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Physical as well as cognitive training interventions improve specific cognitive functions

but effects barely generalize on global cognition. Combined physical and cognitive

training may overcome this shortcoming as physical training may facilitate the

neuroplastic potential which, in turn, may be guided by cognitive training. This study

aimed at investigating the benefits of combined training on global cognition while

assessing the effect of training dosage and exploring the role of several potential effect

modifiers. In this multi-center study, 322 older adults with or without neurocognitive

disorders (NCDs) were allocated to a computerized, game-based, combined physical

and cognitive training group (n = 237) or a passive control group (n = 85). Training

group participants were allocated to different training dosages ranging from 24 to

110 potential sessions. In a pre-post-test design, global cognition was assessed

by averaging standardized performance in working memory, episodic memory and

executive function tests. The intervention group increased in global cognition compared

to the control group, p = 0.002, Cohen’s d = 0.31. Exploratory analysis revealed a

trend for less benefits in participants with more severe NCD, p = 0.08 (cognitively

healthy: d = 0.54; mild cognitive impairment: d = 0.19; dementia: d = 0.04). In

participants without dementia, we found a dose-response effect of the potential number

and of the completed number of training sessions on global cognition, p = 0.008 and

p = 0.04, respectively. The results indicate that combined physical and cognitive training

improves global cognition in a dose-responsive manner but these benefits may be less
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pronounced in older adults with more severe NCD. The long-lasting impact of combined

training on the incidence and trajectory of NCDs in relation to its severity should be

assessed in future long-term trials.

Keywords: physical training, cognitive training, combined intervention, exergames, mild cognitive impairment,

dementia, neurocognitive disorder, aging

Introduction

As a result of the population aging, dementia affects a growing

number of individuals (Alzheimer’s Association, 2014). Next
to the rising emotional toll of dementia, the financial costs
are expected to more than double in the upcoming 30 years

(Hurd et al., 2013). As pharmacological treatment show limited
clinical effects on cognition (Schneider et al., 2014), behavioral

approaches aiming to promote cognitive performance become
increasingly important (Imtiaz et al., 2014). Single component

cognitive and physical training improved specific cognitive
functions (Kramer et al., 1999; Ball et al., 2002). However,

(1) inconsistent and limited generalizing benefits on global
cognition were found (see, e.g., Kelly et al., 2014b; Rebok

et al., 2014), (2) effect modifiers of training-induced effects
such as severity of neurocognitive disorder (NCD), age, or

gender are largely unexplored (Leckie et al., 2012; Walton
et al., 2014), (3) the impact of training dosage is still unclear

(see Liu-Ambrose et al., 2010; Ball et al., 2013 for rare
dose-response studies), and (4) current findings have limited

generalizability to potential end users as most studies applied
highly restricted selection criteria including only sedentary or

healthy participants (see, e.g., Smith et al., 2009; Erickson et al.,
2011). This study aims to overcome these four shortcomings by
using a combined physical and cognitive training intervention

in a community-dwelling sample of potential end users
with and without NCD while manipulating training dosage

and investigating effect-modifying effects in an exploratory
approach.

Cognitive as well as physical training interventions have been
shown to enhance performance in untrained cognitive tasks (see

Hindin and Zelinski, 2012 for a meta-analysis). However, both
approaches have their limitations. Cognitive training induced

only limited transfer effects, i.e., cognitive training improved
performance in untrained cognitive tasks which were structurally

very similar to the training tasks (Rebok et al., 2014) but
showed no (Ball et al., 2002; Owen et al., 2010; Chacko et al.,

2014) or only limited transfer effects to structurally dissimilar
tasks (Harrison et al., 2013). Especially in older adults, in

contrast to younger adults, far-transfer effects to structurally
dissimilar tasks could not be found (Schmiedek et al., 2010).

Some cognitive training programs revealed effects on untrained,
structurally rather dissimilar tasks, but they improved only

specific functions such as memory (Barnes et al., 2009; Zelinski
et al., 2011) rather than global cognition (but see also Lampit
et al., 2014a).

Physical training interventions such as resistant and aerobic
training have shown benefits on tasks of specific cognitive

functions (e.g., Kramer et al., 1999; Lautenschlager et al., 2008;
Liu-Ambrose et al., 2010). However, different meta-analyses and

systematic reviews did not come to univocal conclusions about

cognitive benefits (see Colcombe and Kramer, 2003; Angevaren
et al., 2008; van Uffelen et al., 2008; Smith et al., 2010b; Kelly

et al., 2014b for reviews and meta-analysis). While an older
meta-analysis showed large and specific benefits on executive

function (Colcombe and Kramer, 2003), a more recent meta-
analysis revealed small benefits on several functions (Hedges’

g < 0.16, Smith et al., 2010b). The most recent meta-analysis
by Kelly et al. (2014b) found no significant cognitive benefit of

aerobic training and very function-specific benefits of resistance
training. Taking all results together, it seems that cognitive

benefits of physical training interventions are very small-sized
and by their own not of practical significance after short-term
interventions.

How can we overcome the limitations of mono-therapeutical

approaches? As cognitive decline is multi-causal (see, e.g.,
Buckner, 2004), multi-component interventions acting by

multiple mechanisms may be necessary for practically significant
effects on global cognition (Ngandu et al., 2015). Physical and

cognitive trainings act by different mechanisms on cognition.
Some mechanisms may potentiate each other (i.e., synergistic

effects) while others may merely add up (see Kempermann,
2008; Fabel et al., 2009; Kraft, 2012; Fissler et al., 2013;

Hötting and Röder, 2013; Bamidis et al., 2014 discussing this
issue).

Synergistic effects of both interventions may arise by a
“plasticity facilitation” effect of physical training which, in turn,

is “guided” by cognitive training to induce its beneficial cognitive
effect. According to the so-called “guided plasticity facilitation”

framework by Fissler et al. (2013), physical training facilitates
synaptic plasticity and neurogenesis via growth factors such

as brain-derived neurotrophic factors and insulin-like growth
factor-1 (see, e.g., Cotman et al., 2007). Cognitive training,

in turn, “guides” the facilitated plastic potential by regulating
synapse formation and elimination (cf. Trachtenberg et al., 2002),

as well as by enhancing the survival of physical training-induced
newborn cells (Fabel et al., 2009). Thus, combined physical and
cognitive training may potentiate their impact to restructure

neuronal networks, resulting in enhanced processing efficiency
(Subramaniam et al., 2014).

Training types may also act by additive and independent
mechanisms on cognition (Wolf et al., 2006). Physical training

may reduce neuroinflammation (Cotman et al., 2007), increase
cerebral blood flow (Smith et al., 2010a) and velocity (Ainslie

et al., 2008), decrease risk factors for cognitive decline such as
cardiovascular diseases and diabetes (Cotman et al., 2007), reduce

amyloid deposition (Liang et al., 2010) and increase hippocampal
size (Erickson et al., 2011). Cognitive training may reduce the

impairment of hippocampal long-term potentiation induced by
amyloid-β oligomers (Li et al., 2013) and may reduce amyloid
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deposition independently from physical training (Lazarov et al.,

2005; Landau et al., 2012).
What is the empirical evidence for the efficacy of combined

physical and cognitive training interventions? Recent findings
indicate beneficial effects of combined training on cognitive

functions (Fissler et al., 2013; Law et al., 2014; Ngandu et al.,
2015) and some studies indicate more benefits through combined

training than through each component alone (Fabre et al.,
2002; Oswald et al., 2006; Shah et al., 2014). Also an animal

study found that combined training yielded more cognitive
benefits than each component by its own (Langdon and

Corbett, 2012). However, “research to assess the impact of
combined cognitive and physical training on cognitive functions

in older adults is still in its fledgling stage” (Law et al.,
2014).

A huge and heterogeneous set of cognitive and physical
training programs is currently available. Technology assisted
solutions engaging the elderly in physical training through

gaming have been increasingly investigated in recent years and
the term “exergaming” has even been coined to describe this

notion (Robert et al., 2014). However, in contrast to currently
available exergames, we developed a service which is tailor-

made for elderly use and integrates both physical and cognitive
game-like trainings under a unified user interface powered by

web service technologies (Konstantinidis et al., 2010; Bamidis
et al., 2011). Programs with the most robust empirical evidence

for transfer effects on cognitive functions in older adults were
implemented in this system. A Greek version of a well-validated

neuroplasticity-based training program (Brain Fitness Program;
Posit Science Corporation, San Francisco, CA, USA) was used

as the cognitive training component (Mahncke et al., 2006a).
This program improved performance in verbal memory tasks

that are structurally rather dissimilar from the training tasks
(Smith et al., 2009; Zelinski et al., 2011). It targets auditory

processes as well as working memory processes. The physical
training program included both resistance and aerobic training,
as their combination seems to be most effective (Colcombe

and Kramer, 2003; Kelly et al., 2014b). Additional balance
and flexibility exergames were designed and implemented

to meet the needs of elderly users (Konstantinidis et al.,
2014).

To address the lack of knowledge with respect to effect
modifiers of cognitive (Walton et al., 2014) and physical training

(Leckie et al., 2012), we conducted an exploratory analysis
regarding the potential impact of severity of NCD, baseline

cognitive performance, education, age, gender, and social activity
level on the intervention effect.

Previous studies of physical and cognitive training could
not clarify the impact of training dosage on cognitive

improvement (see Liu-Ambrose et al., 2010 for rare studies
investigating training dosage; Ball et al., 2013). A dose-

response effect strengthens evidence for a causal role of the
intervention components (Hill, 1965). Moreover, dose-response

effects have considerable practical relevance. Guidelines and
recommendations for end users can be derived (Robert et al.,

2014). In this study, we thus investigated the effect of training
dosage on cognitive benefits.

Lastly, the generalizability of previous findings to potential

end users was restricted as often strict selection criteria were
applied. These criteria included a sedentary lifestyle (e.g.,

Erickson et al., 2011) or no neurocognitive and psychiatric
disorders (e.g., Smith et al., 2009). To overcome this limitation,

we used unrestrictive criteria, not excluding older adults with
an active lifestyle, participants with mild cognitive impairment

(MCI), dementia and psychiatric disorders, if the conditions did
not preclude participation in the intervention.

Taken together, we hypothesized that combined cognitive
and physical training improves global cognition in contrast to

a passive control group and that the number of completed
training sessions predicts cognitive benefits. In addition, we

explored potential effect modifiers of training-induced cognitive
benefits.

Materials and Methods

Design
The multi-center study was part of the Long Lasting Memories
(LLM) project (http://www.longlastingmemories.eu), which

was funded by the European Commission [Information and
Communication Technologies Policy Support Program (ICT-

PSP)] for a 3 years period (2009–2012). The trial was registered
retrospectively in ClinicalTrials.gov (Identifier: NCT02267499).

We used a pre-post-test design and allocated participants
to the passive control group and the intervention group.

Intervention group participants were allocated to different
training dosages ranging from 24 to 110 potential sessions

(M = 59; SD = 21). This large-scale computerized intervention
study with different training dosages did not allow randomized

allocation due to feasibility and practical issues as well as due
to time and financial limitations of the project. However, both

allocation to group (training vs. passive controls) and to training
dosage was driven by non-systematic practical and logistic
reasons (such as the timing of the next start of training or

the time period until the next national holidays or the number
of successfully screened and pretested participants at a given

point in time) and was not influenced by participant’s choice,
motivation or compliance. We cannot exclude a potential bias

through this allocation procedure but we are not aware of a
mechanism which biased results favoring the intervention group

or favoring a higher training dosage.
Post-test was conducted within 2 weeks after completion of

the training period. The interventions reported in this paper
were carried out in Athens and Thessaloniki (Greece) within day

care centers, hospitals, senior care centers, a memory outpatient
center, local parishes, at university campus facilities (university

community installations), and at participant’s homes (Bamidis,
2012; Billis et al., 2013).

Severity of NCD, baseline cognitive performance, education,
age, gender, and social activity level were used as potential

effect modifiers of training effects. Global cognition served as
the primary outcome and cognitive functions such as episodic

memory, working memory, and executive function were defined
as secondary outcomes.
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Participants
The study enrolled 322 community-dwelling older adults ranging
from cognitively healthy individuals to individuals with MCI or

dementia [Mini Mental State Examination score (MMSE) 18–
30]. According to a power analysis, more participants had to be

allocated to the intervention group than the control group to
achieve the same power in the dose-response analysis and in the
group analysis. Our study had more than 95% power to detect

a medium effect size in the dose-response analysis (r = 0.3) and
the group analysis (f = 0.25) assuming two-tailed testing with a

significance level of α = 0.05.
Inclusion criteria were age ≥55 years, no severe cognitive

impairment (MMSE ≥ 18; cf. Tombaugh and McIntyre, 1992),
fluent language skills, agreement of a medical doctor and time

commitment to the test and training protocol. Exclusion criteria
were concurrent participation in another study, severe physical

or psychological disorders which precluded participation in the
intervention (i.e., inability to follow instructions), unrecovered

neurological disorders such as stroke, traumatic brain injury,
unstable medication within the past 3 months, severe and

uncorrectable vision problems, or hearing aid for less than
3 months. As there were only three participants with Parkinson’s

disease in the intervention group and none in the control group,
these were excluded from the data analysis.

Recruitment strategies included flyers, workshops,
presentations, and professional contacts in the intervention and

associated institutions, advertisement in the local newspapers,
and word of mouth. Participants received no compensation; the
training program was provided at no cost.

The protocol was approved by the Bioethics Committees of
two Medical Schools, the Medical School of the National and

Kapodistrian University of Athens and the Medical School of the
Aristotle University of Thessaloniki, as well as, the Board of the

Greek Association of Alzheimer’s Disease and Related Disorders.
Participants provided written informed consent prior to study

participation.

Intervention
The computerized training program was conducted by using an
integrated web-service system composed of a physical as well as

a cognitive training component through a universal interface,
facilitated by touch screen systems (Konstantinidis et al., 2010;
Bamidis et al., 2011). It was carried out in a group setting apart

from one participant who used the training system at home.

Physical Training

The computerized physical training program FitForAll

(llmcare.gr/el/service/fitforall, Billis et al., 2010; Konstantinidis
et al., 2014) was composed of (1) aerobic, (2) strength, (3) balance

and (4) flexibility trainings and exergames. Physiotherapists,
sport experts/physical educators, psychologists, or trained

facilitators (formal care givers) introduced participants to the
training program and consulted participants with respect to

the training intensity level. A 10-min warm-up phase preceded
the four different training components (10–15 min each),

followed by a 5-min cool-down phase. Participants started on
the light intensity level with a target heart rate (HR) of 50–60%

of maximum heart rate (HRmax) and could proceed to the very

hard level with a target HR of 80–90% of HRmax. Training was
embedded in game-like tasks using either the Wii Balance Board

or the Wii Remote which measure the center of mass and limb
movements, respectively. (1) The FitForAll exergames “Hiking”

and “Cycling” are two aerobic trainings in which participants run
on the spot or cycle on a stationary mini-bike, therebymoving the

bicycle of an avatar through a city landscape. (2) Training tasks
aiming to increase upper and lower limb strength consisted of

weightlifting and resistance trainings. Pictures of positive valence
were revealed gradually with increasing repetitions. (3) “Ski

Jump” is a static balance task asking participants to move their
center of mass to a specific position, thus controlling the avatar’s

jump performance. “Arkanoid” is designed to train dynamic
balance. Participants needed to control the horizontal position

of a bar aiming to hit a moving ball which, in turn, needed to be
directed to destroy bricks. In “Apple Tree,” participants practiced
dynamic balance by controlling a basket which served to pick

apples from a tree. “Fishing” is a dynamic balance game in which
participants needed to control the vertical position of a boat with

the goal to fish horizontally moving fishes. In “Golf” participants
moved a ball around barriers into a hole using their center of

mass. (4) Flexibility training consisted of stretching and warm-up
trainings.

Cognitive Training

A localized version (adapted in terms of Greek language and

cultural contexts) of the Brain Fitness Program (Posit Science
Corporation, San Francisco, CA, USA, see Mahncke et al.,

2006b) served as the cognitive training component (Bamidis,
2012). It consisted of six tasks targeting auditory processing and

working memory.With task progression, increasingly long arrays
of syllables up to words, sentences and narratives were used.

The stimuli were synthetically processed, enabling variations
in duration and amplitude of rapid frequency modulations

within sounds and speech to adapt difficulty. The program
presented, via head-phones, difficult-to-discriminate auditory

stimuli which were partly interwoven in tasks with high
working memory load. Two tasks were psychophysical auditory

training tasks (“High or Low” and “Tell us Apart”), while three
tasks tapped both working memory and auditory processing
(“Sound Replay,” “Listen and Do,” “Match It”). In “Story Teller,”

stories with increasing demands on auditory perception were
presented and participants subsequently needed to recognize

story facts out of multiple possible answers. Feedback was given
by rewarding correct responses with points while gradually

revealing background pictures of positive valence. Difficulty level
was continuously adapted based on participants’ performance.

Psychologists introduced participants to the training program
and consulted participants with respect to the training intensity

level.

Measures
Cognitive Outcomes

Greek versions of the California Verbal Learning Test (Delis et al.,

1987), the Digit Span Test (Wechsler, 1997), and the Trail Making
Test (TMT, Reitan, 1958) were used to assess cognitive outcomes.
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Measures are well-validated (English versions; Sanchez-Cubillo

et al., 2009; Beck et al., 2014) and possess good reliability (retest-
reliability in the control group of this study for global cognition

was good; rpre−post = 0.82; on average, 67 days between tests).
All measures are widely used in clinical practice and comprise

a wide spectrum of cognitive functions affected in normal aging
(Park et al., 2002), MCI (Economou et al., 2007), and dementia

(American Psychiatric Association, 2013). In the verbal learning
test, five learning trials of an orally presented 16-word shopping

list (list A) were followed by an interference shopping list (list B)
as well a short-delayed recall of list A with and without category

cues. After another 20 min, participants were asked to recall list
A with and without category cues. In the Forward and Backward

Digit Span Test participants were asked to repeat an increasingly
long sequence of orally presented digits in same and in reverse

order of presentation. In the TMT part A, participants needed
to draw a line between numbers in ascending order. In part
B, numbers and letters needed to be connected in alternating

alphabetic and ascending orders. The difference of time needed
to complete part B and part A (TMT B-A) is suggested to be

a measure of the switching component of executive function
(Sanchez-Cubillo et al., 2009). If part A lasted longer than 3 min

and part B lasted longer than 5 min, the test was stopped and
coded with the maximum time of 180 or 300 s, respectively. In

case one subtest was not completed within time, TMT B-A could
not be calculated. This affected 29% of the intervention group and

26% of the control group.

Specific cognitive functions and global cognition
Secondary outcome measures including episodic memory,
working memory, and executive function were calculated by

averaging z-standardized sub-scores of the three cognitive
tests. For episodic memory sub-scores comprised the total

number of recalled words within the five learning trials and
the 20-min free delayed recall score. For working memory

the sub-scores comprised the Digit Span Forward and the
Digit Span Backward Test. Executive function was calculated

by inverting z-standardized TMT B-A scores. The primary
outcome measure, global cognition, was a composite score

derived from all three cognitive function scores, calculated by
averaging the z-standardized scores of episodic memory, working
memory, and executive function. Baseline assessment served for

z-standardization (score minus baselinemean divided by baseline
standard deviation). Global cognition was calculated if at least

two of three cognitive function scores were available for analysis.

Psychological, Physical, and Daily Living Outcomes

Quality of life was assessed with the short-version of the World
Health Organization Quality of Life questionnaire (WHOQOL-

BREF, Skevington et al., 2004), measuring physical, psychological,
social, and environmental domains. Depressive symptoms were

assessed with the short, 15-item version of the Geriatric
Depression Scale (GDS-short, Sheikh and Yesavage, 1986). Daily

life functioning was assessed with the Instrumental Activities of
Daily Living Scale (IADL, Lawton and Brody, 1969). Physical

fitness was operationalized with the composite score of the
averaged z-standardized subtests of the Senior Fitness Test (Chair

stand, Arm curl, 2-min step, Back scratch, Chair sit-and-reach,

8-foot up-and-go, Rikli and Jones, 2001). This measure was
collected only in a subsample (n = 119; intervention group,

n = 84; control group, n = 35). Greek versions (validated or
adapted for research) of all tests were used.

Moderator Variables and Group Characteristics

An interview served to collect demographic data such as

education, age, gender, and medical data. The Mini Mental State
Examination was used as a cognitive screening test (MMSE,

Folstein et al., 1975). NCDs were assessed by neurologists
on the basis of a clinical interview with the patient and

an informant, clinical examination including neurobehavioral
examination and, if available, imaging (CT or MRI) and standard

blood and biochemistry investigations according to the EFNS-
ENS guidelines (Waldemar et al., 2000; Sorbi et al., 2012) and
AAN practice parameters for differential diagnosis of dementia

(Knopman et al., 2001; Pitner and Bachman, 2004). Diagnosis
was made in accordance with the DSM-IV and ICD-10 criteria

for dementia and Petersen’s criteria for MCI (Petersen, 2004). All
individuals with MCI had a Clinical Dementia Rating (Hughes

et al., 1982) score of 0.5. To assess NCD as a moderator of
training effects it was treated as an ordinally scaled variable

with the values “healthy” < “MCI” < “dementia.” The number
of social activities including sport activities, church activities,

volunteer work, meetings for seniors, club meetings, and other
social activities served as a measure of the social activity level. In

case of missing values for one kind of social activity, the value was
estimated by themean score of the other social activities. Training

dosage was operationalized by the total number of completed
cognitive and physical training sessions which were collected

electronically via online data records and web services (Bamidis
et al., 2011).

Data Analysis
Statistical analysis was conducted using the R statistical software

package version 2.15.1 (R Development Core Team, 2011).
Baseline group characteristics were compared using t-tests for

continuous variables and χ2-tests for categorical variables.
To assess the intervention effect, multiple regression models

were used as the primary analysis. Change in cognitive
performance was the dependent variable. Covariates were

included in the primary analysis to enhance statistical power
through the reduction of variance in the dependent variable

which was attributable to other factors than the intervention.
Study center (dummy-coded; Thessaloniki vs. Athens) was

included according to established procedures in multi-center
studies (Kahan and Morris, 2013), accounting for similarities

of participant’s within centers and differences between center
characteristics. Selection of other predictors was based on the

forward and backward Akaike Information Criterion (AIC)-
stepwise regression. Baseline performance, age and education

reduced the AIC and were selected as covariates. The difference
in performance change between intervention and control

group was assessed by adding group (dummy-coded) to the
model.
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An available-case analysis – consistent with the modified

intention-to-treat approach of randomized controlled trials –
was conducted: all participants with available outcomes were

included according to the originally allocated group, irrespective
of any consideration such as the initiation and completion of

the designated intervention. Imputation methods for missing
data were not used as the strong assumptions required by these

methods cannot be justified and violation of assumptions induce
an estimation bias (Streiner, 2008). Analyzing all participants

according to the initial group assignment irrespective of the
intervention received, reduces self-selection and the risk of an

attrition bias (Flick, 1988). In contrast with a per-protocol
analysis, non-compliance with the allocated treatment is ignored,

thus depicting a more conservative analysis, which tends to
underestimates the true effect size of the treatment (Moher et al.,

2010).
To assess the robustness of group effects, we conducted a

secondary analysis without accounting for other variables (see

Supplementary Table S1). This method yields the same results
as the Group [intervention vs. control] × Session [pre vs. post]

interaction using repeated-measure ANOVA or linear mixed
effect models (Pinheiro et al., 2010; see Supplementary Table S1).

To assess moderator effects (i.e., effect modifiers), an
interaction term between each moderator variable and group

was added separately as predictor. As we tested six moderator
variables, we report both unadjusted p-values and p-values

adjusted for six multiple comparisons by using Holm’s method
(Holm, 1979). In this exploratory analysis which aims for

hypothesis generation rather than rigorous hypothesis testing,
p-value adjustment is not viewed as necessary (Rothman, 1990;

Roback and Askins, 2005). However, results should be cautiously
interpreted as the risk of false positives increases with multiple

testing.
Multiple regression models within exercising participants

served to evaluate the effect of training dosage on change in
cognitive performance. These models included the number of
completed training sessions and the covariates as predictor

variables of performance change.
To calculate effect sizes all outcome measures were

z-standardized according to the baseline data of both groups.
Cohen’s d represents the estimated z-standardized difference

between the change in the intervention group and the change
in the control group, accounting for the covariates. Statistical

significance tests were two-tailed with a significance level of
α = 0.05.

Results

Baseline Group Characteristics
A total of 322 participants were enrolled in the study from June

22, 2010 (intervention group, n = 237; passive control group,
n = 85; Thessaloniki, n = 177; Athens, n = 145), 229 completed

the post-test until April 04, 2012 (intervention group, n = 163;
passive control group, n = 66; Thessaloniki, n = 120; Athens,

n = 109). Attrition rates were 31% in the intervention group and
22% in the control group which were not significantly different,

FIGURE 1 | Flow of participant chart. Flow of participants within the

intervention and passive control group.

χ2(1) = 1.98; p = 0.16 (see Figure 1). On average, participants
of the intervention group completed 37 (SD = 19.8) training

sessions (23 cognitive and 14 physical) within an average period
of 6-weeks. Baseline characteristics are depicted in Table 1. Apart

from significantly more depressive symptoms in the intervention
group (M = 2.8, SD = 2.7) compared to the control group

[M = 2.0, SD = 2.0, t(225) = 2.08; p = 0.04], there were no other
significant group differences, ps ≥ 0.05 (see Table 1). The group

difference in the quality of life questionnaire WHOQOL-BREF
was marginally significant, p = 0.05.

Does Combined Training Improve Global
Cognition?
To assess intervention effects, the dummy-coded variable group
(intervention vs. control group) was added to the regression

model accounting for baseline cognitive performance, education,
age, and study center. In accordance with our hypothesis, the
intervention group compared to the control group significantly

improved in global cognition, t(219) = 3.20, p = 0.002, Cohen’s
d = 0.31 (see Figure 2). Regarding secondary outcomes, the

intervention group compared to the control group significantly
improved in executive function, t(156) = 2.56, p = 0.01, Cohen’s

d = 0.37, and episodic memory, t(216) = 2.21, p = 0.03, Cohen’s
d = 0.20. There was no significant effect of group on change in

working memory, t(219) = 1.29, p = 0.20, Cohen’s d = 0.15 (see
Table 1).

Previous studies about the same cognitive training program
found near-transfer effects on verbal working memory in

cognitively healthy participants (Mahncke et al., 2006b; Smith
et al., 2009; Zelinski et al., 2011), but not in participants

with probable MCI (Barnes et al., 2009, 2013). Therefore, we
performed a subgroup analysis of cognitive training effects

in cognitively healthy participants. Consistent with previous
finding, a significant effect of group was found, t(83) = 2.19,

p = 0.03, Cohen’s d = 0.42.
As depressive symptoms differed significantly between groups,

we accounted for this variable in an additional analysis. Results
did not change. Using the secondary method of analysis, which
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TABLE 1 | Baseline characteristics of intervention group and passive control group.

Measure Intervention group (n = 163) Control group (n = 66) p-valuea

Demographic data

Age, mean ± SD 71.3 ± 7.1 70.1 ± 8.1 0.25

Female, n (%) 117/162 (72%) 41/66 (62%) 0.18

Education, years mean ± SD 10.9 ± 4.9 10.7 ± 4.4 0.77

Cognitive data

MMSE, mean ± SD 26.8 ± 2.9 26.4 ± 2.9 0.29

Global cognition, mean ± SD 0.0 ± 1.0 −0.1 ± 1.0 0.43

Cognitive diagnosis 0.12

Healthy, n/ngroup (%) 69/163 (42%) 21/66 (32%)

MCI, n/ngroup (%) 72/163 (44%) 39/66 (59%)

Dementia, n/ngroup (%) 22/163 (13%) 6/66 (9%)

Psychological data

GDS-short, mean ± SD 2.8 ± 2.7 2.0 ± 2.0 0.04

WHOQOL-BREF composite, mean ± SD −0.1 ± 1.0 0.2 ± 1.0 0.05

Medical data

No. of medications, mean ± SD 3.4 ± 2.3 2.8 ± 2.5 0.17

Diabetes mellitus, n/ngroup (%) 21/154 (14%) 3/55 (5%) 0.17

Hypertension, n/ngroup (%) 76/154 (49%) 21/55 (38%) 0.20

High cholesterol, n/ngroup (%) 34/153 (22%) 15/55 (27%) 0.57

Currently smoking, n/ngroup (%) 18/155 (12%) 9/56 (16%) 0.53

Social data

Number of social activities, mean ± SD 2.2 ± 1.0 2.5 ± 1.3 0.16

Number of children, mean ± SD 1.8 ± 0.9 1.9 ± 0.7 0.57

Living alone, n/ngroup (%) 48/161 (30%) 11/60 (18%) 0.12

Study data

Total training sessions, mean ± SD 37.3 ± 19.9 – –

Physical training sessions, mean ± SD 14.5 ± 11.2 – –

Cognitive training sessions, mean ± SD 22.8 ± 10.0 – –

Trial site, n/ngroup (%) of Thessaloniki 88/163 (54%) 32/66 (48%) 0.54

Days between pre- and post-test, mean ± SD 64.4 ± 30.0 67.4 ± 45.9 0.57

Attrition rates, n/ngroup (%) 74/237 (31%) 19/85 (22%) 0.16

ap-values of group comparisons refer to t-tests for continuous variables and to χ2 tests for categorical variables.
WHOQOL-BREF, short version of the World Health Organization Quality of Life questionnaire; MMSE, Mini Mental State Examination; MCI, mild cognitive impairment.

did not account for covariates, revealed consistent results,

apart from a non-significant effect in episodic memory (see
Supplementary Table S1), indicating that effects on global

cognition and executive function are most robust.

Do Cognitive Benefits Depend on Individual
Differences?
To explore modifying variables of training effects, we added
group, the respective moderator variable and an interaction

term of both variables to the regression model accounting
for baseline cognitive performance, education, age, and

study center. The ordinally coded variable severity of NCD
(healthy < MCI < dementia), baseline cognitive performance,

education, age, gender, and social activities served as moderators.
In the following, we report significant and marginally significant

interactions.
Regarding change in global cognition, the interaction term

Group × Severity of NCD proved marginally significant,
t(217) = 1.77, p = 0.08. With increasing severity of NCD,

the intervention effect on global cognition decreased (see

Figure 3). While healthy participants showed a highly significant
intervention effect on change in global cognition, t(86) = 3.48,

p = 0.0008, Cohen’s d = 0.54, participants with MCI,
t(108) = 1.45, p = 0.15, Cohen’s d = 0.19, and dementia,

t(25) = 0.14, p = 0.89, Cohen’s d = 0.04, did not show a
significant improvement. It is of note, that according to the AIC,

the model which accounted for severity of NCD as an effect
modifier (AIC = 450.1) was preferred to the model which did

not account for it (AIC = 455.5). However, taking multiple
comparisons for the six moderators into account, the interaction

effect would not remain significant, padjusted = 0.47. The results
indicate that this exploratory analysis is of use for the formulation

of specific hypothesis which need to be tested more rigorously
in future trials before clinical decisions can be based on them
(Roback and Askins, 2005).

Regarding change in executive function, the interaction
term Group × Baseline Executive Function proved significant,

t(155) = 3.59, p = 0.0004. The lower the baseline executive
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FIGURE 2 | Intervention effects on global cognition. Intervention and

passive control group comparison of z-standardized pre- and post-test global

cognition. The asterisk indicates a significant beneficial effect of the

intervention compared to the control group on post-test performance

accounted for baseline cognitive performance, education, age and study

center, p = 0.002, Cohen’s d = 0.31. Arrows represent SE.

function, the higher the intervention effect even after adjusting

for multiple comparisons, padjusted = 0.003. We also found
significant moderator effects of age and severity of NCD

which did not remain significant after adjusting for multiple
comparisons, t(155) = 2.25, p = 0.03, padjusted = 0.13,

t(154) = 2.04, p = 0.04, padjusted = 0.17, respectively. The
younger participants and the more severe the NCD, the less

improvements were induced in executive function. Importantly,

if the interaction terms of all three moderators were included
in one model, effects remained similar. The interactions

Group × Baseline Executive Function, Group × NCD
and Group × Age remained at least marginally significant,

t(152) = 3.33, p = 0.001, padjusted = 0.007, t(152) = 2.59,
p = 0.01, padjusted = 0.05 and, t(152) = 1.87, p = 0.06,

padjusted = 0.26, respectively. Lower baseline performance
moderated the intervention effects among cognitively healthy

participants, t(70) = 2.84, p = 0.006, padjusted = 0.02, as well
as, within participants with NCD, t(78) = 2.54, p = 0.01,

padjusted = 0.07, supporting the robustness of the moderator
effect independent of severity of NCD. Education, gender, and

social activity level showed no significant moderation effect, all
unadjusted ps > 0.10.

In conclusion, regarding global cognition a tendency for a
reduced intervention effect with more severe NCD was found.
Regarding executive function, with higher baseline performance,

more severe NCD and younger age, training-induced benefits
were reduced.

Does Training Dosage Matter?
To assess dose-related effects of training, we added the predictor

training dosage (i.e., number of completed training sessions)
to the regression model accounting for baseline cognitive

performance, education, age and study center. For this analysis,
we included only participants of the intervention group which

started the intervention (n = 154). The number of training
sessionsmarginally significantly predicted improvement in global

cognition, β = 0.17, t(146) = 1.85, p = 0.07, and executive
function, β = 0.23, t(103) = 1.92, p = 0.06 (see Table 2).

FIGURE 3 | Moderation and dose-response effects for global cognition.

(A) Change in global cognition (partial residuals accounting for covariates) of the

intervention group (light gray), compared to the passive control group (dark gray)

within cognitively healthy participants, participants with mild cognitive

impairment (MCI) and dementia. Arrows represent SE. (B) Change in global

cognition (partial residuals accounting for covariates) as a function of the

number of training sessions within a subsample which were either cognitively

healthy or diagnosed with mild cognitive impairment.
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TABLE 2 | Effects of intervention group and dosage on change in cognition.

Groupa Number of training sessionsa

Change in cognitive performance Cohen’s d t (df) p-value β b t (df) p-value

Global cognition 0.31 3.20 (219) 0.002 0.17 1.85 (146) 0.07

Executive function 0.37 2.56 (156) 0.01 0.23 1.92 (103) 0.06

Working memory 0.15 1.29 (219) 0.20 0.10 0.93 (146) 0.36

Episodic memory 0.20 2.21 (216) 0.03 −0.01 0.13 (145) 0.90

aAll regression models accounted for baseline cognitive performance, education, age, and trial site.
bStandardized coefficient: it is predicted that every 18 sessions global cognition and executive function improves by 0.17 and 0.23 SD, respectively.

With respect to episodic memory and working memory, no

significant dose-response effect was found, ps > 0.356 (see
Table 2).

Taking the moderator effect of NCD on global cognition into
account (see Figure 3A), we conducted a dose-response analysis

in the subgroup of non-demented participants (either cognitively
healthy or diagnosed with MCI; n = 131). A significant dose-

response effect was revealed for this subsample, β = 0.20,
t(126) = 2.10, p = 0.04. Taking the robust moderator effect of

baseline performance on executive function into account, we
conducted a dose-response analysis for participants with low

baseline executive function (median split; n = 56). We found
a highly significant dose-response effect for this subsample,

β = 0.54, t(51) = 2.83, p = 0.007.
The manipulation check was successful as we found a

high correlation between the number of completed training

sessions and the number of potential training sessions (r = 0.74,
p < 0.001). Importantly, not only the completed training

sessions but also the number of potential training sessions
significantly predicted improvement in global cognition

both within all participants of the intervention group,
β = 0.20, t(151) = 2.37, p = 0.02, and within non-demented

participants in the intervention group, β = 0.23, t(131) = 2.69,
p = 0.008.

Does Training Improve Secondary Physical,
Psychological, and Daily Life Outcomes?
In a subset of study participants we assessed physical fitness and

tested whether manipulation was successful. The intervention
group compared to the control group significantly improved in

physical fitness, t(117) = 6.50, p < 0.001 (see Supplementary
Table S1). Psychological and daily life outcomes did not benefit

from the intervention even without adjusting for multiple
comparisons, ps > 0.09 (see Supplementary Table S1).

Discussion

Mono-therapeutic interventions of physical and cognitive

training have shown task- and domain specific cognitive benefits,
but limited generalization effects on global cognition (Owen

et al., 2010; Smith et al., 2010b; Kelly et al., 2014b; Rebok et al.,
2014), especially in older adults (Schmiedek et al., 2010; but see

also Lampit et al., 2014a). Our results indicate that combining
physical and cognitive training can overcome this shortcoming.

In a community-dwelling sample of cognitively healthy and

impaired older adults, we provide evidence that intensive
short-term physical and cognitive training induced benefits in

global cognition (Cohen’s d = 0.31), executive function (more
specifically switching, Cohen’s d = 0.37) and episodic memory

(Cohen’s d = 0.20). Working memory improvement was not
statistically significant (Cohen’s d = 0.15).

In addition, we found evidence for effect modifiers of
cognitive gains in an exploratory approach. Regarding global

cognition, a tendency for reduced intervention effects with
more severe NCD was revealed. Regarding executive function,

we found a robust moderation effect of baseline performance.
The lower the baseline performance, the more benefits were

found. We also found that participants with more severe NCD
(healthy <MCI< dementia) and younger in age benefited less in
executive function.

Consistent with the intervention effects on global cognition
and executive function, we found evidence for dose-response

effects within the subsamples which benefited most from
the intervention. For individuals without dementia, the more

training sessions were completed, the more benefits in global
cognition were found. For individuals with low baseline executive

function (<median), the more training sessions were completed,
the more gains in executive function were revealed. These

dose-response effects strengthen the interpretation that the
cognitive benefits are attributable to the training components

rather than unspecific characteristics of the intervention (cf. Hill,
1965).

Is the effect size of practical significance? According to the
dose-response analysis global cognition is predicted to increase

by 0.9 SD after 100 training sessions. In our sample, healthy adults
were 0.56 SD better in global cognition than participants with

MCI which were, in turn, 0.61 SD better than participants with
dementia. Hence, the expected effect size of 100 training sessions
is larger than the progression from healthy toMCI and fromMCI

to dementia.

Group and Dose-Response Effects on Global
Cognition and Specific Cognitive Functions
To our knowledge, this is the first study which showed

combined training-induced improvement in global cognition
of older adults within both a control group comparison and

a dose-response analysis. The global improvement of cognitive
performance is probably induced by multiple additive and
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interacting mechanisms of physical and cognitive training. One

central mechanism of transfer effects may be the cognitive
training-induced reorganization of neuronal networks enabling

more efficient perceptual (Berry et al., 2010) and executive
processing (Subramaniam et al., 2014). Transfer effects may be

mediated via overlapping processing demands of cognitive tests
and cognitive training (Dahlin et al., 2008). Possibly, the brain’s

reorganization by cognitive training may have been potentiated
by physical training-induced “plasticity facilitation” (Fissler et al.,

2013).
Importantly, the transfer tasks we used to assess global

cognition were structurally rather dissimilar from the cognitive
training tasks (cf. Rebok et al., 2014). Therefore, it is more likely

that transfer effects are not induced by strategy use or task-
specific skills but rather by broad cognitive benefits in different

domains. At the first glance, non-significant working memory
effects seem inconsistent with other working memory studies
(Karbach and Verhaeghen, 2014). However, highly consistent

with the current literature, a subgroup analysis indicated
medium-sized near-transfer effects on verbal working memory

in cognitively healthy participants (Smith et al., 2009; Zelinski
et al., 2011; Karbach and Verhaeghen, 2014), but non-significant

effects in participants with NCD (Barnes et al., 2009, 2013).
Interestingly, the TMT, which showed the largest effect sizes

in the group and dose-response analysis, showed the lowest
structural similarities with the cognitive training tasks indicating

rather broad cognitive improvements by combined cognitive and
physical training.

Individual Differences in Training-Induced
Benefits
The mechanisms of the moderation effect of severity of

NCD, baseline performance, and age on training-induced
cognitive benefits are speculative but may be explained via

training-induced improvement in neurofunctional efficiency
(Subramaniam et al., 2014). Participants with more severe
NCD may have a reduced structural brain capacity (such as

reduced number of neurons, synapses, and level of dendritic
arborization; Arnold et al., 2013) limiting structural resources

necessary for training-induced gains in processing efficiency
(i.e., more efficient brain connectivity; Frantzidis et al., 2014).

Participants with lower baseline executive function may have
a reduced baseline processing efficiency which enables a larger

zone of potential improvement. Older participants may have
increased baseline variation in processing efficiency (Raz et al.,

2005), which on average, increases the zone of potential
improvement.

Recent studies support the finding of reduced effects in
participants with NCD. Smith et al. (2009) and Zelinski et al.
(2011) used the English version of this study’s cognitive training
program and found improvements on verbal memory in a healthy

sample. In other studies investigating participants with probable
MCI, no significant effects of this program were found (Barnes

et al., 2009, 2013). Applying a 6-months cognitive intervention,
Buschert et al. (2011) found cognitive gains in participants

with MCI but not among individuals with mild Alzheimer’s
disease. In addition, recent meta-analyses on cognitive training

revealed no cognitive benefits in participants with dementia

while cognitive improvement was found in healthy older adults
(Bahar-Fuchs et al., 2013; Karr et al., 2014; Kelly et al.,

2014a). However, none of these studies investigated effect-
modifying effects of severity of NCD through analyzing the

Group × Severity of NCD interaction which is essential for
conclusions. Thus, this study provides preliminary evidence for

effect modification which should be further assessed in future
long-term trials. It is important to note that reduced benefits

for participants with more severe NCD may be a spurious
finding because of an increased risk of false positives in an

exploratory analysis. Furthermore, effect-modifying effects may
be specific for certain training types or may not be found

with more prolonged training (cf. Sitzer et al., 2006; Buschert
et al., 2010). A prolonged increase in challenging activities

might not primarily act on the reorganization of neuronal
networks to increase processing efficiency but by disease-
modifying mechanisms such as reductions in Aβ-deposition

(Lazarov et al., 2005; Liang et al., 2010; Landau et al., 2012),
prevention of synaptic loss (Arnold et al., 2013), neuronal death

(Valenzuela et al., 2011), hippocampal atrophy (Valenzuela et al.,
2008; Erickson et al., 2011; Smith et al., 2014), and whole-

brain atrophy (Mortimer et al., 2012). Indeed, a recent study
revealed clinically significant long-term effects of prolonged

engagement in cognitively and physically challenging leisure
activities such as gaming and Tai Chi on cognitive decline

in a sample of older persons with dementia (Cheng et al.,
2013).

Enhanced training-induced cognitive gain in participants with
low baseline performance is consistent with findings from other

cognitive and physical training studies (Mahncke et al., 2006b;
Peretz et al., 2011; Barnes et al., 2013), game-based cognitive

interventions (Whitlock et al., 2012; Baniqued et al., 2014), and
a multimodal dancing intervention (Kattenstroth et al., 2013).

All of these studies found increased cognitive benefits with lower
baseline performance.

Limitations
Blinding of test administrators and participants, as well as
random allocation to intervention groups and training dosage

was not feasible due to logistic and practical issues and
time and financial limitations of the project, as discussed

above. In addition, the use of a passive control group
cannot exclude motivation or expectation-based intervention

effects such as Hawthorne and placebo effects. However, the
lack of randomization is unlikely to bias effects as baseline

characteristics between the groups are comparable. In addition,
consistent training-induced cognitive benefits in both the

group analysis and the dose-response analysis make a bias
in favor of intervention-induced cognitive benefits unlikely.

Furthermore, participants were blind with regards to the different
training dosages which make Hawthorne and placebo effects

less likely. In addition, Hawthorne and placebo effects are
unlikely to explain medium-sized global cognitive benefits as

previous large-scale studies and meta-analysis demonstrated no
differences between active and passive control groups (Ball et al.,
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2002; Kelly et al., 2014b; Lampit et al., 2014b; Park et al.,

2014).
The number of completed training sessions was not fully

explained by the manipulation of the number of potential
training sessions (r = 0.74). Thus other variables related to

the number of completed training sessions such as participants’
motivation or time limitation might have contributed to the

dose-response effect. However, this explanation is unlikely as
not only the number of completed training sessions but also

the manipulated number of available training sessions showed a
beneficial effect on global cognition.

Outcome measures for the assessment of global cognition
were limited to three cognitive tests of three cognitive functions.

Thus, we do not know whether the measure of global cognition
would have improved if more cognitive tests measuring more

cognitive functions would have been included. However, with
our three measures of executive function (switching), working
memory and episodic memory, a wide spectrum of fronto-

parietal and mediotemporal lobe functions – most affected in
aging - were assessed (Park et al., 2002; Raz and Rodrigue,

2006; Bamidis et al., 2014). Finally, the TMT could not be
conducted within time limits by 29% of the intervention

group and 26% of the control group. As missing data did
not differ between groups, we do not expect that it biased

effects.
Due to a lack of studies investigating effect modifiers

of combined physical and cognitive training, an exploratory
approach with multiple comparisons was necessary. This

approach increases the risk for false positives or - if Type I error
is adjusted – increases the risk for false negatives (Roback and

Askins, 2005). To our knowledge, this is the largest study which
assesses an effect-modifying effect of severity of NCD revealing

small- to medium-sized differences between cognitive benefits
of cognitively healthy participants (d = 0.54), participants with

MCI (d = 0.19) and dementia (d = 0.04). These effect sizes
are of clinical significance, but not of statistical significance
after adjusting for multiple comparisons. Hence, the trend for

severity of NCD as an effect modifier in the unadjusted analysis
should be used to justify rigorous hypothesis testing in future

trials but, yet, not for clinical decisions (Roback and Askins,
2005).

Future Directions
Future studies should extend our results of combined cognitive
and physical training by investigating other outcome measures

and maintenance of effects. Sensitive and objective measures of
daily functioning should be used (Tucker-Drob, 2011) to better

understand the significance of cognitive improvements for daily
life. Effects of combined training on molecular (neurotrophins,

amyloid deposition, metabolomic and lipidomic biomarkers)
and neuronal correlates of cognition (structural and functional

brain networks) should be investigated to reveal the underlying
mechanisms of effects (see Bamidis et al., 2014 for a review).

More long-term follow-up studies need to be conducted in
order to reveal maintenance of effects (Rebok et al., 2014). Most

importantly, large-scale studies with longer training duration
need to be conducted to investigate the effect of combined

training on the long-term incidence and trajectory of NCD in

relation to NCD severity (cf. Unverzagt et al., 2012). These
important, but unexplored outcomes of combined physical and

cognitive training should be investigated within randomized
controlled trials, the gold standard to accurately estimate the true

effect of interventions because of their ability to minimize bias
(Moher et al., 2010).

Effects of combined physical and cognitive training need to
be decomposed to better understand the contribution of each

component and their synergy (see Fissler et al., 2013 for a
review). Decomposing of effects while keeping training time

constant can be established by comparing simultaneous physical
and cognitive training vs. individual components (Anderson-

Hanley et al., 2012) or by a 2 × 2 factorial design with placebo
control conditions (Barnes et al., 2013). Temporal proximity

and the sequence of combined training types (i.e., physical
before cognitive training or vice versa) should be manipulated
systematically. Temporal proximity and sequencemay be decisive

for a synergy effect of cognitive and physical training as
training-induced neurotrophin up-regulation peaks after about

2 h and declines to baseline level afterward (Rasmussen et al.,
2009).

Conclusion

Neurocognitive disorders and brain pathology are insidious
phenomena which begin decades before their diagnosis (Braak

et al., 2011). Hence, strategies for the prevention of dementia
must start long before neurocognitive deterioration impairs

activities of daily living. Here, we provide evidence that
combined training induces dose-responsive improvement in

global cognition, especially in individuals with less severe NCDs.
Whether effects on global cognition through combined training

may reduce the incidence and the trajectory of NCDs in relation
to its severity must be assessed in future long-term randomized
controlled trials.
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