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Abstract.

Bayesian inference plays a central role in many of today’s system identification algorithms.
However, one of its major drawbacks is that it often requires solutions to analytically intractable
integrals, and this has led to solutions via Markov Chain Monte Carlo (MCMC). Today, few
Bayesian system identification methods can compete with the robustness of the family of MCMC
solutions. However, MCMC suffers severely from its computational cost.

Partly fuelled by the field of Compressive Sensing (CS), an interest in the machine learning
community has arisen in sparse linear regression. Its value in identification of dynamical systems
has also recently started to receive some attention. The idea is to represent the range of possible
candidate functional forms that have generated a specific data set using a dictionary, and to
then apply standard Lasso regression to select the “best” basis, with sparsity constraints. A
major problem in this approach is that Lasso regression (and its derivatives) requires tuning
of the regularisation parameter. In this paper, a procedure for selecting the “best basis” (and
thus performing both model selection and system identification) is presented through a sparse
Bayesian learning approach. Sparsity is induced via a hierarchical Gaussian prior and an
approximation to the posterior distribution is sought using an iterative optimisation scheme
for finding the optimal hyper-priors that govern prior and hence, the level of sparsity in the
solution. The method is applied to five systems of engineering interest, which include a baseline
linear system, an additive quadratic damping term, cubic stiffness (Duffing oscillator), Coulomb
damping and a Bouc-Wen hysteresis model. The results are shown using numerical simulations.
It is shown that this approach can identify not only the correct model parameters, but whether
a nonlinearity is present in the system as well its type. With the formulation being Bayesian,
it also yields estimates of uncertainty over the selected basis functions and predicted responses.

1. Introduction
The task of identifying and estimating nonlinearities in dynamical systems is an important task
of engineering and scientific interest, and one particularly relevant to structural dynamics. A
general Single Degree-of-Freedom (SDOF) nonlinear harmonic oscillator can be characterised by
the well known equation of motion,

mÿ + cẏ + ky + g(y, ẏ) = 0 (1)

where y is a displacement term and m, c, k represent the mass, damping and stiffness constants
which characterise the underlying linear system. The nonlinear term is denoted by the function
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g(y, ẏ). In general, identification of the parameters of the linear system can be achieved
in a straightforward way by means of least-squares estimation. This has been thoroughly
explored in the system identification literature, and in the case of structural dynamics has
been generalised to multiple degrees-of-freedom and forms the basis of experimental modal
analysis. Estimation of parameters becomes more difficult when the nonlinear term begins to
play a non-negligible role. Examples of this are numerous across structural dynamics and other
scientific domains. Geometric nonlinearities, for example, can introduce cubic displacement
terms by setting g(y) = k2y

3. This leads to the well-known Duffing oscillator, which is classically
studied in the nonlinear system identification literature. Friction and hysterisis also introduce
nonlinearities in a wide range of different forms; a good example of this is the Coulomb friction
model which sets g(ẏ) = sgn(ẏ). The form of the nonlinearity could be completely different as
is the case, for example, in a pendulum where g(y) = sin(y) (with y in polar coordinates).

Estimating the parameters of any one class of nonlinear system is clearly an important and
useful task and one which poses a difficult problem. However, in a realistic identification task
one may not even be sure of the exact form of g(ẏ, y) and so, as discussed in [1], one must start
by first identifying whether a nonlinearity is present in the first place, identifying the type of
nonlinearity and then estimating the associated parameters.

This paper proposes a technique based on sparse Bayesian learning [2] that is able to
simultaneously solve this combined parameter identification and model selection task. Before
describing the particular approach proposed here, it is worth discussing some of the methods
already existing for this task, and reviewing the state-of-the-art in the topic. No attempt is made
in this paper at reviewing the vast literature of nonlinear system identification. The reader is
instead referred to some excellent recent reviews and tutorials for this [1].

The key question being investigated in this paper is that of how to accurately recover the
correct equations of motion of a dynamical system together with the associated parameters.
Individually, both of these tasks have received a significant amount of attention, both within
the remit of structural dynamics as well as in the more general context of dynamical systems.
However, combined model selection and parameter estimation is a significantly more challenging
task. Models of higher complexity tend to also be better predictors and successful model
comparison requires one to take this into account and balance complexity against quality of
fit. Bayesian inference has emerged as a powerful tool to address exactly this type of problem; it
has been studied in the field of system identification owing to its ability to quantify uncertainty
in parameter estimates [3, 4]. This uncertainty quantification leads directly to the idea of
Bayesian model comparison [5, 6], where one seeks to compare the quality of fit of different
models according to posterior probability distributions (after observing evidence) over them.

Bayesian inference, applied to the parameter estimation problem, takes the usual form,

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
(2)

where θ are the unknown parameters to be estimated and Y is the set of (multivariate) observed
data. There are three probabilities on the right-hand side of Equation (2): the prior, the
likelihood and the marginal. The prior, p(θ), should represent a prior belief about the process
before it is observed. The likelihood, p(Y|θ), represents the distribution of the model error, with
respect to the parameters. The marginal, p(Y), is often an intractable integral, with no closed
form solution available. There are various flavours for approximate and numerical solutions to
the Bayesian inference problem, although these will not be discussed at length here.

An approach to model comparison that arises from Bayes’ theorem is to formulate a number
of candidate models, {M1, ...,Mn}, perform Bayesian parameter inference over them and then
compare the resulting posterior distributions. One issue that quickly arises from this approach
is that of the dimensionality of θ. A simple dynamical system such as a linear oscillator will
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have fewer parameters than a complex nonlinear hysteretic model. The issue of dimensionality
in MCMC schemes was identified early-on in [7] and the reversible-jump MCMC was devised as
an algorithm for sampling across spaces of different dimensions, with appropriate dimensionality
balancing laws. While this has been applied in the context of system identification in structural
dynamics [8], RJ-MCMC is cumbersome, difficult to implement and computationally intensive.
An alternative has been suggested that makes use of Sequential Monte Carlo (SMC) and
Approximate Bayesian Computation (ABC) in the context of structural dynamics [9] and in
biological systems modelling [10]. The ABC approach enjoys the benefit of being able to
jump between different model spaces without having to define a mapping between the different
dimensions, as in RJ-MCMC. In addition, using SMC allows for a flexible choice of prior
functional forms and so avoids the restrictiveness of the Gaussian assumption, which may or
may not be applicable to the problem at hand.

One common drawback of the sampling-based approaches is their computational burden.
Moreover, a challenge in the general Bayesian model comparison framework is that one has
to specify a-priori the exact model forms to be compared. This may be a hinderous if one is
trying to identify the type of nonlinearity, or simply whether a nonlinearity exists amongst a
vast number of possible model forms. Note that a nested sampling approach to ABC inference
has been investigated in [11], which addresses its computational burden.

This paper explores a rather different approach to combined parameter estimation and model
selection. The problem is posed as a large parameter estimation task where each parameter,
in effect, represents a different model form. The idea is borrowed from the emerging field of
Compressive Sensing (CS), which provides a basis for inferring signals when sampled under the
traditional Nyquist sample rate [12]. In CS, signals are represented by a large over-complete
dictionary D, where the columns of D contain candidate vectors that could form a basis for the
signal x,

x = Dβ (3)

where β is a vector of weights that one would like to solve for to estimate x from D. As it
is, Equation (3) could be solved without complication via a least-squares procedure. However,
CS introduces the idea of sub-sampling x by means of a random transformation applied to
both x and D. This turns the problem into a massively ill-posed linear regression problem;
there are too many columns for the number of available rows. The key to all of this is in
the solution of this badly-posed linear estimator, which is achieved by using an L1 regularised
linear regression called the Least absolute shrinkage and selector operator (Lasso) [13]. The
regularisation introduced by the Lasso approach allows for a solution of the over-determined
problem, under the assumption that x is sparse in the domain of D. That is, the signal of
interest can be accurately represented using only a few of the candidate vectors present in D.
It is an intuitive idea that has revolutionised the field of signal processing.

The idea of this paper is to view the combined parameter estimation and model selection
problem as one of sparse regression. To see how this can be applied to dynamical systems, the
formulation of a dynamical system in its state-space form is considered, where one is interested
in estimating the functional form of mapping between the state vector x and its first derivative
ẋ

ẋ = f(x) + ε (4)

where f(x) defines the dynamics of the system and ε is an additive noise term, which is to be
modelled as Gaussian with zero mean and variance σ2. The idea here is to define f(x) to be a
sum of possible candidate function evaluations of the state vector, encoded in a dictionary D,
so that,

ẋ = D(x)β + ε (5)
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where each column in D(x) defines a candidate model form. For example, D(x) could include
constant offset, linear and polynomial terms as well as trigonometric and discontinuous functions,

D = {1,x,x2,x3, ..., sin(x), cos(x), sign(x), ...} (6)

Note that D(x) is a function of the state vector because the candidate functional forms it
defines are evaluated numerically on the state vector. In the structural dynamics case, this could
be, but is not restricted to, a two-dimensional displacement and velocity vector.

This problem formulation requires the use of a sparse solver, in order to select only the
columns of D1 that are relevant with respect to the observed state. It is at this point that the
use of sparse Bayesian learning [2] becomes relevant, as it is designed to solve exactly this type
of ill-posed linear estimator. The focus on Bayesian learning with sparsity constraints is the key
contribution of this paper.

This idea is illustrated in Figure 1, which shows the solution to Equation (5) using sparse
Bayesian learning (discussed in Section 2). The illustration uses the free-decay response of a
Duffing oscillator and the different candidate terms that form D(x) are shown together with the
sparse solution to β, which in this case yields non-zero coefficients on all terms except for x1,
x2 and x3

1
(where x1 is displacement and x2 is velocity).

In [14], a similar problem formulation is presented in terms of evaluating different candidate
functional forms in a state-space and using a combination of symbolic regression and genetic
programming to find the symbolic forms that best match an observed time series, while following
conservation laws. While the general idea is laid out, the approach to optimisation lacks a natural
balance between complexity and predictive accuracy. A genetic program might not naturally
prefer solutions that are simple, or parsimonious. Sparsity is clearly a useful tool in solving
Equation (5) with a parsimonious representation. The use of sparse linear regression (Lasso) to
solve this type of problem has been investigated in [15] which deals with the general problem of
recovering the governing physical laws from observed data. This is a step in the right direction,
but the use of the Lasso implies the use of a tuning parameter that completely dictates the
level of sparsity in the solution and hence the complexity and predictive ability of the solver.
This paper builds on some of the ideas of [14] and [15] in terms of the problem formulation,
but deviates in the solution to the problem. The authors are particularly interested in the
investigation of Bayesian learning algorithms for the problem and this forms the focus of the
current paper.

Section 2 will outline the key elements of the theory behind sparse Bayesian computation and
will put an emphasis on comparing this approach with the non-probabilistic methods. Section
3 presents a series of numerical experiments on several systems that are of interest to nonlinear
dynamics: a single degree-of-freedom system with quadratic and cubic nonlinearities, Coulomb
friction and a Bouc-Wen hysteretic system. Section 4 provides a critical discussion of these
results focusing on the practical limitations on the use of this algorithm. Finally, Section 5
summarises the conclusions of the paper.

2. Sparse Bayesian learning
Sparse learning is used here to provide a solution to the problem of Equation (5) that switches
off any columns of D that do not significantly contribute to the observed dynamics. The classical
solution to learning in sparse linear models is the Lasso [13]. One of the major limitations of
the Lasso is that it does not give a definite answer to the appropriate level of sparsity that
represents the signal. This is due to its non-probabilistic formulation. In this paper, sparse
Bayesian learning is used in order to derive posterior probability distributions over the model
weights β and the predictive outputs x, whilst enforcing sparse solutions. The particular flavour
of Bayesian inference that will be used here is the Relevance Vector Machine (RVM) [2].

1 note the dependence on x is dropped from here onwards
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ẋ2

D(x)
β

Figure 1. Illustration of the problem formulation on a free decaying Duffing oscillator. The
second state derivative (acceleration) is given in terms of candidate polynomial, trigonometric
and discontinuous functions of x, and a sparse Bayesian solution to β is shown, indicating which
terms of the dictionary are active (non-zero).

2.0.1. Formulation of the RVM The presentation of the RVM in this paper essentially follows
that of Tipping [2]. The RVM solves the following regression model,

y =

N
∑

i=1

di(x)βi. (7)

The reader will recognise this as a standard regression model, where as before, the weight vector
is represented by β = [β1, ..., βN ]. The basis function set is represented by D(x) = [d1, ...,dN ].
The RVM is designed to only select a sufficient and appropriate number of relevant vectors in
D(x) that explain the observed data well, using sparsity constraints.

The observations of the model are assumed to be corrupted with noise, and this is modelled
by a target vector, t,

t = y + ε (8)

where ε is the noise term and y is the representation of the signal, as defined by Equation (7).
The key ingredient in the formulation of the RVM is the form of the prior distribution of

the parameter vector, p(β|α), (where α is a hyperparameter) as it is the form of this prior that
enforces sparsity. More specifically, this is given as a hierarchical Gaussian distribution, which is
a conjugate prior to a Gaussian distribution and thus yields algebraic forms that are tractable.
The form of this hierarchical prior is,

p(β|α) =

M
∏

i=1

N (βi|0, α
−1

i ). (9)

The hyperparameter vector α defines the variance of the prior distribution of the parameters.
It is formally defined as α = {α1, ..., αn} (where n is the number of coefficients in β). The
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hierarchical nature of this prior arises from the fact that prior distribution over this prior needs
to be defined. This includes both the variance terms for the prior, α, as well as the signal noise
variance σ2. Instead of setting a prior over the variance directly, a prior is set over its inverse
ρ = σ−2:

p(α) =
M
∏

i=1

Γ(a)−1baαa−1e−bα (10)

p(ρ) = Γ(c)−1dcαc−1e−dρ (11)

where Γ is the Gamma function and a, b and c, d are hyperparameters of the prior and noise
variance respectively (in effect, “hyper-hyperparameters”). In effect, it is these parameters that
control whether the prior is sparse or not, and in practice they need to be set such that p(β|α)
becomes infinitely peaked around zero, to within numerical precision. For a more detailed
description of the role of these hierarchical hyper-priors see [2]. Assuming a Gaussian likelihood
function, the posterior distribution over the parameters can be written using Bayes’ theorem as,

p(β|t,α, σ2) =
p(t|β, σ2)p(β|α)

p(t|α, σ2)
. (12)

Using standard Gaussian identities, this yields a Gaussian distribution,

p(β|t,α, σ2) = N (µ,Σ) (13)

where the mean and variance are given by,

Σ = (A+ σ−2D⊤D)−1 (14)

µ = σ−2ΣD⊤t (15)

A is a diagonal matrix with the elements of α along its diagonal. Equations (15) and (14) define
the mean and covariance of the coefficient vector β.

In order to make predictions with this model, one would wish to evaluate the distribution
p(t⋆|t,α, σ2) (where t⋆ is a set of testing data points), which can be shown to be a multivariate
Gaussian with mean and covariance [2],

y⋆ = Dµ (16)

V⋆ = σ2 +D⊤ΣD (17)

The predictive variance in Equation (17) is the sum of two terms: the signal noise, σ2 and
the predictive uncertainty, arising from the term D⊤ΣD.

For sparse Bayesian learning to be effectively realised one has to optimise the hyperparameter
vector α that encodes the sparsity level and σ2 that describes the signal noise. This can be
achieved using a type-II maximum-likelihood procedure based on the Expectation Maximisation
(EM) [16] algorithm. In the original RVM paper [2] the EM steps are clearly described and
these lead to efficient pruning of “irrelevant” vectors. In [17] a more efficient version of the EM
algorithm is described and this is used in this work for the hyperparameter optimisation. For
conciseness, this will not be discussed here and the reader is referred to [17] for more details.
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3. Numerical Experiments
In order to investigate the proposed approach to combined model selection and parameter
estimation, several numerical experiments are carried out. The system being investigated here
is the single degree-of-freedom oscillator of Equation (1) which contains a general nonlinearity
g(ẏ, y). The state-space formulation of the system will be used throughout this discussion, where
the first element is the displacement and the second is the velocity

x1 = y (18)

x2 = ẏ (19)

Different forms of the nonlinearity g(x1, x2) yield various systems of engineering interest. Five
different cases are investigated here, summarised in Table 3. The linear case, although simple is
included as establishing whether the proposed algorithm is capable of ruling out the existence
of any nonlinearities in the dynamic response is of fundamental interest.

The second system includes a quadratic damping term. This is representative of systems
that operate in fluids and gases, where the force due to drag is non-negligible and contributes
significantly towards the damping of the system. The third system is a Duffing oscillator, which
arises from a cubic nonlinearity on the displacement of the system, g(x1) = k3x

3
1
. The Duffing

oscillator has been the subject of a large number of studies in system identification. This is both
due to the complex behaviours it can generate but also because it is representative of geometric
nonlinearities found in real world systems, such as that of simply-supported or cantilever beams
undergoing large displacements. The fourth system is one with a Coulomb friction nonlinearity.
The Coulomb model assumes that frictional force is constant (proportional to the normal load)
and is only dependent on the direction of the velocity. This results in a nonlinearity of type
g(x2) = kcsign(x2) (where sign denotes the signum operator). This type of system has been
of general interest in nonlinear system identification [18, 19, 1] as it represents a wide range of
practical structures where dry sliding occurs, such as systems with bolted joints, for example.

The fifth and last system investigated here is the Bouc-Wen model of hysteresis [20], which
models a hysteretic nonlinear restoring force through a third state variable, g(x2) = x3.
The dynamics of the restoring force are then described by the following nonlinear first-order
differential equation,

ẋ3 =

{

−a|x2|x
n
3
− bx2|x

n
3
|+Ax2 for n odd

−a|x2|x
n−1

3
|x3| − bx2|x

n
3
|+Ax2 for n even

(20)

where the parameters A, a, b, n control the smoothness of the process. Note that the restoring
force, x3, is not only nonlinear, but also discontinuous, owing to the absolute terms, which
effectively introduce a sign(x3) term into the formulation of ẋ3. The Bouc-Wen model has
proven to be a useful tool in the modelling and control of a large number of processes with
nonlinear restoring forces [21] and thus identifying the parameters of this model is of fundamental
interest in structural dynamics. The identification of the Bouc-Wen model has been studied
extensively, with some studies focusing on parametric identification [22, 23, 24, 4, 9] and some
on non-parametric estimators [25]. From the point of view of the combined model selection and
parameter estimation problem, the Bouc-Wen model presents a stronger challenge given that the
nonlinear restoring force, x3 is often an unobserved variable and must therefore be estimated.
In this paper, however, this issue is sidestepped in order to focus on the problem at hand, of
identifying the correct terms that form the nonlinear differential equation. It is noted however,
that this resotring force can be measured in laboratory environments (see for example [26]),
making this a useful procedure in such cases.
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Table 1. Summary of nonlinearities
System Name g(x1, x2)
1 Linear 0
2 Quadratic Damping k2x

2
2

k2 = 2
3 Duffing k3x

3
1

k3 = 109

4 Coulomb Friction kcsign(x1) kc = 1
5 Bouc-Wen x3 (Eq. (20)) A = 6800, n = 3, a = 1.5, b = −1.5

Each of the systems was simulated using a 4th-order Runge-Kutta numerical integration
scheme, with a sample rate of 32768Hz. Note that this sample rate is significantly higher than the
natural frequency of the linear system. The reason for this is to minimise the error in numerical
differentiation and to minimise the introduction of artifacts of the numerical integration, which
can confuse the sparse Bayesian learner. The systems with the form of their nonlinearities and
the associated parameters used for the simulations are summarised in Table 3. The parameters
used for the underlying linear model were m = 1, k = 1 × 104 and c = 20, which places the
natural frequency of the underlying linear oscillator at 15.9Hz. Each of the nonlinear systems
were simulated with the same parameters governing the linear model, and only varied in the
additional nonlinear term g(x1, x2). The state vector, x, collected from the simulations consisted
of displacement and velocity. Its derivative, ẋ, was obtained by numerical differentiation with
respect to time. Of course in reality, the actual observed variables may differ from those used
these case studies. However, this does not impede the application of the procedure proposed
here, as long as the state variables can be computed to within reasonable accuracy by numerical
differentiation/integration schemes.

A solution to the problem outlined in Equation (5) is then sought, in terms of a sparse
coefficient vector β that links the state x to its derivative ẋ through selection of appropriate
columns of D(x). The definition of the dictionary is critical to the success of this algorithm.
For this procedure to work at all, the functional form of differential equation that describes the
dynamics must be present in D. This includes any linear and nonlinear terms. In this paper, a
dictionary was assembled using candidate functions that include polynomial expansion terms as
well as trigonometric functions that could potentially describe the systems being studied here.
The terms were as follows,

D(x) = {F (t), P 1(x), ..., Pn(x), sin(x), cos(x), tan(x), sgn(x)} (21)

where Pn(x) denotes the polynomial expansion of order n of the sum of the p state vectors
(x1 + x2 + ...xp)

n. In this paper, polynomial orders of up to n = 6 were used as candidate
functions. Furthermore, the state vector was augmented with |x|, in order to also generate the
cross-terms necessary to capture the dynamics of the Bouc-Wen hysteresis of Equation (20).
Note that the dictionary also includes the forcing term F (t) in the first column in order to
capture the input force contribution as part of the sparse learning process. Performing this
combined model-selection and parameter estimation in the case with unknown forcing would
become much harder as one would have to discern whether forcing terms that are a residual of
the underlying linear system are due to an internal nonlinear force or due to external forcing.
The problem could be further exacerbated if the external forcing is itself generated by a nonlinear
dynamical system, as is the case for example in fluid-structure interaction problems [27]. This
is not treated in this paper, and instead the focus is first placed on simple forced systems with
known excitation.

The inference over model and system parameters is given in terms of the solution to ẋ2,
the acceleration term for systems one to four, and in terms of the third hysteretic restoring
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force ẋ3 for system five (Bouc-Wen). Note that in all cases, the solution to the first state
derivative is trivial, since by definition ẋ1 = x2. However, it is important to note that in all
cases, sparse Bayesian inference does select the linear term on x2 as the single non-zero relevant
vector explaining ẋ1. These results are not shown here.

Appropriate scaling of the observed data x is important for the success of this procedure, so
all values of columns of x and ẋ have been scaled to unit standard deviation. This is critical
for numerical stability, in particular when dictionary terms involve high polynomial orders or
trigonometric terms such as tan(x). Furthermore, all the resulting columns of D(x) have been
normalised to unit l2 norm.

The results are presented in Figure 2 for systems one to five excited with a single sine
wave of 10Hz at an amplitude of 100N. The output data were corrupted with white Gaussian
noise with a variance of 0.4%, relative to the standard deviation of the observations. Note
that this noise propagates through the numerical differentiation and leads to a higher variance
in ẋ. The first column in Figure 2 shows the phase-space representation in terms of x1 and
x2. The second column shows the measured and predicted responses in the time domain (for
one excitation cycle), where the shaded area illustrates the predictive uncertainty through the
3σ confidence interval. The third column shows the coefficient vector β resulting from sparse
Bayesian inference. For clarity, only coefficients that yielded non-zero values are shown. Also,
the absolute values of the coefficients are plotted so as to enable visualisation in the logarithmic
domain. The posterior variances and optimised prior variance hyperparameters are shown
alongside the coefficient, on the right axis. The posterior variance quantifies the posterior
uncertainty around each coefficient vector. The optimised hyper-prior variance, αi for each
term is also called a “sparsity factor” as this quantifies the degree to which any given column
in the dictionary contributes to sparsifying the solution. If α is low, this means that the prior
assumption is that the solution will be concentrated tightly around that vector and thus deeming
it “relevant”. If α is high, this implies that the vector does not contribute to a sparse solution.

Terms that form a likely solution are those that have a low variance in both the posterior
and the optimised hyper-prior. These tools are helpful because in practice, the RVM, or any
other sparse learner may yield more non-zero terms than are true for the underlying system.
However, these two variances, which result from the Bayesian treatment of the sparse solution,
provide one with tools to assess how likely it is that suspected “spurious” terms are truly part
of the dynamics, or have crept in from elsewhere (such as analogue or digital filtering).

The solution of this procedure for the basic linear oscillator (System 1), without any
nonlinearities is shown in Figure 2a. The only non-zero coefficients arising from the from the
sparse Bayesian solution to ẋ2 are the driving force, F (t) and the linear terms on displacement
and velocity, x1 and x2. Note that the predicted response time series is not only accurate in
terms of its mean, but the uncertainty correctly captures the additive measurement noise. Next,
Figure 2b shows the solution to System 2, which contains a quadratic damping term. The
system is identified correctly, with the addition of a quadratic term on the velocity. The change
of shape that this nonlinearity introduces in the phase-space is very slight, but is evident in
both the time-history and the phase space as an asymmetry between the upper and lower parts
of the cycle, since the square will remove any dependencies on the direction of velocity. The
results for the Duffing oscillator are shown in Figure 2c, where the effect of the nonlinearity is
now a lot more evident in the time-history and in the phase-space. It is clear that the cubic
term on x1 is identified correctly and the predictive distribution captures the process well, as
expected. Figure 2d shows the results of System 4, which includes a Coulomb damping term.
This term introduces a small discontinuity at the peak and troughs of ẋ2, which are only very
subtly visually evident in the time series response. The solution correctly identifies the presence
of the sgn(x2), but also goes on to pick one spurious polynomial term. This is likely to be an
artifact of the numerical intergration scheme used to generate the simulation. At higher sample
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rates, this effect is mitigated, and at lower sample rates more spurious terms tend to appear.
Figure 2e shows the results of the Bouc-Wen hysteresis model, System 5. Note that

combinations from the expansion (x1 + x2 + x3 + |x1| + |x2| + |x3|)
n were used to build the

candidate vectors in the dictionary (these absolute terms were present in D but not identified
in other systems). In this case, the assumption is that the restoring force variable is measured.
The solution to ẋ3, which contains the nonlinearity, is shown in Figure 2e for n = 2. The
sparse Bayesian learner correctly identifies the terms for this model form, and its predictive
performance reflects this.

4. Discussion
The results of performing combined model selection and parameter identification with sparse
Bayesian learning are encouraging. The fact that the algorithm is able to identify individual
terms of known difficult dynamical systems is a positive result. It is important to note that this
investigation has been basic in some respects. The first is that no results are shown here for
different types of forcing, something which will clearly have an influence on the identified system.
The cases of random forcing, free vibration, chirp excitations and random phase multi-sines all
produce some interesting results, but this falls outside the scope and length of this paper. Here,
the basic concept has been laid out instead, with some simple demonstrations.

While the results that have been presented show the procedure working almost at its best,
it is important to highlight that the outcome depends strongly on the simulation settings, data
pre-processing and noise levels. This is an interesting point to highlight. The fact that the
algorithm is sensitive to the simulation parameters makes sense given that the simulation is
a dynamical system itself. Clearly the procedure needs to be validated on experimental data,
but the results of the simulation raise some interesting question. For example, any amount of
digital filtering of the displacements, velocities or accelerations tended to generate a solution
with significantly more polynomial terms than those of the system. This makes sense, given that
most pre-processing tasks could be described as passing the signals through another dynamical
system, it should be no surprise that this will be identified upstream. This may also be the
case for experimental data, as it will inevitably have to be pre-processed by hardware filters.
However, that remains to be seen. Another factor that significantly influences the outcome of
the identification in this case is the scheme for numerical differentiation required to estimate ẋ.
Tools are available to perform complex interpolation schemes, but it was found that these would
also have an effect on the identified system. In the end, a simple point-difference yielded the
most consistent and robust results.

A final remark is that a move to multiple degrees of freedom would be straight-forward in
principle under this scheme, but this is also outside the scope of this paper.

5. Conclusions
This paper has presented an approach for combined parameter estimation and model selection in
nonlinear systems using sparse Bayesian learning techniques. The system identification problem
has been formulated in terms of the solution to a first order differential equation that uses a
dictionary containing a large number of candidate functional forms that could form part of the
solution. The solution to the sparse Bayesian learning problem leverages the use of the Relevance
Vector Machine (RVM) due to its computational tractability and fast implementations.

It has been demonstrated using a series of numerical simulations that this method correctly
identifies the type and presence of several nonlinearities such as a Duffing oscillator, quadratic
and Coulomb damping, as well as the type and presence of hysteresis in the form of a Bouc-Wen
model.
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Figure 2. Sparse Bayesian solution to systems one to five. The left column shows the measured
phase-space, the middle column shows the measured output together with the predictive
response, while the right column shows the (absolute) weights (left axis) of the identified non-
zero terms of the sparse Bayesian learner, together with prior and posterior variances (right
axis).
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