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Abstract

How groups of cooperative foragers can achieve efficient and robust collective foraging is of
interest both to biologists studying social insects and engineers designing swarm robotics sys-
tems. Of particular interest are distance-quality trade-offs and swarm-size-dependent foraging
strategies. Here, we present a collective foraging system based on virtual pheromones, tested
in simulation and in swarms of up to 200 physical robots. Our individual agent controllers are
highly simplified, as they are based on binary pheromone sensors. Despite being simple, our
individual controllers are able to reproduce classical foraging experiments conducted with
more capable real ants that sense pheromone concentration and follow its gradient. One key
feature of our controllers is a control parameter which balances the trade-off between distance
selectivity and quality selectivity of individual foragers. We construct an optimal foraging
theory model that accounts for distance and quality of resources, as well as overcrowding,
and predicts a swarm-size-dependent strategy. We test swarms implementing our controllers
against our optimality model and find that, for moderate swarm sizes, they can be parame-
terised to approximate the optimal foraging strategy. This study demonstrates the sufficiency
of simple individual agent rules to generate sophisticated collective foraging behaviour.

Keywords Foraging · Swarm robotics · Stigmergy · Kilobot · Augmented reality · Traffic
congestion

1 Introduction

Collective central-place foraging by super-organismal social insect colonies elegantly and
scalably solves the problem of resource collection in a heterogeneous and uncertain envi-
ronment (Olsson et al. 2008; Traniello 1989; Detrain and Deneubourg 2008). Accordingly,
engineers have drawn inspiration from social insects to design swarm robotics systems that
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Swarm Intelligence

collectively solve foraging-like tasks in parallel (Labella et al. 2004; Hamann and Wörn
2006; Liu et al. 2006; Campo and Dorigo 2007; Winfield 2009; Berman et al. 2011; Pini
et al. 2014; Reina et al. 2015a; Ferrante et al. 2015; Scheidler et al. 2016; Essche et al. 2015;
Pitonakova et al. 2016, 2018; Hamann 2018b). Engineering and biology share common core
interests in the efficiency of behaviour-generating mechanisms (e.g. Parker and Smith 1990;
Houston and McNamara 1999; Ferrante et al. 2013; Gauci et al. 2014; Özdemir et al. 2018),
and scalability (e.g. Rubenstein et al. 2014b; Khaluf et al. 2017; Poissonnier et al. 2019).

Here, we extend a previous study of pheromone-based collective foraging (Font Llenas
et al. 2018); robots coordinate to find item sources in an unknown environment, collect an
item, and transport it back to a central depot. Each robot has limited cognitive abilities and a
minimal memory; it simply uses binary pheromone sensors and follows a reactive behaviour
with a minimal set of states. Despite the limited capabilities of the robots and the simplicity of
their individual behaviour, the resulting collective behaviour qualitatively reproduces patterns
observed in real foraging ant colonies where the individuals have a more capable sensory
system (i.e. pheromone concentration sensors) and a more complex behaviour [i.e. decisions
based on difference of pheromone concentration (Thienen et al. 2014) or on number of
collisions with other ants (Fourcassié et al. 2010)]. Our resulting collective behaviour is able to
manage the distance-quality trade-off, and to approximate the optimal allocation of foragers to
resources using quality-sensitive modulation of pheromone deposition and distance-sensitive
abandonment rules. The emergent bidirectional collective movement of foragers between
sources and depot is affected by crowding which is expected to reduce the efficiency of forage
transportation from popular resources (Burd et al. 2002; Dussutour et al. 2004; Fourcassié
et al. 2010; Banks 1999; Leduc et al. 2012). To assess the performance of the emergent
collective behaviour, we built an optimal foraging model that explicitly takes account of
crowding and we compared its predictions against the results of simulations with swarms of
varying sizes and experiments with up to 200 physical robots. Our results are of potential
interest to both swarm engineers and behavioural ecologists, in that they demonstrate the
sufficiency of very simple individual agents to generate sophisticated collective behaviour, as
well as its scalability, and reproduce empirically observed or theoretically predicted patterns.
This study follows previous work that used swarm robotics as a useful tool in advancing
the understanding of biological systems (Garnier 2011; Webb 2012; Wischmann et al. 2012;
Mitri et al. 2013; Bose et al. 2017).

2 Related works

Previous engineering studies have investigated the use of stigmergy as a form of indirect
communication within robot swarms where robots communicate with others by modify-
ing the environment. Significant attention has been given to the use of indirect stigmergic
communication to coordinate the collection of resources spread in the environment (Goss
et al. 1992; Werger and Matarić 1996; Payton et al. 2001; Nouyan et al. 2009; Campo et al.
2010; Ducatelle et al. 2011b; Hoff et al. 2012; Purnamadjaja and Russell 2007). Engineers
have mainly been inspired by social insect behaviours, especially the behaviour of some ant
species that we overview in Sect. 2.1. In Sect. 2.2, we review the techniques that engineers
have adopted to implement stigmergy-based foraging robots. Finally, in Sect. 2.3, we intro-
duce optimal foraging theory and present previous theoretical models of collective foraging.
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2.1 Stigmergy-based foraging in ant colonies

Some ant species coordinate their food collection by leaving pheromone trails when returning
from a discovered resource to their nest (Wilson 1962; Hölldobler and Wilson 1990). In these
ant species, the deposited pheromone trails serve as a positive feedback mechanism for mass
recruitment which guides nest-mates to the location of a discovered source of forage (Sumpter
and Pratt 2003). Foraging ants, equipped with pheromone concentration sensors (Thienen
et al. 2014), reach food sources by following the deposited pheromone trails with a preference
to higher concentration trails (Hangartner 1969; Van Vorhis Key and Baker 1982; Choe et al.
2012). The modulation of positive feedback [e.g. as a function of the source quality (Beckers
et al. 1993; Portha et al. 2004; Shaffer et al. 2013) or footprint frequency (Devigne et al.
2004)] allows ant colonies to reach various collective patterns, such as selecting the best-
quality food source available in the environment (Beckers et al. 1990, 1993; Reid et al. 2012;
Shaffer et al. 2013), selecting the shortest path linking the food source to the nest (Goss et al.
1989; Deneubourg et al. 1990), and balancing predation risk and food quality (Nonacs and
Dill 1990).

In addition to the ability of collective resource exploitation, adaptation to environmental
fluctuations is a critically important ability for many biological organisms (Tsimring 2014),
including foraging ants (Dussutour et al. 2009). The mechanisms behind mass recruitment
abilities (i.e. positive feedback) are generally in opposition to those that allow adaptation
and flexibility (Tabone et al. 2010; Tsimring 2014); therefore, organisms showing adaptabil-
ity are generally capable of a more complex behaviour. A remarkably interesting example
is offered by Monomorium pharaonis ants which make use of repellent pheromone as a
form of negative feedback (Stickland et al. 1999; Robinson et al. 2005, 2008; Detrain and
Deneubourg 2006). Ants use this repellent pheromone to mark unrewarding trails and could
thus be a strategy to stop the exploitation of trails that lead to depleted food sources. Other
evidence of adaptability in ants has been documented by Beckers et al. (1990) who showed
that Tetramorium caespitum ants are able to refocus their foraging efforts from a previously
selected lower-quality food source, to a newly available higher-quality food source. Ants are
able to adapt to the environmental changes because, in addition to pheromone-based recruit-
ment, they use tandem running to recruit ants to newly available higher-quality food sources
(Beckers et al. 1990). In contrast, Lasius niger ants, using pheromone-based recruitment
only, are unable to switch their foraging efforts to the newly available food source. In fact,
Lasius niger ants only rely on indirect forms of negative feedback, which may arise from
physical constraints at the food source (e.g. overcrowding or food depletion) or within the
nest (e.g. filling of food reserve) (Detrain and Deneubourg 2006). Finally, in another study,
Shaffer et al. (2013) showed that Temnothorax rugatulus ants employing quality-dependent
linear recruitment and quality-dependent abandonment are able to adapt to the environmental
changes. T. rugatulus ants select the best-quality food source in case of two unequal-quality
sources, exploit equally the two sources if they have equal qualities, and refocus their foraging
efforts in case of changes in relative qualities (Shaffer et al. 2013).

2.2 Stigmergy-based foraging in swarm robotics

To implement the pheromone-based recruitment mechanism in a robot swarm, an important
question concerns the means of implementing pheromone trails; in particular, how the robots
deposit pheromone, how the pheromone trails in the environment evolve, and how pheromone
can be sensed by the robots. Here, we categorise state-of-the-art work in this area into three
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main approaches: beacon robots, robots with on-board actuators and sensors, and smart
environments.

In the first category of robotic systems, some robots are tasked as static beacon robots
(Goss et al. 1992; Werger and Matarić 1996; Payton et al. 2001; Nouyan et al. 2009; Campo
et al. 2010; Ducatelle et al. 2011b; Hoff et al. 2012), which have the functions of storing
pheromone levels and communicating with other robots in their neighbourhood. The biggest
advantage of this approach is that the system can be implemented with simple robots in
largely unknown and unstructured environments. However, there are some limitations: (i)
allocation of beacon robots means they are not actively contributing to the main task, such
as foraging; (ii) in large environments, the number of beacon robots increases in order to
cope with the communication requirements, thereby further limiting the number of robots
performing main tasks; (iii) beacon robots become obstacles themselves which restrict the
movements of other robot agents. These issues can be overcome by the creation of mobile
beacon robots, which can contribute to a main task as well as acting as beacons concurrently
(Sperati et al. 2011; Ducatelle et al. 2011a). However, the performance of the latter approach
relies on finding the correct balance between the swarm size and the communication range
as a function of the environment size.

Researchers have made several attempts to equip robots with on-board actuators and
sensors to implement indirect communication. For example, one early solution was to install
marker pens on robots so they could draw lines on the path as pheromone trails (Svennebring
and Koenig 2004). This method improved robots’ performance in the area coverage task;
however, it did not incorporate pheromone evaporation or diffusion which are features of
real ant trails; evaporation in particular is considered important to avoid runaway positive
feedback (Garnier et al. 2007, 2013). Another design proposed in (Purnamadjaja and Russell
2007) equipped robots with devices to emit and detect gas, which then provided guidance
to robots towards a source area. The main limitation of this design was the high volatility of
the chemicals used. In (Mayet et al. 2010), a technique of energising phosphorescent paint
using UV-LEDS mounted on E-Puck robots to mark the path, as well as sensors for picking
up the glowing paint signal representing the pheromone trail, was presented. Although this
allowed emulation of pheromone decay, diffusion could not be emulated. A more recent
study (Fujisawa et al. 2008, 2014) used ethanol for indirect communication signals between
robots, with an ethanol pump and an ethanol sensor installed on each robot, which preserved
the four characteristics of pheromone: evaporation, diffusion, locality (i.e. pheromone level
is only affected by the local environments), and reactivity (i.e. pheromone evolution is based
on reactions with the environment).

Perhaps the most popular approach in implementing pheromone communication is through
a smart environment (Sugawara et al. 2004; Garnier et al. 2007; Hecker et al. 2012; Garnier
et al. 2013; Arvin et al. 2015; Valentini et al. 2018), which has the capability to store and
to supply virtual pheromone information to robot agents in real-time. The popularity arises
from the fact that this approach is generally low cost and easily adaptable to different sizes
of swarm and environment. Smart environments may be difficult to install and use for real
applications; rather, such setups are often employed for targeted research experiments. This
category can be further divided into three classes: the usage of (i) radio-frequency identi-
fication (RFID) tags (Mamei and Zambonelli 2005, 2007; Herianto et al. 2007; Herianto
and Kurabayashi 2009; Bosien et al. 2012; Khaliq et al. 2014); (ii) simulated pheromone
environments, using projected light or other custom hardware for virtual pheromone imple-
mentations (Sugawara et al. 2004; Garnier et al. 2007, 2013; Arvin et al. 2015; Valentini
et al. 2018) , and (iii) augmented reality tools in which a virtual environment is sensed and
acted on by robots using virtual sensors and actuators (Reina et al. 2015b, 2017).
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2.3 Optimal foraging theory

Foragers make economic decisions; hence, optimality models need to be based on suitable
assumptions about ‘currencies of costs’ and benefits, as well as on constraints which may
originate from features in the environment where foraging takes place (extrinsic) or inherent
to the animals (intrinsic) (Stephens and Krebs 1986). It is often assumed that reproductive
success (or fitness) and foraging behaviour are linked (Pyke 1984; Houston and McNamara
1999). Regarding currencies, i.e. the quantities to be maximised to achieve optimality, forag-
ing animals often face a trade-off involving energy and time (Houston and McNamara 1999).
Typically, an animal gains energy from eating a food item, but it also needs to invest time in
handling such an item. Hence, if the quality of the food item is poor, the animal must decide
whether to pick it, or to leave it and continue searching for better items. If the animal is a
central-place forager (Orians and Pearson 1979; Kacelnik 1984), then its nest is the central
place and food needs to be transported from the food source to the nest, where it is consumed.

Traditionally, two different currencies have often been used in foraging theory: the net
rate of energy gain and efficiency (Kacelnik 1984; Houston and McNamara 2014). Whereas
the net rate of energy gain is computed as the difference between the forager’s gross rate
of gain and its rate of energy expenditure, efficiency is derived by dividing gross rate of
energy gain by rate of energy consumption (Houston and McNamara 2014). In honeybees,
for example, there is mounting evidence that maximising energetic efficiency provides a better
account of the observed foraging behaviour (Schmid-Hempel et al. 1985; Seeley 1986, 1994;
Cox and Myerscough 2003; Houston and McNamara 2014; Baveco et al. 2016). However,
optimal foraging theory does not always apply to real systems, as has, for instance, been
noted for leaf-cutting ants (Kacelnik 1993). Another study investigating seed-harvester ants,
which always carry exactly one seed, made use of a different currency involving the seed
mass to study optimal foraging (López 1987). Developing a theory that works for several
foraging species seems inherently difficult, as mechanisms underlying foraging can be quite
different (Traniello 1989). For example, red harvester ants (Pogonomyrmex barbatus) do
not rely on pheromone trails during foraging; rather, interactions between ants at the nest
site regulate their foraging behaviour (Gordon 1991; Greene and Gordon 2003; Pagliara
et al. 2018). There are, however, many ant species where the production of pheromone
trails is crucial in the foraging process (Wilson 1962; Hölldobler and Wilson 1990; Detrain
et al. 1999; Nicolis and Deneubourg 1999; Sumpter and Pratt 2003). In principle, other
aspects also need to be considered when a foraging model is developed, which are more
generally related to the overall state of the forager (e.g. competing alternative activities) and
the conditions characterising the foraging landscape (such as predation risk) (Houston and
McNamara 1999).

We emphasise that this section has only touched on the complex nature of foraging
behaviour of animals and insect colonies and that it is by no means an exhaustive collection
of references. For the latter, we refer to more comprehensive overviews, e.g. see Charnov
(1976); Pyke (1984); Stephens and Krebs (1986); Houston and McNamara (1999). In our
swarm robotics study, we made use of several aspects of the biological systems discussed
above (see Sects. 3 and 4) and we constructed a model for optimal resource collection which
is described in Sect. 5 and in Appendix A.
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3 Resource collection in an unknown environment

In this section, we formally define the investigated problem and the required capabilities of
the robot (Sect. 3.1), then we describe the robotic platform (Sect. 3.2) and the augmented
reality technology in use (ARK, Sect. 3.3).

3.1 The resource collection task

In this study, we investigate the problem of resource collection by a swarm composed of S

robots. The environment has n circular source areas of radius 10 cm, denoted by Ai with
i ∈ {1, . . . , n}, which are scattered around a central depot. Each area Ai offers resource
items of quality Qi . The quality is a numerical indication of the importance of the resource
with respect to the task that will be performed; this is similar to the nutritional value of food
items in animal foraging. In this work, we are interested in the foraging process at steady
state; therefore, we assume sources which never deplete. If a robot enters a source area, it
immediately collects one virtual item (or object) and returns it to the central circular depot (of
radius 10 cm). We do not take into account any handling time of the resource item. Also, we
do not consider the time spent in the resource patch, as the robot immediately finds an object
and returns to the depot (no exploration within the source area). The load carried back to the
nest site is always one item at a time. Travelling takes place with the same speed independent
of the load carried (i.e. either unloaded or loaded with one object). Keeping these aspects
in abstract terms helps to focus the study on the collective motion aspect and allocation
of robots to source areas. In fact, this study focuses on strategies to coordinate the robot
motion between depot and source areas through decentralised self-organising mechanisms.
In particular, we explore how indirect communication in the form of virtual pheromone trails
can allow the robot swarm to balance the trade-off between the quality of resource items and
the distance between the source area and the central depot.

The robots have limited computational and memory capabilities and need to operate
in an unknown environment. Robots are incapable of memorising source areas’ locations,
instead rely on pheromone trails to find again the previously discovered sources. This form
of indirect communication requires the robots to be able to apply and read temporary marks
in the environment. Additionally, we assume that robots always know the direction to the
depot [similarly to path integration in ants and in other social insects (Collett and Collett
2002; Bregy et al. 2008; Heinze et al. 2018)] and are able to detect walls in front of them.
However, robots do not possess any form of direct communication amongst each other and
cannot perceive other robots in their surroundings.

3.2 The Kilobot robot

This study is conducted using Kilobots (Fig. 1a), which are minimalistic robots widely
employed in swarm robotics research, with very limited capabilities provided by a small
range of sensors and actuators (Rubenstein et al. 2014a). The Kilobot moves on a flat surface
through a pair of vibration motors that allow the robot to perform a slip-stick differential-
drive motion. A Kilobot moves at a speed of v0 ≈ 1 cm/s and rotates at ∼ 40 ◦/s. It also has
an infrared (IR) transceiver to communicate with other Kilobots in a range of 10 cm and to
receive messages from an overhead control board (OHC), an RGB LED to display internal
states through colours, and an ambient-light sensor. The OHC allows users to quickly program
large swarms through wireless IR communication, and in our case, is used to augment the
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Kilobots with virtual sensors and actuators (see Sect. 3.3). While the Kilobot is quite limited
in its capabilities, its simplicity results in a low-cost and easy-to-operate platform which is
highly scalable.

3.3 Increasing Kilobots’ capabilities through augmented reality

To overcome the Kilobot’s limitations, researchers implemented open-source technology to
extend the Kilobot’s capabilities via customisable virtual sensors and actuators (Reina et al.
2017; Valentini et al. 2018). This technology allows Kilobots to operate in an augmented
reality in which, in addition to the real world, the Kilobots can sense and modify a computer-
simulated environment in real-time (see Sect. 2.2). Two implementations of this technology
have been proposed in recent years: the augmented reality for Kilobots (ARK) by Reina
et al. (2017) and the Kilogrid by Valentini et al. (2018). In this study, we use the ARK
system because of its low installation cost and its ability to automatically perform several
house-keeping tasks such as motor calibration, unique ID assignment, and experiment video-
recording.

ARK consists of an overhead camera array to track the Kilobots, an IR-OHC to com-
municate to the Kilobots, and a computer (base control station, BCS) to simulate the virtual
environment. The information about the virtual sensors is computed on the BCS and commu-
nicated to the specific robot with addressed messages via the OHC. The information about
virtual actuators is computed on-board by the Kilobots, communicated with colour-coded
messages via LEDs visible by the overhead cameras, and processed by the BCS which updates
the virtual environment. Additionally, the BCS updates the temporal dynamics of the virtual
environment. In this way, each Kilobot can receive personalised information about its vir-
tual sensors in real-time and autonomously decides when to modify the virtual environment
through virtual actuators.

In this study, we employ ARK to allow robots to apply and read virtual pheromone which
evaporates and diffuses over time. We equip the Kilobots with five virtual sensors and one
virtual actuator. In particular, each robot is equipped with:

– area sensor (either depot or source): the Kilobot is able to perceive if it is within the depot
or a source area (this information is encoded in 2 bits);

– item quality sensor: the Kilobot is able to estimate the quality of the item it retrieves from
the source area. Additionally, when the Kilobot enters in the depot, it can estimate the
quality of the items that have been collected up to now (this information is encoded in 4
bits);

– depot direction sensor: the Kilobot has always knowledge about its relative direction to
the depot (this information is encoded in 4 bits);

– wall sensor: the Kilobot can sense if there is a wall at a distance of ∼ 5 cm in front of
itself; note that this does not allow the Kilobot to sense the presence of other robots (this
information is encoded in 4 bits);

– pheromone gland actuator: the Kilobot can deposit a drop of pheromone at its location
(it expresses this behaviour by blinking its LED blue);

– pheromone antennae: the Kilobot can sense the presence of pheromone at a distance
of ∼ 3.5 cm from its centre in front of itself (this information is encoded in 4 bits, see
Fig. 1b).

To store information about the pheromone, ARK models the environment as a discrete
2D matrix with cells of 6.7 × 6.7 mm2. Each time-step of length Δt = 0.5 s, ARK updates
the pheromone matrix by adding pheromone deposited by the robots (each drop consists of
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(a) Kilobot robot (b) virtual antennae(a) Kilobot robot (b) virtual antennae

Fig. 1 a A picture of a Kilobot with a 3D printed ring [originally designed for the study of Pratissoli et al.
(2019)] which considerably improves ARK’s performance in terms of tracking and LED colour detection.
b Kilobots sense via ARK the presence of virtual pheromone in front of themselves at a distance of ∼ 3.5 cm
in four 45◦-wide sectors. The virtual sensor indicates the presence or absence of pheromone as binary values,
therefore, the Kilobot has no information about the pheromone quantity or concentration difference. In this
illustration, pheromone is represented as blue circles, and thus, the virtual sensor readings are [1, 0, 1, 0]. When
an exploring Kilobot detects pheromone, it interrupts random exploration and moves towards the detected
pheromone. If more than one sector has pheromone (as in the illustration), to decide its motion direction
the robot compares the sectors’ direction with the depot direction (depot illustrated as a house and direction
differences as red and green angles), and moves towards the largest angle (green arrow) (Colour figure online)

an increment of φ = 250 in the cell under the robot’s centre), and computes evaporation and
diffusion of the pheromone. Each matrix cell m(i, j) is updated as

m(i, j) = m(i, j)[ elog(0.5)ǫ Δt − 4 γ Δt ] + [m(i, j ± 1) + m(i ± 1, j)]γ Δt, (1)

where the parameters ǫ = 0.1 and γ = 0.02 are the evaporation and diffusion rates, respec-
tively. Equation (1) is a discrete realisation of Fick’s law of diffusion (Fick 1855), where we
introduce the exponential term to take into account the pheromone evaporation consistently
with studies from biology (Garnier et al. 2013).

4 A simple individual behaviour for complex coordination

The individual robot behaviour is relatively simple and can be described by the probabilistic
finite state machine (PFSM) illustrated in Fig. 2. The main structure of the behaviour is
based on the control software designed by Font Llenas et al. (2018). The behaviour has been
enriched by adding a new Obstacle Avoidance state (indicated as AO in Fig. 2), by including
an additional form of indirect communication that enables adaptability to different quality
scales (as described in Sect. 4.1), and by allowing for probabilistic transitions and tuneable
pheromone functions (as described in Sect. 4.2).

The robots do not have previous knowledge about the number, location, and items’ qual-
ity of the source areas. Therefore, a robot starts by exploring the environment to discover
source areas (state RW in Fig. 2). Due to the Kilobot’s limited capabilities (see Sect.3.2),
the exploration is performed via an isotropic random walk which is a simple and efficient
method to search for targets in an unknown environment (Dimidov et al. 2016). The random
walk consists of alternate straight motion for 10 s and uniformly random rotation in [−π, π].
Upon encounter of a source area, the robot (virtually) picks up an item and transports it to the
depot (state GD in Fig. 2). As indicated in Sect. 3.1, we assume that the robots are limited in
memory and only able to keep track of the direction towards a single location in the space, in
our case the direction to the depot. This assumption is in line with the behaviour of several
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ants species which rely on path integration to return to the nest (Collett and Collett 2002;
Bregy et al. 2008; Heinze et al. 2018). The robots follow the direction to depot to bring back
collected items. Instead, to memorise the source locations, the robots rely on their stigmergic
coordination which represents a form of collective memory. Therefore, on its way to the
depot, the robot lays down virtual pheromone to allow itself, as other robots, to find again
the source area. The robot, every four seconds, takes a probabilistic decision to deposit the
next pheromone drop using the function Pφ(Qi ) which is function of the collected item’s
quality Qi .1 The function Pφ(Qi ) is given by Eq. (2) and described in details in Sect. 4.2.
On arriving to the depot, the robot unloads the item and probabilistically decides [according
to Eq. (3)] to turn back to follow the just-formed pheromone trail (state TB in Fig. 2), or
to interrupt its exploitation of this source area and to resume exploration through random
walk. When a robot senses virtual pheromone via the virtual antennae (composed by four
sectors described in Sect. 3.3), the robot follows the trail by moving in the direction of the
triggered antennae sector (state FP in Fig. 2). If the robot senses pheromone in more than one
direction, e.g. both left and right sectors as in the illustration of Fig. 1b, the robot compares
the sensed-pheromone directions with the direction to depot (red and green angles in Fig. 1b)
and moves towards the direction with the largest difference (green arrow in Fig. 1b). This
decision relies on the assumptions that robots only deposit pheromone in their straight path
from a source area to the depot and that they always have access to the depot vector.

Compared with previous studies (Font Llenas et al. 2018), the robot’s behaviour has been
enriched through the inclusion of obstacle avoidance (state AO in Fig 2). In fact, robots have
been equipped with a virtual sensor to detect walls (see Sect. 3.3). The robot reacts to a wall
only if sensed in a frontal position, i.e. the two central sectors in the range [− 45◦, 45◦] of
the robot’s heading (note that the virtual wall sensor is composed by four sectors equal to
the virtual antennae of Fig. 1b). Upon wall detection, the robot turns left or right for about
22.5◦ in the opposite direction of the sensed obstacle, then moves straight for 2.5 s, and
finally returns to either the random walk (RW) state or the go depot (GD) state, depending
on whether it carries an item or not. This behaviour may be triggered multiple times, until
no obstacle is sensed in the central sectors. In case of symmetric sensing, i.e. both central
sectors sense an obstacle, the robot uses as tie-breaker the lateral obstacle sectors to turn in
the freest direction. In the case of complete symmetry, the direction is selected at random.

4.1 Adaptivity to relative quality differences

The robots do not have any prior information about the range of the sources’ qualities that
the unknown environment can offer. In order to allow the swarm to tune its behaviour to
an unknown quality range, the individual robots update over time their knowledge on the
best currently available quality Qmax. Initially, the robot has no prior knowledge about the
quality range and thus ranks the first source it finds as the best available. Over time, the
robot constantly compares its range (i.e. the best available quality Qmax) with other items
collected by other swarm members. The communication between robots is indirect and takes
place within the depot. Each time a robot enters the depot, it can see the qualities of the
items collected by the swarm until now; thus, the robot compares its information with the
best quality and, if higher, updates its Qmax accordingly. This mechanism is consistent with

1 Lasius niger ants follow a similar behaviour, laying pheromone trails on their way back to the nest while
depositing a quantity of pheromone proportional to the quality of the foraged food (Portha et al. 2004; Czaczkes
et al. 2013).
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Fig. 2 Probabilistic finite state machine (PFSM) of the individual robot behaviour. Circles represent states,
and arrows are transitions. Robots start exploring the environment through a random walk (RW); when they
find a source area they collect an item and return to the depot (GD) laying pheromone according to Eq. (2).
Once arrived at the depot, they either turn back (TB) or resume exploration (RW). When explorer robots detect
pheromone, they follow it (FP). When robots detect a wall, they avoid it (AO). Controlling individuals through
this simple PFSM leads to sophisticated collective foraging dynamics

animal behaviour where individuals can assess the nutrient quality of the swarm’s reserves
and compare against their own (Dussutour and Simpson 2009; Arganda et al. 2014).

In our study, we consider unlimited item sources to investigate the steady state regime;
however, in case of limited sources (i.e. with a limited number of items) the robots may update
their quality range by only observing the latest collected items. In this way, we predict the
swarm being able to flexibly adapt to appearance or depletion of sources.

4.2 Modulation of the individual rules to obtain a plastic behaviour

After collecting an item, the robot returns to the depot laying a pheromone trail. The
pheromone trail acts as a form of indirect communication between robots which inform
each other about paths connecting depot to discovered sources. Collective contribution to
these trails leads to a form of swarm memory which allows the swarm to remember the loca-
tion of sources in the environment. In fact, our simple robots cannot internally store sources’
locations, although the swarm, as a whole, can remember locations through pheromone trails.
A pheromone trail is formed by a sequence of drops that the robot deposits via its virtual
pheromone gland (see Sect. 3.3). Similar to the approach of Font Llenas et al. (2018), a robot
probabilistically decides every four seconds whether to lay the next drop or not. In the previ-
ous work, we implemented a simple linear function to map the quality Qi into a pheromone
deposition probability, i.e. Pφ(Qi ) = Qi/Qmax. Linking the pheromone deposition function
to perceived source quality allowed the swarm to give priority to better-quality sources over
inferior sources.

In this study, we implement a tuneable function to allow the robot to regulate its selec-
tivity on the quality through a single parameter α ≥ 0. The probability to deposit the next
pheromone drop is given by

Pφ(Qi ) = eα(Qi −Qmax)Q−1
i . (2)

The individual robots have access to α in a decentralised way and can alter this value to
vary the global response. Using an α > 1, the function has an exponential shape on Qi

resulting in high selectivity in favour of the highest quality sources. A value of α ≈ 1
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leads to (approximately) linear response therefore approximating the function investigated
in (Font Llenas et al. 2018), thus having Eq. (2) as a generalisation of the previous specific
function. Finally, decreasing α < 1 gradually flattens out the function to a constant value,
that at the limit of α = 0 becomes constant Pφ(Qi ) = 1; this results in constant pheromone
trails irrespective of the sources’ qualities.

To further expand the individual robot capabilities to be able to balance the distance-quality
trade-off, we introduce a decay function Pd(ti ) that robots use, upon arrival in the depot with
an item (event indicated with the letter ‘a’ in Fig. 2), to decide whether to keep exploiting the
same source or to start exploring for new sources. Pd(ti ) is inspired by similar abandonment
behaviours observed in social insects [e.g. foraging ants (Shaffer et al. 2013) and house-
hunting honeybees (Seeley et al. 2012)] and allows the robots to abandon exploiting source
Ai that required a long travel time ti (either because it is distant or has an overcrowded path).
The travel time ti is measured by the robots as the time spent between the item collection
(from the source Ai ) and the item deposition (in the depot). The function Pd(ti ), similarly to
Pφ(Qi ) of Eq. (2), is modulated by the parameter α as

Pd(ti ) = (α + 1)−2e
ti −tmax
(α+1)

√
ti (3)

where tmax is a parameter indicating robot’s prior knowledge on the maximum acceptable time
to return from a source. The tmax could be adaptively tuned (similarly to Qmax in Sect. 4.1),
although in this study we do not explore this aspect and we fix tmax = 100 s. Assuming a
fixed tmax is reasonable, because in both biological and artificial systems source areas may
be accepted only if they are located within a certain maximum distance (or travel time ti )
from the depot that is decided a priori.

Equations (2) and (3) are linked by the parameterα which the robots can regulate to alter the
swarm behaviour. Increasing α > 1 has the combined effect of increasing discriminability on
quality Qi and flattening Pd(ti ) ≈ 0 for any distance; therefore, the swarm ignores distance
but selects the higher-quality source. Conversely, small α < 1 flattens out quality differences
Pφ(Qi ) ≈ 1 and accentuates differences on travel time with an exponential abandonment
Pd(ti ) on high travel times; this leads to a system where the only discriminating factor
on source selection is distance due to a combination of evaporation and abandonment on
farther sources. Finally, intermediate values α ≈ 1 give a quasi-linear response of Pφ(Qi )

and sublinear Pd(ti ) > 0 which allow the swarm to balance the distance-quality trade-off
[similarly to what has been reported in Font Llenas et al. (2018)].

5 An optimal resource collectionmodel

In this section, we model the optimal resource collection by the robot swarm through a
mathematical model inspired by general aspects of optimal foraging theory (Kacelnik 1984;
Houston and McNamara 2014).

Our model describes the utility gained by collection of resource items discounted by the
cost incurred in transporting these items to the depot. The main components of our model
are the items’ qualities, the allocation of robots to various source areas, and the source–depot
travel time. We model the robot allocation as ρ j (with j ∈ {1, . . . , n}) which is the fraction
of robots on the trail between central depot and source area A j . All robots that are actively
involved in transportation of items from the n sources are called workers; their fraction is
denoted by ρw =

∑n
j=1 ρ j . The remaining robots that explore the landscape are called

explorers; their fraction is denoted by ρe = 1 − ρw. The travel time is a function of the
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source–depot distance and of the traffic congestion on the path. In fact, crowded paths lead
to frequent collisions between robots and result in longer travel times. The model is derived
in Appendix A; here, we report the main quantity which is the swarm yield R, defined as

R =
n

∑

j=1

q j β j ρ j S

d̃2
j

, with d̃ j = d j + vo TC, j (ρ j S) . (4)

where S is the swarm size, q j = Q j/Qmax is the normalised quality of source area A j , ρ j is
the fraction of robots on the trail between central depot and source area A j , the parameter β j

is a fitting parameter characterising the relationship between the number of collected items
from source A j and the number of robots on the trail to A j (see Eq. (7) in Appendix A), d j

is the distance between source area A j and depot, v0 = 1 cm/s is the Kilobot’s speed, and
the function TC, j (ρ j S), defined in Eq. (12), models the additional travel time arising from
traffic congestion. Therefore, Eq. (4) models traffic congestion as an increase of the travel
distance d j by accumulating the additional length of vo TC, j (ρ j S).

5.1 Estimation of model parameters from simulation data

As for the model of Appendix A, three free parameters per source area (T0, j , β j , and κ j , with
j ∈ {1, . . . , n}) need to be estimated from data. To do so, we use the relationship between the
number of robots on a path and the number of collected items given in Eq. (7). For the case
of two source areas, the results of fitting are depicted in Fig. 3 and summarised in Table 2
(in Appendix A). As shown in Fig. 3, for small-to-medium numbers of robots on a trail, the
number of collected items per time interval increases linearly with the number of robots on
a trail, whereas for medium-to-large numbers of robots on a trail, we observe a nonlinear
decay. This type of curve is widespread in several natural and artificial systems and is often
indicated as Universal Scalability Law (Gunther 2000; Krause et al. 2002; Hamann 2012,
2013, 2018a).

5.2 Basic properties of the optimal resource collectionmodel

To study the basic properties of the yield function R in Eq. (4), we consider the case of
resource collection in an environment with n = 2 source areas. The robot swarm aims at
optimally allocating its robots between the two source areas to maximise the yield R. For
simplicity, we assume that all robots in the swarm are involved in resource collection (i.e. all
robots are workers and ρw = 1, ρe = 0); the fraction ρ1 = ρ collects items from source A1,
and the fraction ρ2 = 1 − ρ collects items from source A2. The yield function in Eq. (4) is
then given as

R(ρ) = R1(ρ) + R2(ρ) ; R1(ρ) =
q1 β1 ρ S

d̃2
1

, R2(ρ) =
q2 β2 (1 − ρ) S

d̃2
2

, (5)

Here, we are interested in how the robot swarm allocates its resources. Therefore, we explicitly
mention the dependency of R on ρ in Eq. (5); in what follows we derive the optimal value of
0 ≤ ρ ≤ 1 that maximises Eq. (5). Different outcomes are possible. If we consider increasing
ρ, where ρ ∈ [0, 1], then we have

– 1 global maximum at ρ = 1 (all workers allocated to source area A1), if R(ρ) monoton-
ically increases,
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Fig. 3 Fits of Eq. (7) to data generated by physics-based simulations in order to obtain the model parameters
reported in Table 2 in Appendix A. Fitting is performed in case of n = 2 source areas with different quality
and equal distance in a, equal quality and different distance in b, and equal quality and distance in c. Data
points are represented using symbols, and fits are represented using lines (circles and solid grey lines show
collection from source A1, while triangles and dash-doted blue lines show collection from source A2). Error
bars represent 95% confidence intervals. There is a linear growth for small-to-medium numbers of robots on
a path, and a nonlinear decay for medium-to-large numbers of robots on a path. This type of growth-decay
curves on population size is widespread in nature (Krause et al. 2002) as in engineering (Gunther 2000) (Colour
figure online)

– 1 global maximum at ρ = 0 (all workers allocated to source area A2), if R(ρ) monoton-
ically decreases, or

– either 1 global maximum or 2 local maxima (one of which is also the global maximum)
where 0 < ρ < 1 (workers split between source area A1 and A2).

For the last case, we can derive the optimal swarm deployment with respect to ρ from
∂ R/∂ρ = 0. We give the full expressions of the first-order derivatives in Eq. (15) in
Appendix B and use a graphical approach in this section to picture the behaviour of R(ρ).
Without loss of generality, below we make use of the averaged quantities obtained for
d1 = d2 = 1 m and q1 = q2 = 1 (reported in Table 2) to demonstrate the basic behaviour of
the model.

5.2.1 Equal distances and varying qualities (fixed swarm size)

We expect that the effect of crowding on a trail will lead to different behaviours when the
source areas are near the depot compared with the case when they are sufficiently far away
that crowding can be neglected. We consider both scenarios with n = 2 source areas at
equal-far or equal-near distance and show the corresponding results in Fig. 4a, b for fixed
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(a) (b)

Fig. 4 Model predictions of yield R depending on worker allocation ρ for equally distant sources d1 = d2 =
3.5 m, in a, and equally nearby sources d1 = d2 = 0.6 m, in b, for fixed q1 = 1 and varying q2 ∈ {0.5, 0.75, 1}.
When sources are relatively far (a), it is optimal to allocate all workers to the better-quality source area, whereas
for source areas in close proximity (b) the yield is maximised if the trail between the higher-quality option
and depot does not become overcrowded. Parameters: β1 = β2 = β̄ = 0.965, T0,1 = T0,2 = T̄0 = 0.029,
κ1 = κ2 = κ̄ = 2.321, and S = 200

q1 = 1 and varying q2 ∈ {0.5, 0.75, 1}, respectively. In case the qualities of items contained
in the two different source areas are different, at first glance it seems intuitive to allocate as
many workers as possible to the source with the higher-quality items. However, this strategy
may lead to frequent collisions on the transport path and hence to traffic congestion that
slows down the resource income. This means that there is a limitation on the item collection
efficiency which depends on the number of workers and the space available on the transport
trail.

Figure 4a shows that for sufficiently large distances between source area and depot it is
indeed optimal to allocate all workers to the source containing higher-quality items. If the
qualities of resource items in the two source areas are also equal then the yield is, albeit only
marginally, larger if both source areas are exploited equally. In case both source areas are
near the depot then the optimal strategy is different. Exploiting equally both resources does
not give the highest yield, instead the best strategy is to avoid traffic congestions on the trail
leading to the higher-quality items (low ρ in Fig. 4b). Interestingly, reducing collisions and
congestion on the higher-quality source path means allocating more workers to the lower-
quality source. Even when both source areas provide items of equal quality, it is better to
focus on any of the two available sources to optimise the resource income from the other
(Fig. 4b).

5.2.2 Equal qualities and varying distances (fixed swarm size)

Let us now consider the case when both available source areas contain objects of equal quality.
Given a fixed swarm size, optimising the transport yield R should then be affected by the
distance of each source area to the depot. In Fig. 4, we depict the corresponding yield function
for equal qualities q1 = q2 = 1, swarm size S = 200, fixed A1’s distance d1 = 0.6 m, and
varying A2’s distance d2 ∈ {0.3 m, 0.6 m, 0.9 m}. The model results of Fig. 5a predict the
effect of overcrowding. The optimal strategy consists of allocating most robots to the more
distant source area in order to keep the path to the closer source congestion-free and to allow
for more efficient resource collection.
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(a) (b)

Fig. 5 Model predictions of yield R depending on workers allocation ρ for equal qualities q1 = q2 = 1. In
a, we show the effect of distance on R; we fixed swarm size S = 200 and A1’s distance d1 = 0.6 m, and
varied of A2’s distance d2 ∈ {0.3 m, 0.6 m, 0.9 m}. Due to the effect of overcrowding, the maximum yield
is attained when only a limited number of workers, 10–20%, collected from the nearer source in order to
keep the path free from traffic congestion. In b, we report the effect of the swarm size S when it is larger,
smaller, or equal to the critical size Sc. The sources have equal qualities q1 = q2 = 1 and depot-source
distances d1 = d2 = 0.6 m. The critical swarm size Sc characterises the effect of overcrowding, i.e. when
the swarm is sufficiently large (S > Sc) it is optimal to keep at least one path with less than 50% workers;
otherwise, the effect of overcrowding would decrease the income of resources on both paths. Parameters:
β1 = β2 = β̄ = 0.965, T0,1 = T0,2 = T̄0 = 0.029, κ1 = κ2 = κ̄ = 2.321

5.2.3 Critical swarm size for equal qualities and equal distances

Through our model, we can derive the critical size Sc, below which the best predicted strategy
is to equally split workers between the two source areas, assuming sources at equal distances
and with equal qualities. We analytically derive the expression to obtain Sc in Appendix C
and we depict in Fig. 5b how R varies for swarm sizes S larger, smaller, or equal to Sc. If
the swarm size gets too large (S > Sc), it is optimal to allocate more robots to one source
although collection from either source would give the same reward and incur identical costs.
This means that the robot swarm should avoid overcrowding both paths to maximise the
yield from resource collection. However, compared with the case S < Sc, the possible yield
for S > Sc is smaller, i.e. if the swarm exceeds its critical size Sc of collecting workers it
cannot achieve the maximum yield it could possibly achieve for a smaller number of workers
involved in the resource transportation. This result highlights the importance of controlling the
number of workers to maximise the global intake; a strategy implemented in a decentralised
fashion by ants (Charbonneau et al. 2015; Pagliara et al. 2018), and recently investigated in
the context of swarm robotics (Mayya et al. 2019).

6 Results

Through physics-based simulations, we systematically tested a variety of experimental condi-
tions to study the performance of the proposed system. We validated some of the simulation
results through experiments with up to 200 physical Kilobots. In Sect. 6.1, we present a
set of simulation results that highlight the benefits of having introduced a virtual wall sen-
sor, adaptability to unknown environmental scenarios, and behaviour modulation to balance
the distance-quality trade-off. In Sect. 6.2, we compare the model predictions against robot
swarm simulations for different swarm sizes.
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Fig. 6 A picture of a 50 real Kilobots experiment with the virtual environment superimposed on the
image. The red (bottom-left) source area A1 has quality Q1 = 10, while the yellow (top-right) source
area A2 has quality Q2 = 4. The sources are placed at d1 = 1 m and d2 = 0.6 m from the central
(blue) depot. The (light-blue) shades represent the pheromone trails that the robots deposit and follow. Full
videos available as supplementary material (Online Resource 1-9) and at https://www.youtube.com/playlist?
list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a (Colour figure online)

The physics-based simulations were conducted with ARGoS (Pinciroli et al. 2012, 2018)
which is a state-of-the-art swarm robotics simulator that accurately and efficiently simulates
the Kilobots and the ARK system via a dedicated plug-in (Pinciroli et al. 2018). The physical
robot experiments were run with fully charged Kilobots whose motors have been automati-
cally calibrated through ARK (Reina et al. 2017). The videos of these experiments are aug-
mented by superimposing the virtual environment information (see a sample image in Fig. 6)
and available as online supplementary material (Online Resource 1-9) and at https://www.
youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. The robot
simulation code is open source and available online at https://github.com/DiODeProject/
PheromoneKilobotSwarmIntell.

6.1 Results show tuneable and adaptive swarm responses

We report here the simulation and physical robot results to show evidence of the behaviours
obtained through obstacle avoidance, adaptivity, and individual function modulation.
Obstacle avoidance Figure 7b shows a screenshot of an experiment inspired by the well-
known study of Goss et al. (1989) which showed that ants are able to exploit the shorter
path in double-bridge experiments with branching paths of different lengths. In our system,
the individual robots have lower cognitive capabilities than the individual ants. In fact, the
Kilobots cannot distinguish pheromone intensity, follow its gradient, nor make decisions
with respect to differences in pheromone concentration. Nevertheless, the robot swarm was
able to preferentially exploit the shorter path. This outcome was not limited to conditions
where the pheromone evaporation was too high to exploit the longer path while sufficient
to establish a path on the shorter, but it also applied to scenarios in which both paths were
viable. In fact, we tested the swarm in an environment where we blocked the shorter path
and only the longer path was active (see Fig. 7a) and the robots exploited the longer path,
as illustrated in the plot of Fig. 7c. Similar double-bridge experimental setups have been
emulated and investigated in previous swarm robotics studies such as Montes de Oca et al.
2010 and Scheidler et al. (2016), in which, however, the swarm behaviour and goal were
different.

Our results indicate that, for certain types of experimental conditions, cognitively simpler
individuals would suffice to reproduce the collective level behaviour observed in colonies of
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Fig. 7 A 50 simulated Kilobot swarm experiment inspired by the ants’ double-bridge experiment by Goss et al.
(1989) in which two paths, a longer path (1.8 m long) and a shorter path (1.4 m long), connected source to
depot. When the simulated swarm had access to only the longer path (a), the Kilobots reinforced pheromone on
that path and used it for their collections. Instead, when both paths were available (b), the Kilobots disregarded
the longer path and (almost exclusively) used the shorter for their collections. c Shows the number of robots
on the two paths at the end of one simulated hour (boxes range from 1st to 3rd quartile of the data from 100
simulations and indicate the median with a horizontal line, the whiskers extends to 1.5 IQR). The individual
Kilobots cannot follow a pheromone gradient nor detect any difference in pheromone concentration. Despite
their limited individual capabilities, the robot swarm shows (in certain experimental conditions) behaviour
similar to ants’ colonies, which instead rely on much higher cognitive abilities at the individual level

more complex ants. However, we believe that the ants, exploiting gradient sensing, are more
flexible and can optimise path lengths in a larger range of environments than our robotic
system. In fact, our results may vary if we would increase the robots density and/or vary the
paths’ lengths. However, we cannot ascribe the observed behaviour to the manually tuned
maximum travel time tmax = 100 s of Eq. (3) because our experiments were conducted
with α = 10 which flattens Eq. (3) to zero for every path length. Therefore, the observed
dynamics emerged from a more complex interplay between the Kilobots’ behaviour and the
virtual pheromone dynamics, and resulted in an efficient swarm selection of the shortest path.
Adaptivity As described in Sect. 4.1, the swarm is able to adapt to any quality range and have a
response that only considers the ratio between qualities rather than the absolute quality values.
Figure 8 shows the system’s response to three scenarios with n = 2 sources with the same
quality ratio (i.e. Q2/Q1 = 0.4) but different absolute quality values (i.e. Q1 = 15, Q2 = 6
on the left, Q1 = 10, Q2 = 4 in the centre, and Q1 = 5, Q2 = 2 on the right of the x-axes
of Figs. 8a, b). The results show that the adaptive strategy (white boxplots) adapted to any
condition and, as the quality ratio remained the same, also the swarm response remained the
same. Instead, the constant range strategy (dark boxplots) reckoned with absolute quantities
and led to the desired outcome only when the prior knowledge on the quality range matched
the environment’s range (central experimental scenario of Fig. 8). The ability to respond to
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Fig. 8 Simulation results showing the adaptivity of the system. We measured the number of collected items
in a and the number of robots on each path in b for the two source areas, the superior A1 and inferior A2, both
at equal distance d1 = d2 = 1 m. We kept the same quality ratio, i.e. Q2/Q1 = 0.4, but varied the absolute
value of the objects (indicated on the x axis). All experiments were conducted with swarms of S = 50 Kilobots
and an intermediate value of α = 0.85 in Eqs. (2) and (3). Boxes range from 1st to 3rd quartile of the data
from 100 simulations and indicate the median with a horizontal line; the whiskers extend to 1.5 IQR. Having
a constant range (dark boxplots) shows good results only if the predefined range matches the actual range of
the environment (central experiment). Instead, an adaptive strategy allows the swarm to exploit resources as
a function of the their relative qualities in a range adapted to the environment

the relative quality of food sources, rather than to an absolute quality range, has been recently
documented also in foraging ants (Wendt et al. 2018).
Behaviour modulation Via Eqs. (2) and (3), the individual robots can modulate their behaviour
to give priority to closer (low α) or better-quality (high α) source areas. This modulation
at the individual level translates to different collective responses at the swarm level. We
investigated such dynamics in swarms of S = 50 Kilobots operating in an n = 2 sources
scenario environment with a superior source area A1 at distance d1 = 1 m with Q1 = 10 and
an inferior source area A2 with Q2 = 4 and varying distance d2 ∈ [0.5, 1]m. The relatively
small swarm size was motivated by preliminary results that we reported in (Font Llenas
et al. 2018) which showed that large swarms do not discriminate between sources as there
are enough robots to maximally exploit any area. Figure 9 shows the effect of the three
tested values of α ∈ {0, 0.85, 10} on the swarm dynamics. Using α = 0 promoted distance
selectivity, in fact the simulated swarm had the highest item collection per minute (panel a)
from the closest source (A2) to which the majority of the workers was deployed (panel b).
Using α = 10 promoted quality selectivity, in fact the simulated swarm had the highest item
collection per minute from the highest quality source (A1) to which the majority of the robots
was deployed. Finally, intermediate values of α, e.g. α = 0.85, led to a distance-quality trade-
off where the swarm exploited the nearest inferior-quality source only if it was much closer
than the farther superior-quality source.

We ran three experiments with 50 physical robots for each of the two limit cases
of quality-selective α = 10 (solid black symbols) and of distance-selective α = 0
(solid light-grey symbols). The videos of these six experiments are available as online
supplementary material (Online Resource 1-6) and at https://www.youtube.com/playlist?
list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a. Physical robots showed a resource
collection less efficient than simulation; despite this, in both cases, the two strategies favoured
either the best-quality or the nearest source area, as shown by the simulations. We explain
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Fig. 9 Effect of the modulation of the parameter α from Eqs. (2) and (3) to favour nearer source areas (α = 0),
to favour the best-quality sources (α = 10), or to balance the distance-quality trade-off (0 < α < 10). Results
of α = 0 are shown in light-grey, α = 0.85 in dark-grey, and α = 10 in black. We report the results for
simulations and physical robots experiments of one hour each in scenarios with n = 2 sources. We excluded
the initial exploration phase and indicate mean values for the last 30 min. Physical robots results are indicated
as solid symbols with vertical bars indicating the 95% confidence intervals of 3 runs for each condition (the
symbols are slightly shifted to avoid bar overlaps but all represent results for d2 = 0.6 m). Lines represent
the mean of 100 simulations (shaded areas are 95% confidence intervals). Source A1 had quality Q1 = 10
and was located at distance d1 = 1 m; source A2 had quality Q2 = 4 and varying distance d2 ∈ [0.5, 1.0]m.
We report the rate of collected items per minute in a, the mean number of robots on each path in b, and the
rate per minute of collected items weighted by the normalised quality q1 = 1.0 and q2 = 0.5 in c. Individual
robots can locally modulate the decentralised parameter α to lead the swarm to a range of different collective
responses, e.g. selecting almost exclusively the best-quality source (high α) or balancing the distance-quality
trade-off (low α). Physical robots are less efficient than simulations; however, ordering between sources is
preserved; this confirms the effects of α-modulation observed in simulation

the observed difference between reality and simulation (the reality gap) as a motion speed
difference between robots and simulation. In fact, the simulation was accurately tuned on the
movement of fully charged Kilobots (Pinciroli et al. 2018), but did not take into account that
the robot’s speed was reduced over time due to the decrease of its battery level.

Figure 9c shows the rate per minute of collected items weighted by their normalised
qualities (q1 = 1.0 and q2 = 0.5). We did not include any cost because in our experiments
every robot moved constantly and continuously (either as worker or as explorer). Therefore,
the swarm incurred a constant cost independent of the collections (this would be different if,
as ants do, some individuals would stop exploration to save energy (Charbonneau et al. 2015),
or to avoid overcrowding as discussed above). Interestingly, the results show that there was
not one α-value that was better than all others; rather the best strategy varied in relation to
the environment. For large distance difference, i.e. d2 ≪ d1, the distance-selective strategy
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Fig. 10 Comparison of model with simulations and experiments: Total yield R as a function of the normalised
swarm allocation ρ/ρw and the number of worker robots ρw S. We report the predicted yield R from the model
of Eq. (4) as a colour heatmap, and we overlay robot simulations for three strategies: distance-selective α = 0
(circles), distance-quality trade-off α = 0.85 (diamonds), and quality-selective α = 10 (triangles). We report
simulations for swarm sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Under the
model’s assumptions, the simulated robot swarm performs best for S = 200 and α = 0.85 (R = 150.6 m−2)
in a, α = 10 (R = 177.1 m−2) in b and α = 10 (R = 120.4 m−2) in c. Swarms of large size (S = 500) do
not achieve good performance as they equally exploit both sources and do not avoid overcrowding. The star
symbol in c was obtained from three experiments with 200 Kilobots assuming α = 0.85 (see online videos).
Error bars represent 95% confidence intervals. Parameters: β j , T0, j and κ j are given in Table 2 (Colour figure
online)

(α = 0) displayed the highest weighted collection. Conversely, for similar distances, the best
strategy consisted of favouring the best-quality source (α = 10), analogously to what has
been observed in some species of ants which focused their foraging efforts on the richer of
two equally distant sugar sources (Beckers et al. 1993; Shaffer et al. 2013).

6.2 Comparison of model and simulation data

Here, we compare the performance of binary resource collections for varying swarm sizes S

and varying α which regulates the swarm strategy [as from pheromone deposition in Eq. (2)
and trail abandonment in Eq. (3)]. The plot in Fig. 10 shows the yield R as a function of
the fraction of workers allocated to source A1 (with ρ1 = ρ) divided by the fraction of total
workers involved in resource collection ρw, and of the number of worker robots ρw S (i.e.
involved in collecting resource items).

Best performing swarms have an intermediate size (i.e. S = 200). Relatively small swarms
allocate robots more selectively depending on the implemented strategy. For instance, in
Fig. 10a, the quality-selective strategy (α = 10 indicated as triangles) shows an allocation
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of workers predominantly to the best-quality source (ρ/ρw > 0.8) when S ≤ 200. Instead,
large swarms of S = 500 do not discriminate between sources and equally exploit both.
The distance-selective strategy (α = 0 indicated as circles) in Fig. 10b has a much smaller
deviation and is visible only for the smallest swarm. Observing such a change in the swarm
response is not an obvious result because robots cannot perceive each other. The observed
change is an emergent property.

In general, simulations and the model show differences especially for swarms of size
S = 500. In fact, for large swarms, the model predicts that the best strategy would be to
allocate only a limited number of robots to the best path, in order to avoid overcrowding.
We suggest that it would be possible to implement such a strategy by allowing the robots to
sense and perceive peers (while they do not in this study). In the current strategy, we tried
to overcome overcrowding by including the trail abandonment function of Eq. (3), although
this did not demonstrate sufficient ability to deviate from a symmetric exploitation for large
swarms. The resulting dynamics for S = 500 are an equal split between the two paths
(Fig. 10a), which could be caused by physical ‘pushing’ between individuals, similarly to
what is observed in some experiments of ants’ traffic organisation (Dussutour et al. 2004,
2005; Fourcassié et al. 2010).

To investigate how collision between individuals affects the collective dynamics, we repro-
duced the results of Fig. 10 in the collision-free case in which we removed any effect of
physical interactions between robots. Figure 11 reports the model results with null traffic
congestion contribution, i.e. Eq. (12) becomes TC, j (ρ j S) = 0. We overlay the simulation
results with deactivated collisions, i.e. the Kilobots’ physical body is not simulated and robots
can move through each others.

As expected, the model predicts that for every workers size, ρw S the best strategy is always
to allocate all workers to the best-quality source (Fig. 11a), or to the closest source (Fig. 11b).
Some of the simulations approximate such an optimal behaviour. In the case of asymmetric
qualities (Fig. 11a), the quality-selective strategy (α = 10 represented as triangles) has high
values of ρ. Similarly, the closer area in Fig. 11b is largely exploited by distance-selective
strategies (α = 0 represented as circles and α = 0.85 represented as diamonds).

7 Discussion

Our results show how simple individual agents can collectively forage in a sophisticated
manner. We assumed a minimal cognitive architecture including maintenance of a home
vector [well evidenced in ants (Collett and Collett 2002; Heinze et al. 2018)], and simple
binary detection of pheromone trails and obstacles; our agents are thus much simpler than
real ants. Combined with a simple pheromone deposition rule with a single tuneable param-
eter, however, we are able to qualitatively reproduce classical results such as the shortest
path exploitation observed in lab ant colonies (Goss et al. 1989), and able to manage the
classical distance-quality trade-off of foraging. We have further derived an optimality model
accounting for congestion costs in foraging and examined the effect of resource distribution
and colony size on the optimal distribution of foragers over forage patches. While others have
previously considered the effect of colony size on recruitment strategy (Planqué et al. 2010;
Pagliara et al. 2018; Mayya et al. 2019), our analysis instead assumes the recruitment strat-
egy, and considers the optimal distribution. Our simple heuristic agent controllers are able to
approximate the optimal distribution for relatively small swarm sizes, although large swarms
depart from optimality. Large swarms cause crowded environments which require strategies
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Fig. 11 Total yield R as a function of the normalised swarm allocation ρ/ρw and the number of worker robots
ρw S in the collision-free condition. We removed the effect of physical interactions (i.e. collisions between
robots) that may cause traffic congestions, and we report the predicted yield R from model (4) as a colour
heatmap, and we overlay robot simulations for three strategies: distance-selective α = 0 (circle), distance-
quality trade-off α = 0.85 (diamond), and quality-selective α = 10 (triangle). We report simulations for
swarm sizes S = 50 (cyan), S = 100 (green), S = 200 (purple) and S = 500 (white). Without collision, the
predicted best strategy is allocation of all workers to the best-quality or closest source area. The collision-
free simulations approximate such result when the corresponding strategy is activated, e.g. quality-selective
α = 10 (triangle) in panel (a) and the distance-selective α = 0 (circle) in panel (b). Error bars represent 95%
confidence intervals. Parameters: β j , T0, j and κ j are given in Table 2 (Colour figure online)

to clear paths in order to reduce traffic congestion. We identify two possible strategies to limit
traffic congestion: modifying the abandonment strategy or enriching the individual behaviour
with collision-reactive states. In this work, after abandonment, the robots simply resumed
exploration. The effects of this abandonment strategy are limited as robots quickly rediscover
a path (which may be already congested). We believe that a better abandonment strategy [e.g.
to stay at the depot for a period of time before resuming exploration, similar to ants (Pagliara
et al. 2018)] could improve the results of the abandonment behaviour introduced in this work.
Complementarily, traffic flow can be maintained undisrupted even in relatively crowded con-
ditions by individual ants changing their behaviour as a function of collisions with other ants
(Dussutour et al. 2004; Poissonnier et al. 2019). Inspired by these results, the robot behaviour
could be enriched with new collision-dependent states.

Our results are complementary to other approaches to minimal controllers necessary for
collective behaviour in the swarm robotics field (Gauci et al. 2014; Özdemir et al. 2018).
Simple controllers increase the transferability to various robotics platforms thanks to their
limited hardware requirements. Additionally, simple behaviours generally reduce the impact
of the reality gap and preserve consistent dynamics in reality and simulations, as shown in
our experiments where the same control software produced qualitatively similar results.
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Our results illustrate the sophisticated collective dynamics that can be generated even by
simple agents, which should be of interest to biologists and of practical utility to engineers.
Similarly, our study of swarm size, and the scalability of foraging success, should interest
both biologists and engineers, although it is worth noting that at least in some species of ants
congestion is much less of a problem compared to robots (Hönicke et al. 2015; Poissonnier
et al. 2019). In Sect. 6.2, we investigated a case closer to biology in which congestions did not
impact the travel time; with model and simulations adapted accordingly. Nevertheless, we
argue that taking a unifying perspective on the biology and engineering of collective foraging
is illuminating, both through their similarities, and their differences.
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Appendix

A Derivation of an optimal resource collectionmodel

To link the behaviour of the robot swarm with optimal resource collection, we developed a
mathematical model which is inspired by optimal foraging theory and relates to maximising
energetic efficiency (Kacelnik 1984; Houston and McNamara 2014). An overview of the
parameters used in our model is given in Table 1. The following derivation assumes that the
robot swarm is in a steady state reached after time Teq. We further assume that the simulation
ends at time Tend. The time between Teq and Tend is divided into Nt smaller intervals with
length Δt = (Tend − Teq)/Nt . In our study, we have Teq = 30 min and Tend = 60 min. This
means Δt = 1 min if we assume Nt = 30 intervals. The swarm size is denoted by S. We can
now define the total utility gain of the swarm in the steady state related to the collection of
items from source area A j as

g j = e0 q j ΔU j , (6)

where e0 is a utility unit, and q j = Q j/Qmax is the normalised quality of source area A j ,
Q j , with respect to the maximum quality Qmax. Qmax is the maximum quality value known
to the robot swarm, and ΔU j = U j (Tend) − U j (Teq) is the total number of items carried
back from source area j to the central depot within the time interval Tend − Teq. Note that
if Q j = Qmax (i.e. q j = 1) then the utility gained per resource item with the maximum
quality carried back to the depot is e0. We may assume that the number of collected items
from source A j has the following functional relationship with the number of robots on the
trail

ΔU j = ϕ j (Tend − Teq) β j ρ j S, (7)

where ρ j is the fraction of robots on the trail between central depot and source area A j , i.e.
∑

j ρ j = 1−ρe = ρw, where ρe denotes the fraction of robots that explore the landscape and
are not involved in object transportation—called explorers—and ρw is the total fraction of
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Table 1 Overview of parameters used in the derivation of the optimal foraging model

Symbol Brief description

S Size of the robot swarm

Q j Quality of resource j

Qmax Maximum resource quality available

q j Normalised quality of resource j (q j = Q j /Qmax)

U j Number of items carried from source j back to nest

ϕ j Foraging rate related to item collection from source j

ρ j Fraction of robots on trail j

ρ Fraction of robots on trail 1 (ρ = ρ1)

ρw Fraction of robots that are workers (i.e. robots which actively collect items)

ρe Fraction of robots that are explorers (i.e. robots which explore the
environment but do not collect items)

d j Distance between nest and source j

v0 Velocity of Kilobots

e0 Utility unit

c j Unit cost corresponding to item collection from source j

cU
j

Cost per time interval when unloaded robot travels from nest to source j

cL
j

Cost per time interval when loaded robot travels from source j back to the
nest

T U
j

Travel time of unloaded robot when it travels from nest to source j

T L
j

Travel time of loaded robot when it travels from source j back to the nest

T0, j Time constant which sets the time scale of the additional travel time on
trail j due to crowding

ZKB Radius of a Kilobot

β j Experimentally obtained parameter characterising the relationship between
robots on trail j and items carried back along this path

κ j Constant to fine-tune the nonlinear effect of overcrowding on trail j

Ncrit, j Critical number of robots on trail j when crowding affects resource
collection

Teq Time when the robot swarm is in a steady state

Tend Final time when simulations/experiments stop

robots actively involved in transportation of resource items—called workers. The parameter
β j is a constant characterising the relationship between workers collecting from source A j

and the number of collected items carried back to the nest, and ϕ j is a foraging rate, which
we may approximate by

ϕ j =
1

T U
j + T L

j

, (8)

where T L
j and T U

j are the travel times to overcome the distance between central depot and
source A j with and without load, respectively.

The cost for one robot in the swarm (unit cost) associated with travelling between depot
and source A j to collect resource items is given as
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c j = cU
j T U

j + cL
j T L

j , (9)

where cL
j and cU

j are the costs per time interval related to travelling with an item (L = loaded)
and without (U = unloaded). Using Eqs. (6) and (9), let us define the transport yield (in the
steady state) per unit cost as

R̃ =
n

∑

j=1

g j

c j

=
n

∑

j=1

e0 q j ΔU j

cU
j T U

j + cL
j T L

j

=
n

∑

j=1

e0 (Tend − Teq) β j q j ρ j S
(

cU
j T U

j + cL
j T L

j

) (

T U
j + T L

j

) .

(10)

As we consider virtual (weightless) objects, the cost for travelling with and without load is
identical, hence cL

j = cU
j = c0. Similarly, travel times with and without load may be assumed

to be identical, that is, we have T U
j = T L

j = T j . We can then express the travel time as

T j =
d j

v0
+ TC, j (ρ j S), (11)

where d j is the distance between depot and source area A j , and v0 ≈ 1 cm/s is the travel
speed of the Kilobot (see Sect. 3.2). The term TC, j (ρ j S) is a function that takes into account
how the travel time is influenced by the number of robots ρ j S on the path to A j . Overcrowded
paths cause prolonged travel time due to frequent collisions between robots. We model the
additional time arising from traffic congestion as

TC, j (ρ j S) = T0, j

(

exp

[

κ j

ρ j S

Ncrit, j

]

− 1

)

, (12)

where T0, j is a constant which sets the time scale of the additional travel time, κ j is a constant
included to fine-tune the nonlinear effect of overcrowding on the path to A j , and Ncrit, j is the
critical number for which traffic congestion may have a significant effect. This means that
TC, j (ρ j S) is negligible if κ j ρ j S ≪ Ncrit, j . The critical number Ncrit, j may be obtained
using

Ncrit, j = max
(

⌊ξ j⌋, 1
)

, ξ j =
d j

ZKB
, (13)

where ZKB = 3.3 cm is the diameter of a Kilobot and ⌊ξ j⌋ returns the greatest integer less
than or equal to ξ j .

Normalising Eq. (10) by the experimental constant K = e0 v2
0 (Tend −Teq)/(4 c0), we can

derive the normalised yield as

R =
R̃

K
=

n
∑

j=1

q j β j ρ j S

d̃2
j

, with d̃ j = d j + vo TC, j (ρ j S), (14)

which is identical to Eq. (4), and mentioned here again for convenience. This means that
travel distance d j increases due to traffic congestion between central depot and source area
A j by the additional length vo TC, j (ρ j S). The normalised yield, R, in Eqs. (4) and (14),
respectively, is given in the physical unit m−2, which seems appropriate as we consider
robots looking for source areas in a two-dimensional space.
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B Derivation of first and second-order derivatives of yield functionwith
respect to swarm allocation for binary resource collection

Here, we derive the first and second-order partial derivatives that correspond to the binary
resource collection problem discussed in Sect. 5.2. We let ρ1 = ρ and ρ2 = ρw − ρ. The
first-order derivative of the yield function in Eq. (5) with respect to ρ is given as

∂ R

∂ρ
=

∂ R1

∂ρ
+

∂ R2

∂ρ
=

∂ R1

∂TC,1(ρ)

∂TC,1(ρ)

∂ρ
+

∂ R2

∂TC,2(ρ)

∂TC,2(ρ)

∂ρ
, (15)

where TC, j (ρ) is given in Eq. (12). Performing the derivatives we find

∂ R

∂ρ
=S

{

q1 β1

d̃2
1

−
q2 β2

d̃2
2

− 2 v0 S

(

ρ q1 β1 κ1 T0,1

Ncrit,1 d̃3
1

exp

[

κ1
ρ S

Ncrit,1

]

+
(ρ − ρw) q2 β2 κ2 T0,2

Ncrit,2 d̃3
2

exp

[

κ2
(ρw − ρ) S

Ncrit,2

])}

,

(16)

where d̃ j ( j = 1, 2) is given in Eq. (14). Note that we set ρw = 1 in Sect. 5.2, for simplicity.
Using the expression in Eq. (16), we obtain the second-order partial derivative as

∂2 R

∂ρ2
= 2 v0 S2

[

q1 β1 κ1 T0,1

Ncrit,1
g1(ρ) +

q2 β2 κ2 T0,2

Ncrit,2
g2(ρ)

]

g1(ρ) =
exp

[

κ1
ρ S

Ncrit,1

]

d̃3
1

(

κ1 ρ S

Ncrit,1

[3 v0 T0,1 exp
[

κ1
ρ S

Ncrit,1

]

d̃1
− 1

]

− 2

)

g2(ρ) =
exp

[

κ2
(ρw−ρ) S

Ncrit,2

]

d̃3
2

×
(

κ2 (ρw − ρ) S

Ncrit,2

[3 v0 T0,2 exp
[

κ2
(ρw−ρ) S

Ncrit,2

]

d̃2
− 1

]

− 2

)

.

(17)

C Deriving the critical swarm size for equal qualities and equal
distances

The critical swarm size, denoted by Sc, indicates when it is better to collect items from both
source areas when we assume equal qualities and equal distances. The critical size Sc may
be derived from solving

3 v0 T̄0

d̃
exp

[

κ̄ Sc

2 Ncrit

]

= 1 +
4 Ncrit

κ̄ Sc
, (18)

where we used d̃1 = d̃2 = d̃ , Ncrit,1 = Ncrit,2 = Ncrit and ρw = 1 (giving ρ = 1/2). Further
to this, we substituted κ1 = κ2 = κ̄ = (κ1 + κ2)/2, T0,1 = T0,2 = T̄0 = (T0,1 + T0,2)/2
and β1 = β2 = β̄ = (β1 + β2)/2, where the model parameters are given in Table 2. The
expression in Eq. (18) follows from the second-order derivative according to

∂2 R(ρ; S = Sc)

∂ρ2

∣

∣

∣

∣

ρ= 1
2

= 0, (19)
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Table 2 Overview of estimated model parameters

Task condition β1 β2 T0,1 (s) T0,2 (s) κ1 κ2 R2
GoF,1 R2

GoF,2

q1 = 1, q2 = 0.5, 1.035 1.009 0.180 0.150 1.483 1.586 0.985 0.991

d1 = d2 = 0.6 m (0.004) (0.004) (0.019) (0.015) (0.027) (0.026)

q1 = q2 = 1, 0.951 1.091 0.0004 0.805 3.692 0.991 0.968 0.990

d1 = 1 m, d2 = 0.5 m (0.004) (0.004) (0.0001) (0.046) (0.110) (0.012)

q1 = q2 = 1, 0.961 0.968 0.026 0.032 2.327 2.315 0.984 0.985

d1 = d2 = 1 m (0.003) (0.003) (0.004) (0.005) (0.042) (0.039)

The goodness-of-fit is quantified by R2
GoF, j

= 1 −
∑

i (yi − yfit
i

)2/
∑

i (yi − ȳ)2, where yi = ΔUi / min, the

yfit
i

correspond to the fitted values, and ȳ represents the mean value of all yi . The index j corresponds to the
trail. Mean model parameter values including one standard deviation errors (values in brackets) are given

at which point the global maximum at ρ = 1/2 becomes a local minimum and two local
maxima (ρ �= 1/2) arise with equal yields R for S ≥ Sc. The full expression of the second-
order derivative ∂2 R/∂ρ2 is given in Eq. (17) in Appendix B.
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