce PG-AS with particle rejuvenation it is
necessary to develop some additional notation: x̃′t:T is the future reference trajectory and Ξ is
some subset of the future reference trajectory Ξ ∈ x̃′t:T .

To cope with degeneracy in the model, the Gibbs sampler is partially collapsed over a subset
of future state variables Ξ, such that Ξ = {xt, . . . , xκt} with κt = min {T, t+ ℓ− 1}. Since the
goal is to resample both the ancestor aNt and part of the future reference trajectory Ξ it is
necessary to sample from the joint PDF of (at,Ξt) where,

pθ (at,Ξt) ∝ wat
t−1fθ

(

x′κt+1 |xκt

)

{

κt
∏

s=t+1

fθ (xs | ss−1)g (ys |xs)

}

f
(

xt |x
at
t−1

)

g (yt |xt) (8)

In general it will not be possible to sample from this PDF in closed form, therefore, a Markov
kernel is chosen which generates valid samples from this PDF. Lindsten et al. [14] indicate
that the choice of this kernel will be problem dependent, but a sensible choice within an SMC
framework is to employ an importance sampling approach. A conditional importance sampling
scheme is established where the unnormalised importance weights are given by (8). If ℓ is chosen
to be one then (8) simplifies to,

p (at,Ξt | ℓ = 1) ∝ wat
t−1fθ

(

x′t+1 |xt
)

f
(

xt |x
at
t−1

)

g (yt |xt) (9)

The complete procedure for PG-AS with particle rejuvenation is shown in Algorithm 3, with
a Markov kernel Kt to sample the new ancestor and Ξt.

It is clear from the algorithm that the methodology is very similar to that of the general SMC
scheme presented in Algorithm 2. The value returned from the PG step (here the term is used
to cover all methods that fall under this methodology) is a sample of the ancestral path for a
particle, this is a sample of a path from the conditional smoothing distribution p (x1:T | y1:T , θ).
To achieve this it is necessary to use a conditional particle filter to ensure validity of the Markov
chain and the process of ancestor sampling and particle rejuvenation is used to help better
mixing — i.e. more independent samples of the state trajectories are drawn.

PG-AS with particle rejuvenation allows efficient Gibbs sampling from the smoothing
distribution of a nonlinear SSM. To perform inference; it is necessary to utilise this technique as
part of a blocked Gibbs sampler where samples are drawn for the state trajectory conditioned
on the parameters and then for the parameters conditioned on the state trajectory. The full
procedure is shown in Algorithm 4, for notational convenience X ′ is used to represent the full
sampled reference trajectory x′1:T .

4. Identification of a Duffing Oscillator

This methodology is applied here to a Duffing oscillator to demonstrate its application to
nonlinear system identification. There are four parameters to identify in the Duffing oscillator
with displacement y forced by an input signal F ,
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Algorithm 3 Particle Gibbs with Ancestor Sampling and Particle Rejuvenation

1: Initialisation:
2: Simulate Ξ⋆

1 ∼ K1 (Ξ
′
1, ·)

3: Update x′1:κt
← Ξ⋆

1

4: Set xN1 ← x′1
5: xi1 ∼ pθ (x1) for i = 1, . . . , N − 1
6: wi

1 = Wθ,t (x1) for i = 1, . . . , N

7: For t = 2, . . . , T :

8:
{

ait, x
i
t

}

∼Mθt (at, xt) for i = 1, . . . , N − 1

9: Simulate
(

aNt ,Ξ⋆
t

)

∼ K1 ((N,Ξ′
t) , ·)

10: Update x′t:t+κt
← Ξ⋆

t

11: xi1:t =
{

x
ait
1:t−1, x

i
t

}

for i = 1, . . . , N

12: wi
t = Wθ,t (x1:t) for i = 1, . . . , N

13: Sample k ∼MN (wT )
14: return x′1:T = xk1:T

Algorithm 4 Blocked Gibbs Sampler for Inference in SSMs

1: Set X ′
0 and θ0

2: Set S as number of steps
3: for s = 1, . . . , S do

4: Sample X ′
s|θ as in Algorithm 3

5: Sample θs ∼ p (θ |X ′
s)

6: end for

7: Discard first sb samples as burn-in

mÿ + cẏ + ky + k3y
3 = F (10)

these are the massm, stiffness k, damping c, and cubic stiffness k3. The system is simulated using
a fifth order Runge-Kutta formulation [21], see Appendix A. One challenge in implementing a
state-space approach to the identification of systems such as the Duffing oscillator is converting
the continuous-time ordinary differential equation (ODE) into a discrete-time SSM for which
the methods are developed. However, this can be solved in the same manner as the time-step
integration used for simulation of nonlinear systems as the procedure is merely to produce a
model for xt+1 given xt where the state vector xt = [y ẏ]T as is common in application of
numerical techniques to second-order ODEs. Therefore, if the same fifth-order Runge-Kutta
scheme is used, the state transition density can be written down, assuming a Gaussian noise
with unknown covariance across the states, as,

fθ (xt+1 |xt) = N (r(xt) , Q) (11)

where r (xt) is the equation for the nonlinear propagation of the states, which is achieved with
the same 5th order Runge-Kutta scheme — although any time stepping method for an ODE
could be used here provided it is stable. Considering the process noise covariance Q, for this
model there is no process noise present so Q is set to be a diagonal matrix with small values on
the diagonal to stabilise the model. This leads to a degenerate model which requires the use of
the particle rejuvenation procedure in the PG-AS method [14]. Since the displacement of the
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Figure 1. Figure showing the measured noisy signal in orange and the noise free true
displacement in green.

oscillator is observed the observation density is a Gaussian with a linear mean which simply
selects the first state as the observation. Therefore, the full SSM is given by,

xt ∼ N (r(xt−1) , Q) (12a)

yt ∼ N
([

1 0
]

xt , R
)

(12b)

PG-AS with particle rejuvenation allows sampling of the state trajectories of the Duffing
oscillator in order to estimate the smoothing distributions of the states — the displacement and
velocity at each time step. However, it is still necessary to implement the distributions which
allow sampling of the parameters of the model given the sampled state trajectories for each
iteration of the Gibbs sampler. Once a state trajectory has been sampled the estimation of the
parameters becomes a univariate Bayesian linear regression problem; since the quantities ÿ, ẏ,
y, and y3 are now known. The system is approximated by a first order discretisation such that,

ẏt+1 = ẏt +∆

(

1

m
Ft −

k

m
yt −

c

m
ẏt −

k3
m

y3t

)

(13a)

ẏt+1 − ẏt = ∆

(

1

m
Ft −

k

m
yt −

c

m
ẏt −

k3
m

y3t

)

(13b)

A design matrix can be constructed X = ∆
[

F1:T−1, y1:T−1, ẏ1:T−1, y
3
1:T−1

]

, and defining y′ =
ẏ2:T − ẏ1:T−1 leads to the Bayesian linear regression problem,

y′ = Xβ + ε (14)

where ε is a vector in which each element i = 1 : T − 1 is distributed εi ∼ N (0 , 1/τ) and

β =
[

1
m
, k
m
, c
m
, k3
m

]T

. To perform Bayesian inference over the parameters conjugate priors are
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Figure 2. Plot showing sampled paths after the burn-in period in light blue. The mean of the
sample paths is shown in dashed black and the true noise-free state trajectories are shown in
red.

chosen which are Gaussian for each element of β and a Gamma distribution over τ . These are
defined as,

βp ∼ N (µp , 1/τp) τ ∼ Ga (a, b) (15)

where p indexes which element of β is being considered and Ga represents the Gamma
distribution. At each iteration of the Gibbs sampler, the sampled state trajectory X ′ is used to

assemble the design matrix such that X = ∆

[

F1:T−1, X
′
1:T−1,1, X

′
1:T−1,2,

(

X ′
1:T−1,1

)3
]

, sampling

from the conditional distributions of the parameters is achieved by the standard results for
Bayesian linear regression [22, 23].

Test data were simulated for the Duffing oscillator using a sampling frequency of 216 Hz and
generated as a time series of 500 points. The system was forced with an odd multisine signal
[4] from 450 Hz to 500 Hz with a frequency resolution of 5 Hz. The system was defined to have
a mass of 0.1 kg, linear natural frequency of 500 Hz, and damping ratio of 0.05. Additionally
k3 was set to be equal to 1 × 109 Nm−1 and measurement noise equal to 50% RMS of the
signal was added artificially after the system was simulated. The simulated measured signal is
shown in Figure 1. This defines the ground-truth parameters θ⋆ = [m⋆, k⋆, c⋆, k⋆3]. The prior
distributions in the model are set such that µ, the prior means, is equal to θ⋆ perturbed by a
Gaussian distributed random number with variance equal to half of the true value. The prior
variances for the parameters are set to be equal to twice the true values of the parameters.
The hyperparameters of the Gamma prior for τ are set such that a = 1, b = 500 when the
distribution is parameterised in terms of its shape and rate1.

1 Code is available to reproduce these results at https://github.com/TimothyRogers/rasd2019

https://github.com/TimothyRogers/rasd2019
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(a) (b)

(c) (d)

Figure 3. Figure showing the CDF and PDF of the samples of the individual system parameters
1/m, k/m, c/m, k3/m from the Gibbs sampler after burn-in using the PGAS algorithm with
particle rejuvenation. The known ground truth is shown in black.

The Gibbs sampler was run for a total of 5000 iterations with a burn-in of 250 iterations.
Figure 2 shows, each of the sampled paths X ′ for both the displacement and velocity states after
the burn-in period with the true trajectories superimposed. It can be seen that the true noise
free trajectories lie within the smoothing distributions and taking the means of the samples
gives a normalised mean squared error of 0.24 in the displacement and 0.45 in the velocity state,
when compared to the noise free state trajectories. This shows the ability of the PG-AS scheme
with particle rejuvenation to accurately recover the smoothing distributions over the states.

The normalised mean squared error metric is defined as NMSE = 100
Nσ2

y

∑N
i=1 (ŷi − yi)

2 for N

test points, where σy is the variance of the measured data, ŷi is the predicted points, and yi is
the measured data point for i = 1, . . . , N . This will be equal to 0 for a perfect prediction and a
value of 100 is equivalent to predicting as well as taking the mean of the measured data.

The parameter distributions estimated in the Gibbs sampler, which are transforms of the
individual system parameters, are shown in Figure 3. The known true parameters are shown by
the vertical green line in the plots. It can be seen that all of the parameters are well estimated
by the Gibbs sampler. By taking the means of the distributions, the accuracy of the maximum

a posteriori estimate from the Gibbs sampler can be assessed. For the first parameter 1/m the
percentage error is -4.20% of the true parameter value, for the c/m coefficient the percentage
error is -0.015%, and for the other two parameters k/m and k3/m the percentage error is less
that 1 × 10−6%. The error in the first parameter value is linked to the approximation error in
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(a) (b)

(c) (d)

Figure 4. Figure showing the CDF and PDF of the samples of the transformed system
parameters m, k, c, k3 from the Gibbs sampler after burn-in using the PGAS algorithm with
particle rejuvenation. The known ground truth is shown in black.

the first-order discretisation used in Gibbs sampling the parameters. Although not shown here
due to space constraints, the error in this parameter reduces as the sample rate of the data is
increased.

It is then possible to recover distributions over the system parameters themselves by
transforming the variables which were used in the Gibbs sampler. The results of this procedure
is shown in Figure 4. The transformation is seen to skew the distributions but the modes of
these are well aligned with the known ground truth for the parameters. Taking maximum a

posteriori estimates of each of the parameters the percentage error is -3.39% for all parameters,
this is due to the influence of the misidentification of the 1/m parameter in the transformed
space due to the first order discretisation.

5. Discussion

This paper has presented the use of Particle Gibbs with Ancestor Sampling and Particle
Rejuvenation as a viable technique for Bayesian estimation of nonlinear dynamical systems
encountered in structural dynamics. It has been shown that the methodology is capable
of recovering the smoothing distributions of the states and the distributions of the model
parameters with low error in relation to the maximum a posteriori estimates and that the known
true values and trajectories are within the probability mass of the estimated distributions. This
has been demonstrated on a case where observations are only made of the displacement and the
measurement noise is very high (50% RMS).
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The method is seen to be sensitive to the sample frequency of the signal due to the first order
approximation in the Gibbs sampler for the parameters. This warrants further investigation,
including the possibility of adopting a Metropolis within Gibbs scheme to allow a higher-order
discretisation. It has also been identified that the damping parameter is sensitive to the amount
of process noise estimated by the Gibbs sampler. For a simulated system of the Duffing oscillator
this can cause problems since there is no process noise, however, it is expected that on measured
data from a physical system this will not be a limitation. It is likely that, for most systems
of interest, it will not be possible to exactly write down the differential equations of motion.
Alongside the occurrence of actual process noise, this process noise can help to compensate for
model form errors when describing the system. Of interest for further research is to move to
a nonparametric representation of the nonlinear system which would avoid issues with needing
to specify the model form a priori. While it has been shown that this method is effective
on a simulated dataset, future research is needed to prove the effectiveness of this approach on
measured data. However, the results shown in this paper would motivate continued investigation
of Sequential Monte Carlo approaches to nonlinear system identification in structural dynamics
and a key contribution is demonstrating the use of the Particle Rejuvenation scheme to handle
degeneracy in the models encountered in structural dynamics.
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Appendix A. Details of 5th Order Runge-Kutta Scheme

The numerical integration scheme is a 5th order Runge-Kutta method [21], whose details are
shown here for completeness.

xt+1 = xt +
∆

90
(7a1 + 32a3 + 12a4 + 32a5 + 7a6) (A.1a)

a1 = f (t, xt) (A.1b)

a2 = f (t+ 0.25∆, xt + 0.25∆a1) (A.1c)

a3 = f (t+ 0.125∆, xt + 0.125∆a1 + 0.125∆a2) (A.1d)

a4 = f (t+ 0.5∆, xt − 0.5∆a2 +∆a3) (A.1e)

a5 = f (t+ 0.75∆, xt + 0.1875∆a1 + 0.5625∆a4) (A.1f)

a6 = f

(

t+
6

7
∆, xt −

3

7
∆a1 +

2

7
∆a2 +

12

7
∆a3 −

12

7
∆a4 +

8

7
∆a5

)

(A.1g)

Where ∆ is the time step and f (·) is the vector Markov form of the ODE which for the
Duffing oscillator (10) is given by,

f (t, xt) =

[

xt,2
F (t)
m
− c

m
xt,1 −

k
m
xt,1 −

k3
m
x3t,1

]

(A.2)

The notation xt,1 denotes the value of the first state in xt this corresponds to the displacement
of the oscillator. Equivalently, xt,2 corresponds to the velocity value.


