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Abstract. A critical issue for data-based engineering is a lack of descriptive labels for the
measured data. For many engineering systems, these labels are costly and/or impractical to
obtain, and as a result, conventional supervised learning is not feasible. This paper suggests a
probabilistic framework for the investigation and labelling of engineering datasets; specifically,
acoustic emission data streams recorded online from a turning machine. Two alternative
probabilistic measures are suggested to select the most informative observations. During
machining operations, these data would then be investigated and annotated by an engineer, in
order to maximise the classification performance of a statistical model used to predict tool wear.

1. Introduction

Advanced structural health monitoring (SHM) systems look to provide a framework for the
classification and localisation of damage, following preliminary damage detection. This framework
requires the categorisation of many data-groups, i.e. classes, relating to different states of structural
health — rather than simply classifying data as either normal or novel (outlier analysis) [1, 2].
In an engineering context, a critical issue for the multi-class problem is a lack of comprehensive
labelled data, which are required to learn a (standard) supervised classification algorithm.
Furthermore, in an online setting for SHM, the measured data arrive as a stream, incrementally,
throughout the lifetime of the monitored structure.

Considering these issues, advanced SHM systems should offer three characteristics. Firstly,
the system must be adaptive, incorporating any new classes (novel data-groups) as they are
discovered; these might relate to damage or various operational conditions. Secondly, a system
must be capable of running on-line; that is, the algorithm must be computationally efficient,
in order to update and adapt during operation without costly retraining. Finally, the model
must be capable of accurate diagnostics (ideally probabilistic) while only requesting descriptive
labels for the most informative measured data; this is critical for engineering applications, as
the investigation of any abnormal data is often both impractical and expensive. This paper
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outlines an approach to address the investigation of engineering data streams in a semi-supervised,
probabilistic framework for online SHM.

2. Semi-supervised learning for structural health monitoring

Classifying measured data via a robust model (learnt from a limited subset of training data) is a
fundamental problem in the field of engineering pattern recognition. Generally, the measured
data, xi ∈ X, can be categorised according to descriptive labels, yi ∈ Y , which correspond to
the ground truth of the classification problem. From a probabilistic perspective, it is assumed
that X is a random vector, defining a D-dimensional feature space, such that X ∈ R

D. The
descriptive labels are defined by a discrete random variable, such that yi ∈ Y = {1, ...,K}; here
K is the number of classes, and Y denotes the label space.

Supervised pattern-recognition algorithms require fully labelled training-data, L, such that
[3],

L = {(xi, yi)|xi ∈ X, yi ∈ Y }ni=1, (1)

for n collected data points. As the training set, L, includes both measured data and descriptive
labels, a supervised classifier can learn a mapping between the feature space and the label space,
f : X → Y . The classifier, f , can then be used to predict the label of future measurements, and
thus, make diagnostic decisions in an SHM context. In contrast, unsupervised techniques are
applied when only the measured data are available to build a model. In this case, the training-set
becomes [3],

U = {x̂i|x̂i ∈ X}mi=1. (2)

The caret is used to denote measured data that are unlabelled. A variety of machine learning
tools can be applied to unlabelled datasets; some examples include: dimensionality reduction,
novelty detection, outlier analysis and clustering [4]. These techniques aim to find patterns
within a dataset from the information contained within the measured observations only. As a
result, the learning process must be informed by a cost function that does not utilise any of the
information from the label space, Y , as this information is not available [3].

The unsupervised setting is relevant in an engineering context, as comprehensive labels to
describe the measured data are rarely available [1]. For example, in order to define a complete

labelled dataset for an engineering structure, the system must be measured across all operational
and damaged conditions, while the structure is regularly inspected by an engineer to annotate the
measured data. Additionally, the dataset recorded from one structure is not necessarily relevant
to another (nominally) identical machine. Therefore, traditional supervised learning of expensive
systems (such as aerospace or civil structures) is clearly impractical/infeasible. Currently, this
fact forces a dependence on traditional unsupervised techniques in many practical applications;
specifically, novelty detection. An alternative approach, however, is to apply semi-supervised

pattern recognition [5]; these algorithms make use of both labelled data, L, and unlabelled data,
U, such that dataset used by the algorithm is [3],

D = L ∪ U. (3)

Consequently, semi-supervised techniques can make use of a limited subset of labelled data, when
annotation by an engineer proves to be impractical/expensive; thus, these techniques are highly
significant for practical applications of SHM.

2.1. Active learning

Active learning is a related technology to semi-supervised learning (or, more generally, partially-
supervised learning [3]). As with semi-supervised learning, active algorithms will make use of both
L and U; however, an active learner will query/annotate unlabelled data in U to automatically
extend the labelled dataset, L, in an intelligent and adaptive manner.
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In the context of data-based SHM, there has been a growing interest in partially-supervised
methods, specifically [6–8], as an algorithm that is semi-supervised and active can bring several
advantages [8]. Most significantly, these algorithms make use of limited labelled data, while
requesting further annotations for only the most informative observations; this can significantly
reduce the cost associated with investigating abnormal data records from engineering structures.
Furthermore, these algorithms can utilise the information in the unlabelled data to improve the
diagnostic capabilities of the SHM system.

Active algorithms can be applied offline to a large pool of collected data [9], or online, to
drifting data streams [10]. In the online setting, if an algorithm can adapt and update, while
only requesting critical labels, this is extremely significant to data-based SHM. For example, if
the measured data are recorded live from a wind-turbine 80km off-shore, any novel data that
might relate to damage would potentially need to be investigated manually. This requires an
engineer to travel to the wind-turbine by helicopter or boat, and then inspect the structure to
explain any inconsistencies observed in the measured data. If a statistical model can be used to
determine when only the most informative/critical observations need to be investigated, this can
lead to significant reductions in maintenance costs.

3. A probabilistic model for guided sampling

A probabilistic approach is suggested as the foundation for an active framework with engineering
data. As with existing models in the literature [4, 11, 12] the measured data, xi, are assumed to
be sampled from a parametric mixture model; specifically, a mixture of K Gaussian distributions.
In the model, the measured data for each class, yi ∈ Y , are assumed to be generated by a single,
unique Gaussian distribution; where each feature/dimension of X is conditionally independent.

Each observation is described by D dimensions, ∴ xi = {x
(d)
i }Dd=1,

x(d)| y ∼ N (µy,d, σ
2
y,d). (4)

A distinct pair of parameters (mean, µy,d, and variance, σ2
y,d) are used to define the distribution

of X for each dimension, d, and for each class, y. Therefore, the set of parameter pairs used to
describe the mixture model is [K ×D]. In order to simplify the notation, the indices y, d are
omitted from further parameter subscripts, as it is implied that there are separate parameter
estimates of µ and σ2 for each class and dimension.

A normal-inverse-chi-squared distribution is used as the prior distribution for each pair of
parameters [4],

µ, σ2 ∼ NIχ2(µ0, κ0, υ0, σ
2
0). (5)

The hyperparameters for the mixture model (µ0, κ0, υ0, σ
2
0) are defined such that prior belief

states that each class is represented by a zero-mean and unit-variance Gaussian distribution;
as such, the measured data must be normalised to support this prior belief (e.g. bootstrap
normalisation).

As discussed, the labels yi are distributed according to a categorical distribution [12],

y ∼ Cat(λ), (6)

where λ = {λ1, ..., λK} are the mixing proportions for each class y ∈ Y , such that,

p(y) = λy = P (Y = y) ∀y ∈ Y. (7)

A Dirichlet prior is placed over the mixing proportions [12], λ,

λ ∼ Dir(α) ∝
K
∏

y=1

λy
αy−1. (8)
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Figure 1: The probabilistic graphical model of the classifier. Shaded and white nodes are
the observed and latent variables respectively; arrows represent conditional dependencies; dots
represent constants (hyperparameters).

This introduces the hyperparameters, α = {α1, ..., αK}, which can be used to encode the prior
belief of the probability for each class. Fir this application, each class is assumed to be equally

weighted, such that αy = n/K, ∀y. The dependencies of this framework are shown by the
graphical model in Figure 1, including any hyperparameters.

A small sample of labelled data, L, are used to establish the initial number of classes, K,
and split the measured data into groups according to their label. These data can then be used
to calculate the Bayesian estimates for the model parameters. (Note, in the context of SHM,
the initial measured data are regularly assumed to represent a single class, i.e. K = 1, as these
measurements should, hopefully, relate to the normal-operating-condition only.) As conjugate
prior distributions have been assumed, the posterior distribution over the parameter estimates
can be found analytically; these are calculated for each class, y ∈ Y , for each dimension, d ∈ 1 : D.
Firstly, the parameters of the posterior (denoted by subscript n) are defined by [4],

κn = κ0 + ny, (9a)

µn =
k0µ0 + nyxy

κn
, (9b)

υn = υ0 + ny, (9c)

σ2
n =

1

υn

(

υnσ
2
0 +

ny
∑

i=1

(xy,i − xy)
2 +

nyκ0
κ0 + ny

(µ0 − xy)
2

)

. (9d)

Where ny is the count (number) of observations in L with the label y, and xy is the vector of
observations labelled y. Bar notation is used to represent the sample mean. These posterior
distribution for the parameters used to describe X is then defined [4],

p(µ, σ2|y,L) ∝ NIχ2(µn, κn, υn, σ
2
n). (10)
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Similarly, the posterior for parameters of the categorical distribution over Y becomes [12],

p(λ|L) ∝
K
∏

y=1

λy
ny+αy−1. (11)

In order to make class predictions on unseen data, the posterior predictive distributions for the
labels, Y , and the mixture model, X, can be found analytically. This is done by marginalising out

the parameters from the model. For an unlabelled measurement, x̂i = {x̂
(d)
i }Dd=1, the posterior

predictive distribution is given by the student-t distribution [4],

p(x̂(d)|y,L) =
Γ((υn + 1)/2)

Γ(υn/2)

(

κn
(κn + 1)πυnσ2

n

)1/2
(

1 +
κn(x̂

(d) − µn)
2

(κn + 1)υnσ2
n

)

−(υn+1)/2

(12)

The posterior predictive distribution over Y is,

p(y|L) =
ny + αy

n+ α0
, (13)

where α0 =
∑K

y=1 αy [4]. By utilising the predictive posterior distributions in equations (12) and

(13), a generative classifier can be defined using Bayes rule [4], used to predict p(y|x̂,L) for the
unlabelled data in U,

p(y|x̂,L) =
p(x̂|y,L) p(y|L)

p(x̂|L)
, (14)

which assumes independence between each dimension (feature) in X (i.e. näıve Bayes), such that

p(x̂|y,L) =
D
∏

d=1

p(x̂(d)|y,L). (15)

The marginal likelihood in equation (14), which normalises the predictive distribution over Y , is
determined by the following integral, which is a discrete sum for a discrete random variable,

p(x̂|L) =

∫

p(x̂|y,L) p(y|L) dy ≡
K
∑

y=1

p(x̂|y,L) p(y|L) (16)

Note, the posterior distribution over the labels, p(y|x̂,L), is a predictive likelihood for each
class, y ∈ {1, ...,K}. That is, the likelihoods for each class are combined to give a categorical
distribution, when normalised, over the label space. This is not the full posterior, which cannot
be found analytically, as the student-t distribution is not conjugate to the Dirichlet distribution.
As result, the classification model is not fully Bayesian. If desired, the full posterior can be
approximated via sampling algorithms (e.g. Gibbs sampling) to define a distribution over each
probability estimate; however, in this work, this approach is unnecessary, as the full distribution
is not required.

Various probabilistic measures can now be used to dictate which of the measurements in U

are the most informative when labelled. These observations can be queried, and the cause can
be investigated by the engineer/oracle to provide descriptive labels. Following the investigation
and labelling of data, L now includes the new queried observations. Therefore, the model is
retrained and further data are queried; this process iterates until a label budget is reached, or
applied sequentially to streaming data (online). This sampling and training framework is typical
of classifier based active learning [7].
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Figure 2: Data for a three-class classification problem, where the example features are extracted
from acoustic emission data. Small markers are the labelled training set, L; large markers are the
unlabelled data, U, shaded according to the distribution of the label predictions p(y|x̂,L). The
dotted-line and + markers show the maximum a posteriori estimates of the standard deviation
and cluster locations respectively. The queried data from U are circled; in (a) these data have
the largest entropy ; in (b) the data have the lowest maximum-likelihood.

3.1. Data query measures

In the active learning literature, there are numerous approaches to define which of the unlabelled
data are the most informative [13]. Generally speaking, if labelled, these data provide the largest
increase in the classification performance; however, if queries are too focussed on a specific
definition of ‘informative’, the training-set built by the algorithm can be poorly representative of
the underlying distribution of the data; this phenomenon is referred to as sampling bias [14]. To
combat sampling bias, the query framework should not focus too much on specific regions of the
feature-space; this can be achieved by combining several different definitions of ‘informative’ [15].
Usually, these measures correspond to representative or uncertain observations, according to
the current estimate/model of the underlying data distribution. In this work, two probabilistic
measures are utilised to direct queries.

Firstly, the entropy of the (categorical) label distribution, p(y|x̂,L), can be interpreted as a
measure of uncertainty,

H(Y ) = −
K
∑

y=1

p(y|x̂,L) log p(y|x̂,L). (17)

As a result, selecting data from U with a large entropy can be considered uncertainty sampling;
that is, selecting data from the unlabelled pool with the most ‘mixed’ or ‘conflicted’ label
predictions. This criterion will almost always query observations at the boundaries, between
two or more classes; to demonstrate this, queries directed by a large entropy are illustrated in
Figure 2a. Conversely, prioritising low entropy can select measurements near the centre of the
data-groups associated with each cluster, i.e. the representative examples.
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Figure 3: Flow chart to illustrate the online active learning process

Alternatively, observations in U with the lowest ‘maximum-likelihood’ (from p(x̂|y,L), ∀y ∈ Y )
can be queried. Again, querying data with a low likelihood can be seen as uncertainty sampling;
however, in this case, the corresponding label distribution is not necessarily ‘mixed’. Therefore,
the queried data can appear in the cluster extremities that are not at the boundary between two
or more classes; that is, the measurements are not necessarily uncertain in terms of the labels.
Considering these properties, the lowest maximum-likelihood becomes suitable for querying
drifting data streams, where novel data are unlikely to appear between the boundaries of existing
classes.

4. An online framework

For active learning with engineering data streams in an online setting, a framework for querying
data and retraining the model must be defined. There are various ways to approach this problem;
for example, query by committee methods [13] can applied to drifting data streams for uncertainty
sampling [10]. In this work, however, the heuristic is built around probabilistic measures from a
single model. Similarly, probabilistic active learning (tree-based, i.e. nonparametric) has been
applied to engineering data in previous work [7, 8]. This model also utilises uncertainty sampling,
however, in this application, a large pool of the measured data are required a priori to build the
tree structure, which is used for guided sampling. As a result, while the algorithm provides a
significant improvement for the classification of engineering data, the heuristic applied in [7, 8] is
generally unsuitable for SHM in an online setting as a large pool of data must be available to
initialise the heuristic.

4.1. Guided sampling

For the experiments here, the data arrive in batches of size B, and the learner is permitted a
limited number of queries per batch, qb. The initial distribution of data p(x, y|L) is learnt from
the first batch, which is assumed to be labelled as class 1; that is, the normal operating condition.
This assumption is reasonable in the context of SHM, as the system should be operating correctly
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(a) (b)

Figure 4: Tool wear following inspection: (a) minor tool wear, (b) catastrophic failure of the tool.

for a large portion of the initial measured data. As a result, this model initialises as a one-class
classifier [2].

The suggested active learner assumes the most informative data are defined through uncertainty
sampling. Although this can risk sampling bias, as representative samples are not targeted,
uncertain measurements are assumed to provide the largest increase in classification performance
for this application (as is common practice in the active learning literature [13]). To address
sampling bias to some extent, high entropy and least maximum likelihood are both considered
as measures of uncertainty §3.1. As discussed, this implies that uncertainty sampling occurs in
the cluster extremities, as well as the boundaries between existing classes. Therefore, sampling
a variety of uncertain data in this way should provided an informative training set L from
streaming data.

As each new batch of measured data arrives, the model makes a prediction for the unlabelled
data U, based on the labelled data seen so far L. Note, the dataset U includes the new batch,
as well as unlabelled data from previous batches. The leaner then queries qb measurements
from U; qb/2 records are queried according to high entropy, and qb/2 are queried with the
lowest-maximum likelihood. The online process is illustrated in Figure 3. In order to assess the
diagnostic performance of the learner, the dataset is split in half (using every other sample); this
provides a distinct ‘moving’ test set, used to define an online performance metric (the f1-score
[4] is used).

5. Experiments: machining data streams

The Element Six Ltd. (E6) machining data are an acoustic emission dataset collected from a
turning machine used to manufacture metallic components. During normal operation, the cutting
tool deteriorates, leading to tool wear, see Figure 4. Tool wear is undesirable, as it produces a
poor surface finish for the machined component, which can lead to the onset of crack propagation,
reducing the time in service for the manufactured product [16]. Consequently, it is critical to
monitor tool wear, however, the machining operation must be stopped in order to inspect the
tool. As a result, tool inspections are infeasible in practice, due to cost and time implications [17].
Therefore, high-value cutting tools are discarded prematurely when used in industry. For the
experimental dataset used in this work, inspection of the tool is carried out using a 3D scanning
microscope, the resulting images are illustrated in Figure 4.

Significant cost savings can be achieved if a model is capable of tool wear predictions while
using a minimal number of tool inspections. In order to build a model to predict the current state
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of wear, acoustic emission (AE) measurements were taken during a typical machining operation,
until catastrophic failure of the tool — see Figure 4b. Measurements were made by placing
an AE sensor on the machine turret; these data were recorded in the time domain, and then
converted into the frequency domain. Following various signal processing steps, the measured
data have 129 dimensions, with 1729 observations. For further details see [17] — in this work,
the measured data were collected using a similar experimental procedure, however, these tests
concern the collection of data for a different machining operation.

Principal component (PCA) analysis is applied a priori to compress these data; dimension
reduction is required to reduce the computation time and alleviate the curse of dimensionality.
Furthermore, PCA effectively normalises the measurements, justifying the prior belief implied
when building the mixture model. It should be considered that applying PCA beforehand is
problematic for streaming data, as the unseen data should not be used to normalise measurements
before they are available in on online setting. However, the application of PCA a priori is not
considered to be major issue for the experiments presented in this work, as dimension reduction
could be incorporated into the online learning process with few issues. For example, as the
algorithm is applied ‘online’ by brute force (i.e. the whole model is re-learnt for each new batch
of data), the principal components can be re-extracted from the full dimensional feature space at
each iteration — using the training data and bootstrap sampling.

Generally, it was found that the first 12 principal components account for 95% (1.96σ) of the
total variation within these data, thus, the first 12 principal components are used to build the
model, such that xi ∈ R

12. As discussed, the annotation of these measurements is expensive,
therefore, the tool was inspected at 10 regular intervals during the experiments. This corresponds
to 9 different classes (ranges) of tool wear, and one class after tool failure, such that yi ∈ {1, ..., 10}.
Table 1 summarises the dataset as a classification problem, and the fist 3 principal components
are plotted to visualise the data in Figure 5.

Table 1: E6 Data classes

Class label (yi) Observations (i) Description

1 1 - 173 wear 1
2 174 - 346 wear 2
3 347 - 519 wear 3
4 520 - 692 wear 4
5 693 - 865 wear 5
6 866 - 1038 wear 6
7 1039 - 1211 wear 7
8 1212 - 1383 wear 8
9 1384 - 1555 wear 9
10 1556 - 1729 tool failure

By using measurements, such as the dataset presented in this work, E6 hope to accurately
monitor tool wear online while keeping the number of tool investigations to annotate the measured
data to a minimum. Considering this aim, the active learner is applied to the machining data as
if it were online. The class labels, yi, are hidden from the algorithm, and only measurements
queried by the learner are provided with labels. Therefore, this framework implies that the
engineer only needs to investigate the system when the learner queries.



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012028

IOP Publishing

doi:10.1088/1742-6596/1264/1/012028

10

-15

20

-10

-5

20

p
c
3

10

0

pc
2

10

pc
1

5

0
0

-10 -10

1

2

3

4

5

6

7

8

9

10

Figure 5: Scatter of the first three principal components to visualise the classification problem
for the E6 data

5.1. Results

To illustrate any advantages brought about by active learning, the classifier trained using L

defined by uncertainty sampling is compared to the same classifier learnt using data sampled

at random from each batch. In other words, to demonstrate typical supervised learning (as a
benchmark), qb data are sampled randomly from U at each iteration, as opposed to selecting the
data with maximum entropy and the lowest maximum likelihood.

Plots are provided for a increasing label budget per iteration. The queries per batch are kept
constant, such that qb = 2, while the batch size is decreased, such that B ∈ {24, 16, 8}. These
values correspond to query ratios of 1:12, 1:8 and 1:4, for labelled to unlabelled data respectively.
For each query-budget ratio, active learning and the random sample benchmark are applied 100
times; the results are provided in Figure 6, error bars illustrate the one-sigma deviation.

5.2. Discussion

Active learning for guided sampling successfully directs queries for an increased classification
performance with these data. For all query ratios, there is a clear increase in the f1-score when
uncertainty sampling is used to build the training set, L. As to be expected, there are drops
in the classification performance as new classes are discovered by the learner; however, these
are less exaggerated when an active framework is used. An additional advantage for the active
learner is the consistency of the model predictions; this occurs because the data selection now
follows a deterministic process. As a result, the f1-scores are consistent, because the variability
associated with the ‘informativeness’ of a random sample is eliminated.

As one might expect, the advantages for active learning become much more significant at a
low query budget (ratio); specifically, see when 1 in 12 data are labelled, Figure 6a. Despite
this fact, there is still a motivation to apply this technique at a higher query budget, as the
variability of the prediction is reduced, and the performance of active learner is comparable to
the upper bound (1σ) of the expected performance for random sampling, see Figure 6c.
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Figure 6: Online classification performance (f1-score) for various query budgets (as ratios): (a)
1:12; (b) 1:8; (c) 1:4.

5.3. Model limitations

While this model works well for these data, the fact that this is a parametric-statistical model
must be considered; in other words, strong assumptions are made about the distribution of the
measured data. If the classes of data form disjoint (multimodel) clusters in the feature space,
this active framework might still bring advantages compared to random sample training for the
same classifier; however, it is unlikely that the performance of either method would compare
to that of nonparametric classifiers. (nonparametric refers to the method used to describe the
data distribution.) Some examples of these algorithms include: Gaussian process classification,
relevance vector machines, or support vector machines [4]. As discussed, it is desirable to build
an active learner around probabilistic measures in engineering, such as the model suggested in this

work ; however, a more general framework might be achieved by using a nonparametric approach
that does not make such strong assumptions regarding the distribution of the data in X, such as
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the framework suggested in [6]; these aims are the focus of future work.

6. Conclusions

The comprehensive annotation of engineering datasets is costly/infeasible due to practical
limitations; therefore, active learning techniques are suggested to define a framework for the
investigation and labelling of the most informative observations when building a statistical model.
This article suggests a probabilistic approach to guide queries within a sampling framework
that is applied online to drifting data streams. This model is initialised as a one-class classifier
(novelty detection) and adapts online as new classes are discovered — becoming a probabilistic
multi-class model. In the experiments, the framework is applied to learn a model which classifies
tool wear for a turning machine. Labelling these acoustic emission measurements is an expensive
and time-consuming process, as it involves an engineer stopping the machining operation, and
manually inspecting/scanning the cutting tool. The active learning algorithm is applied to the
measured data as if they were recorded live from the machine in operation. Results show a
significant increase in the diagnostic performance of the classifier when active learning is used
to dictate which measured data to investigate, as opposed to the standard procedure, where
the same number of observations are investigated at random; furthermore, the variability of the
classification performance is significantly reduced when active learning is utilised.
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