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Reinforcement learning for condition-based control of gas turbine

engines

Ibrahim Sanusi1, Andrew Mills2, Paul Trodden3, Visakan Kadirkamanathan4, Tony Dodd5

Abstract— A condition-based control framework is proposed
for gas turbine engines using reinforcement learning and adap-
tive dynamic programming (RL-ADP). The system behaviour,
specifically the fuel efficiency function and constraints, exhibit
unknown degradation patterns which vary from engine to en-
gine. Due to these variations, accurate system models to describe
the true system states over the life of the engines are difficult
to obtain. Consequently, model-based control techniques are
unable to fully compensate for the effects of the variations
on the system performance. The proposed RL-ADP control
framework is based on Q-learning and uses measurements of
desired performance quantities as reward signals to learn and
adapt the system efficiency maps. This is achieved without
knowledge of the system variation or degradation dynamics,
thus providing a through life adaptation strategy that delivers
improved system performance. In order to overcome the long
standing difficulties associated with the application of adaptive
techniques in a safety critical setting, a dual-control loop
structure is proposed in the implementation of the RL-ADP
scheme. The overall control framework maintains guarantees
on the main thrust control loop whilst extracting improved
performance as the engine degrades by tuning sets of variable
geometry components in the RL-ADP control loop. Simulation
results on representative engine data sets demonstrate the
effectiveness of this approach as compared to an industry
standard gain scheduling.

I. INTRODUCTION

Most engineering systems are subject to degradation, yet

their control systems are not designed to explicitly account

for it. While the dynamics that govern the operation of the

systems are usually modelled or identified for the control

design, the degradation dynamics are not; typically, these

evolve over long timescales and in non-deterministic ways.

This affects the states of the component health of the

systems resulting in reduced performance and increased fuel

consumption over time [1]. Opportunities to mitigate the

effects of degradation therefore cannot be over emphasised

as in the case of the civil gas turbine engine (GTE) where

the cost of fuel accounts for about 15% to 25% of the

total aircraft operating cost [2]. In addition to the gradual

degradation, performance of the GTEs are also affected by

fleet variations from engine build differences and changing

operating conditions. Optimising the system performance as

a result of these varying factors pose a major challenge to

the GTE control.
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The unknown degradation dynamics and variations

affecting the GTE states reflect as changes in the

measured/estimated system performance characteristics

such as the system efficiency index and life [2]. Whilst

monitoring of these performance characteristics can help to

reduce the cost of operation from economic and performance

perspectives, the opportunities to complement the GTE

control design have received little attention e.g. monitoring

of the fuel consumption and component temperatures

have been used to predict the system life necessary for

maintenance scheduling but not for feedback control [2], [3].

It is therefore increasingly important to use the information

about the system performance characteristics in optimising

the GTE control design whilst considering the reliability of

its implementation.

In this paper, techniques that enable such capabilities

are termed condition-based and are aimed at maintaining

the GTE safety and reliability whilst optimising the system

performance. Condition-based control (CBC) techniques can

therefore be classed as types of adaptive control schemes

that focus on optimising to slow and varying changes in

the system performance. This combined with an appropriate

adaptation strategy and architecture increases the feasibility

of the scheme to a fully intelligent control and health

management technology for industrial applications.

Existing techniques that have explored the possibility

of CBC are mostly model-based including life extending

control, performance seeking control (PSC) and model-

predictive control (MPC) schemes [1]. Of note are the PSC

schemes [4], [5] that match the actual degrading engine

conditions by assuming that the degradation behaviour

is well understood and modelled through high fidelity

on-board models. These high fidelity models require a

lot of effort and are expensive to build as reported in

[6], [7] where the models took 15+ years of experience

with the F100 class of engines and accurate nonlinear

simulations. Similarly, recent work by General Electric (GE)

aviation [8] which makes use of a tracking filter to estimate

some engine deviation parameters (EDP) to account for

degradation and engine-to-engine variations relied on the

use of high fidelity dynamic engine models. Obtaining these

dynamic degradation models in practice for the model-based

performance control strategies is usually expensive and can

be impractical in many situations.

The possibility of developing a model-free CBC can



however be achieved by exploiting frameworks based on

reinforcement learning (RL). RL schemes do not require

knowledge of the system dynamics (including gradual

degradation), but learn by interacting with the system

and gradually modifying their actions based on some

received reward signals [9]. The reward signals are direct

measurements from the system that determine the utility

of the current control strategy against a desired control

goal or cost. RL schemes are therefore termed goal-

directed control schemes [10], as only the reward signals

are used to steer the system to optimal operating points

without any knowledge of the system dynamics. In control,

mathematical implementation of RL has been enabled

through approximate/adaptive dynamic programming (ADP)

and is theoretically linked to both adaptive and optimal

control methods [11].

This paper proposes a RL-ADP scheme that provides a

natural mathematical framework for the CBC problem by

using as its reward signals the measurements of the system

performance characteristics and without knowledge of the

system degradation dynamics. The RL-ADP scheme uses

measurements of the reward signals to learn and adapt the

system efficiency maps and to extract improved system

performance. Furthermore, in order to overcome the long

standing difficulties associated with adaptive techniques in

a safety critical setting such as the problem of bursting and

potential instability [12], a dual-control loop structure is

proposed in the implementation of the RL-ADP scheme.

The proposed framework maintains guarantees on the main

thrust control loop whilst extracting improved performance

as the engine degrades by tuning sets of variable geometry

components (VGC) in the RL-ADP control loop. This

approach is essential to providing a potential route to

certification of the overall control framework.

The rest of this paper is organised as follows. Section II

provides the problem formulation for the CBC in the GTE

control architecture. In Section III, an RL-ADP solution that

addresses the GTE CBC problem is proposed along with the

corresponding algorithm and control architecture. Section IV

discusses the simulation of the proposed scheme and results

from the algorithm implementation on representative engine

data sets while Section V gives the concluding remarks and

future works.

II. PROBLEM FORMULATION

Gas turbine engines consist of a compressor to draw in

and compress air, a combustor to mix and burn fuel with the

compressed air, and a turbine to extract power from the hot

stream of air to generate thrust [13]. The desired level of

thrust is mainly regulated via the control of fuel flow, with

modern engines having other variable geometry components

(VGC) such as the variable stator vanes (VSV), variable

inlet guide vanes (VIGV) and the exhaust nozzle area [2].

A conceptual mathematical model for the GTE dynamics is

given as:

xk+1 = F (xk,uk,dk) (1)

where x ∈ R
n are the system states such as the shaft speeds

(NH), engine pressure ratio (EPR), pressure and temperature.

The control inputs u =

[

umain

uaux

]

∈ R
m consist of the main

fuel flow input denoted by umain ∈ R
m1 ⊂ R

m and the

additional control parameters such as the VGCs employed

in many GTE designs [14] denoted by uaux ∈ R
m2 ⊂ R

m.

The component health states d ∈ R
d denotes the system

performance characteristics such as the compressor and

turbine efficiencies that change slowly over time due to

degradation [1]. Typically, d is difficult to estimate as it is

governed by non-deterministic processes which vary across

fleets and from engine to engine. Conventionally, thrust

regulation is achieved by designing the control system

at some identified nominal models of the system (i.e at

predetermined configurations of d) [1], [13], [15].

Assumption 1. The control design for umain = h(y)
guarantees the thrust response by regulating the system

measurements y = c(x) to the desired reference i.e.

y → yref . This represents the conventional main control

loop with y as the primary system measurements. The

regulated states are kept within their prescribed limits using

limit management controllers such as the min-max limiter

logic [16].

The VGCs (uaux) on the other hand are set via fixed

(open-loop) gain schedules against the system outputs or

flight parameters σ (such as altitude, mach number (Mn) and

temperature) [13], [14]. These gain schedules are designed

for the worst case degradation condition resulting in large

efficiency margins and increased system life cycle costs

during actual system operation.

Assumption 2. Secondary system measurements yp, that

reflect changes in the system performance characteristics

mainly due to degradation are assumed to be available.

These measurements are normally used for engine health

monitoring to schedule maintenance actions and are hitherto

not used for control [1]. Additional measurements that

provide limitations for GTE safety and stability gp, are

equally assumed to be available. These limits are calculated

through a standard design practice to ’stack’ uncertainties

(actuation and sensing errors, operational uncertainties e.t.c.)

into safety margins for the main control loop [17].

The CBC challenge within the current GTE architecture is

to use the secondary system measurements yp in addition to

the primary measurements y for control decisions such that:

• The system maintains the desired thrust response control

i.e yk → yref as k → ∞.

• The system performance measurements are opti-

mised subject to the gradual engine degradation i.e

min
∑

∞

n=k y
p
n.



• The system safety/stability is guaranteed i.e the mea-

surements g
p
k ≤ specified limits, Glimits ∀k.

The VGCs are known to have a large effect on the

system performance such as fuel consumption [18], [19]

and are envisaged to increase and provide extra degrees of

freedom. A candidate solution approach to the CBC problem

is therefore to devise a feedback tuning strategy for uaux in

place of their conventional fixed gain scheduling by solving

a performance optimisation problem as:

u∗aux
k = argmin

∞
∑

n=k

yp
n

subject to: xk+1 = F (xk,uk,dk), yk = c(xk)

umain
k = h(yk), g

p
k ≤ Glimits (2)

Solving (2) is difficult due to the unknown F (·) in (1).

A standard system identification approach will result in the

nonlinear Hamilton-Jacobi Bellman (HJB) equations which

are often impossible to solve analytically [20]. RL solves

the problem by not requiring models of the system but

incrementally improves the desired control performance us-

ing the secondary performance measurements. The proposed

solution approach is given in the next section.

III. PROPOSED RL-ADP SOLUTION

RL problem is concerned with optimising the expected

value of some desired cost through a sequence of observa-

tions, actions and rewards over time [10]. Practical methods

for solving the RL problems have been based on approximate

dynamic programming (ADP) which are able to solve the

sequence of operations using dynamic programming and

function approximations [21], [22]. For the formulated GTE

condition-based control problem, let the desired cost to be

optimised at discrete time steps j be given as:

Q(xj ,u
aux(xj)) =

N
∑

n=j

λn−jR(xn,un) (3)

where N is the discrete time interval considered for opti-

misation, λ ∈ [0, 1] is a discount factor and R(x,u) is the

observed scalar reward measurement assumed to be the sys-

tem performance measurements yp. Function approximation

for the cost is given as:

Q(xj ,u
aux(xj); Θ) ≈

N
∑

n=j

λn−jyp
n (4)

In RL literature, this is known as the approximated state-

action value function or Q-function. Learning is achieved by

minimising the temporal-difference (TD) error and using a

recursive relationship known as the Bellman equation [11]:

ej =

N
∑

n=j

λn−jyp
n −Q(xj ,u

aux(xj); Θ)

= y
p
j + λjQ(xj+1,u

aux(xj+1); Θ)−Q(xj ,u
aux(xj); Θ)

(5)

A batch or recursive least squares solution is determined for

the parameters of the Q-function at each time step for Θ
using the TD error. This can be cast into a Kalman Filtering

problem with the additional advantage of compensating for

time varying parameters and measurement noise assumed

to be zero-mean. Online approximation of the Q-function

using the system performance measurements corresponds

to determining the desired operating points for the GTE

subject to the gradual engine degradation and variations.

This RL-ADP framework therefore belongs to the class of

critic-only policy iteration algorithms where the Q-function

parameters are adapted to recursively solve the Bellman

equation and thereafter used to prescribe a near-optimal

policy [11].

On convergence of the Q-function parameters, an optimi-

sation sub-problem is solved for the VGC set-points update

and constitutes a policy update step [10]. In contrast to

the conventional Q-learning policy update, a constrained

optimisation problem that guarantees the GTE safety/stability

limits is solved as:

u∗aux(xj) = argminQ(xj ,u
aux(xj); Θ)

subject to: g
p
j ≤ Glimits (6)

In order for the RL-ADP update framework to fit into the

overall GTE control architecture, a dual-loop control struc-

ture shown in Fig. 1 is considered, where the conventional

main loop regulates the fuel flow while the RL-ADP loop

continually updates the VGC set-points in the optimisation

sub-problem. Transient interaction between the two control

Fig. 1: Block diagram of the RL-ADP dual-control loop for

GTE condition-based control. The existing main control loop

guarantees the thrust response control while the RL-ADP

control loop continually updates the VGC set-points.

loops is minimised by triggering the RL-ADP adaptation

only at steady-state operating conditions where the most

benefits in fuel savings is achievable [2]. Algorithm 1 gives

the overall template for the RL-ADP CBC framework.



Algorithm 1 RL-ADP for GTE condition-based control

1: Initialise the Q-function model parameters Θ0

Main control loop: at discrete flight time steps k:

2: Existing controller computes umain
k = h(yk) while the

VGC set-points i.e uaux(xk) are kept fixed till the next

update.

RL-ADP loop: triggered at steady-state intervals

Q-function update step for j = k till convergence

3: Apply uaux(xj) and obtain measurements for y
p
j , g

p
j ,

xj and xj+1.

4: Compute the TD error from (5), and solve the least

squares solution for Θj+1.

VGC set-points update

5: Solve a constrained optimisation sub-problem in (6)

using the updated steady-state Q-functions.

6: Repeat steps 2 to 5 till end of flight.

IV. SIMULATION OF THE PROPOSED RL-ADP

CBC FRAMEWORK

The proposed RL-ADP scheme is demonstrated on

representative GTE data sets in MATLAB/SIMULINK

environment. The data sets are cruise data from Roll-Royce

RB3039-06B model for different synthesised degradation

conditions between cycle 0 as nominal and cycle 3000 as

fully degraded. Inputs to the system are given as the fuel

flow (WFE) for the main control variable umain and two

sets of variable inlet guide vanes (VIGV) for the auxiliary

control variables uaux: the high pressure (HP VIGV) and

intermediate pressure (IP VIGV). WFE is allowed to vary

between ±2.5% of its nominal value at cruise and in steps

of 0.5% while the IP and HP VIGV vary in steps between

−6.67 to 14 and −7.5 to 25 degrees respectively. System

performance measurements yp and gp that reflect changes

in the system health due to degradation are available in

the data sets. These are given as the thrust specific fuel

consumption (TSFC), surge margin (SM) and various air

pressure ratio (APR) measurements.

Based on Assumption 1, the main control loop computes

the required WFE settings and guarantees the thrust response

control (i.e. pre-stabilised) with umain = h(y). Similarly,

fixed gain schedules for the VGCs are designed for the

worst case degradation condition. Fig. 2 shows the offline

static variations of the system performance measurements

with the control inputs (WFE, IP and HP VIGV) for different

degradation cycles. Representative of the conventional design

approach, fixed VIGV set-points are then scheduled against

the steady-state WFE settings (WFEmin : WFEmax) at

the worst degradation cycle (i.e. cycle 3000) that satisfy the

system constraints and are given in Fig. 4. Clearly, fixing the

VIGV angles for the worst degradation condition will lead

to increased fuel consumption at the other conditions. The

formulated RL-ADP scheme is then applied to continually

adapt the VIGV gains as the engine degrades using the

system performance measurements as the reward signals.

Algorithm implementation

In order to initialise the Q-function model parameters

for the system performance measurements, second-order

quadratic polynomials were fitted to the offline test engine

data as:

Q(x,uaux) ≈ Θ⊤Φ(z); Θ ∈ R
p (7)

with Φ(z) =
[

WFE
2

IP
2

HP
2

WFE IP HP 1
]

.

These were found to give a cross-validated R2 test statistic

of 0.94 negating the need to investigate more complex basis

function. The least squares estimates for the Q-function

parameters in Algorithm 1 is cast as a Kalman Filter (KF)

parameter estimation problem modelled as:

Θj+1 = Θj + wj ; wj ∼ N (0,Q) (8)

where (8) assumes a random walk model for the parameters.

The TD error from (5) becomes:

ej = y
p
j +Θ⊤

j+1

(

λΦ(zj+1)− Φ(zj)
)

ej ∼ N (0,R) (9)

Q and R are respectively the process and the measurement

noise co-variance matrices. The KF parameter estimation

operates in a cycle of predict-correct stages as follows:

Θ−

j+1
= Θj ; P−

j+1
= Pj +Q

Kgain = P−

j+1
Φ(zj)

⊤
(

Φ(zj)P
−

j+1
Φ(zj)

⊤ +R
)−1

Θj+1 = Θ−

j+1
+Kgainej ; Pj+1 =

(

I −KgainΦ(zj)
)

P−

j+1

(10)

where Θ−

j+1
and P−

j+1
are respectively the predicted

parameter and error co-variance estimates, Kgain is the

Kalman Filter gain, while Θj+1 and Pj+1 are respectively

the parameter and error co-variance updates. The matrix

Q is selected as 8e−8 for the slowly varying efficiency

measurements due to degradation while R was selected as

4e5 for noisy measurements. This is done till convergence

of the parameters and constitutes the Q-function update step.

A nonlinear constrained optimisation problem is solved

for the VGC set-points update step described in Algorithm

1. Due to the computational complexity of gradient based

optimisation methods, an adapted direct search method from

[23] called ’constrained scan and zoom’ was used. This is

a derivative free method which executes disciplined search

for points around the current iterate using the adapted Q-

functions, and systematically proceeds to points where the

objective function value is reduced and satisfies constraints.

The set-points for the VGCs are then updated to the identified

optimal points and the process is continued till end of flight.

Fig. 3 shows snapshots of the adapted online Q-functions

and the identified set-points, representative of the actual

(but assumed unknown) TSFC and constraint variations at

the steady-state. Fig. 5(a) and Fig. 5(b) show the identified

VIGV angles from the algorithm as the engine undergoes

step changes in degradation from cycle 0 to 3000 while Fig.

5(c) shows the achieved fuel consumption as compared with

their conventional fixed gains. This resulted in fuel savings



(a) WFEmin and degradation cycle 0.

(b) WFEmax and degradation cycle 0.

(c) WFEmin and degradation cycle 3000.

(d) WFEmax and degradation cycle 3000.

Fig. 2: Contour plots showing the variation of TSFC as

functions of IP and HP VIGV, at two sample steady-state

WFE settings (WFEmin and WFEmax) and degradation

cycles 0 and 3000. The shaded regions indicate infeasible

regions of operation due to safety/stability constraints.

of about 0.6% at the early degradation stages. The later

degradation stages correspond to the worst case for the initial

set-points design where the algorithm slowly converges to.

As 1% of cruise TSFC can be worth about $150, 000 per

year on a four-engined civil aircraft [2], the proposed RL-

ADP framework therefore leads to a simple, yet effective

and practical means of improving the performance of GTEs

across fleets subject to unknown degradation patterns and

using only measurements of desired reward signals.

V. CONCLUSIONS

Conventional control approaches are unable to compensate

for gradual degradation affecting system performance. Con-

sequently, this paper has proposed and demonstrated the suit-

ability of a RL framework for the condition-based control of

(a) WFEmin and degradation cycle 0.

(b) WFEmax and degradation cycle 0.

(c) WFEmin and degradation cycle 3000.

(d) WFEmax and degradation cycle 3000.

Fig. 3: Adapted Q-function of the system performance mea-

surements as functions of IP and HP VIGV, at two sample

steady-state WFE settings and degradation cycles 0 and 3000.

The shaded regions indicate infeasible regions of operation

due to the constraints, while the red dots represent sample

identified optimal points from the RL-ADP scheme.

GTEs to extract improved performance due to the unknown

variations and degradation. A proposed dual-loop control

structure which is essential to providing a potential route

to certification for the overall framework integrates the RL

adaptations into the existing controller structure. Simulation

results on representative data sets delivered improved fuel

consumption to the GTE as compared to the conventional

static scheduling by adapting to through life degradation and

variations.
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