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Abstract. To improve poor air quality in Asia and inform
effective emission-reduction strategies, it is vital to under-
stand the contributions of different pollution sources and
their associated human health burdens. In this study, we use
the WRF-Chem regional atmospheric model to explore the
air quality and human health benefits of eliminating emis-
sions from six different anthropogenic sectors (transport, in-
dustry, shipping, electricity generation, residential combus-
tion, and open biomass burning) over South and East Asia in
2014. We evaluate WRF-Chem against measurements from
air quality monitoring stations across the region and find
the model captures the spatial distribution and magnitude
of PM2.5 (particulate matter with an aerodynamic diameter
of no greater than 2.5 µm). We find that eliminating emis-
sions from residential energy use, industry, or open biomass
burning yields the largest reductions in population-weighted
PM2.5 concentrations across the region. The largest human
health benefit is achieved by eliminating either residential or
industrial emissions, averting 467 000 (95 % uncertainty in-
terval (95UI): 409 000–542 000) or 283 000 (95UI: 226 000–
358 000) annual premature mortalities, respectively, in In-
dia, China, and South-east Asia, with fire prevention avert-
ing 28 000 (95UI: 24 000–32 000) annual premature mortal-
ities across the region. We compare our results to previous
sector-specific emission studies. Across these studies, resi-
dential emissions are the dominant cause of particulate pol-
lution in India, with a multi-model mean contribution of
42 % to population-weighted annual mean PM2.5. Residen-

tial and industrial emissions cause the dominant contribu-
tions in China, with multi-model mean contributions of 29 %
for both sectors to population-weighted annual mean PM2.5.
Future work should focus on identifying the most effective
options within the residential, industrial, and open biomass-
burning emission sectors to improve air quality across South
and East Asia.

1 Introduction

Rapid industrialization and urbanization combined with slow
implementation of environmental legislation and clean resi-
dential fuels have led to serious air quality problems across
Asia. Exposure to poor air quality is associated with detri-
mental acute and chronic health effects, including premature
mortality due to cardiopulmonary diseases and lung cancer
(Burnett et al., 2014; Cohen et al., 2017), and reduced life ex-
pectancy (Apte et al., 2018). Specifically, exposure to ambi-
ent fine particulate matter (with an aerodynamic diameter of
no greater than 2.5 µm; PM2.5) pollution is a leading risk fac-
tor for human health in Asia and is estimated to cause around
1 million premature deaths every year in both China and In-
dia (Global Burden of Diseases, Injuries, and Risk Factors
Study 2016 (GBD2016); Cohen et al., 2017; Li et al., 2018;
Burnett et al., 2018).

In China, the government has begun to tackle these air
quality problems in recent years by introducing policies to
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reduce air pollutant emissions. Satellite and ground-based
measurements indicate that concentrations of some air pol-
lutants (PM2.5 and sulfur dioxide (SO2)) have begun to de-
cline in China within the last decade (Ma et al., 2016; van
der A et al., 2017; Lin et al., 2018; Silver et al., 2018; Zhai
et al., 2019). India is also introducing policies aimed at ad-
dressing the health burden from air pollution (Sagar et al.,
2016; Goldemberg et al., 2018). Many of these policies are
due to be unified within the upcoming National Clean Air
Programme (NCAP) to provide a framework for air quality
management with the aim of attaining Indian air quality stan-
dards (Ministry of Environment Forests and Climate Change,
2018). However, despite these policies being introduced in
China and India, ambient PM2.5 pollution remains a problem
in both countries, with measured annual mean concentrations
well in excess of the World Health Organization (WHO) Air
Quality Guideline concentration of 10 µg m−3 (Brauer et al.,
2016; Yang et al., 2018; Silver et al., 2018).

To improve poor air quality in Asia and inform effective
emission-reduction strategies, it is vital to understand the
major contributing sources and processes that lead to poor
air quality and associated human health effects. Policies that
have been implemented in North America and Europe to
improve air quality may have limited effectiveness in Asia
due to differences in emission sources. Therefore, there is a
strong need for new research on source contributions specif-
ically focussed on countries in Asia.

To quantify source contributions to PM2.5 and other
air pollutants at a regional or national level, atmospheric
chemistry-transport models can be applied (e.g. Ying et al.,
2014; Hu et al., 2015; Wang et al., 2015; Shi et al., 2017;
Timmermans et al., 2017; Qiao et al., 2018) using two main
methods. The first method uses a “tagging” approach (also
referred to as a “source-attribution” or “source-oriented” ap-
proach), where species in the model are tagged to trace the
origin of the air pollutant of interest. This technique allows
accurate quantification of the contributions of specified emis-
sion sources, model processes, and/or source regions to a
given air pollutant. The second method uses a “removal” ap-
proach (also referred to as a “source-subtraction” approach or
“sensitivity analysis”) where multiple model simulations are
performed with different emission source sectors or source
regions excluded (“zeroed out” or “switched off”). The ef-
fective contribution of the source of interest is calculated as
the difference in simulated pollutant concentrations between
the perturbed simulation and a control simulation (including
all sources).

If the behaviour of air pollutants from emission to atmo-
spheric concentration was linear, these two methods would
yield the same results. However, the processing and result-
ing concentrations of certain air pollutants, particularly sec-
ondary pollutants (i.e. those partially or exclusively formed
in the atmosphere), can be highly non-linear. Following this,
the “removal” modelling approach allows accurate quantifi-
cation of the change in past, current, or future air pollutant

concentrations should the specified emission sector be elim-
inated or reduced as a result of emission control strategies
or other reasons. This approach is better suited to testing the
results of implementing planned or suggested emission con-
trols on air pollutant concentrations than the “tagging” ap-
proach.

Using the “tagging” approach, Shi et al. (2017), Timmer-
mans et al. (2017), and Qiao et al. (2018) analysed the source
apportionment of PM2.5 across China. These studies consis-
tently identified residential combustion and industry as the
main contributing emission sectors to PM2.5, with some dis-
agreement regarding the importance of the transport sector.
Karagulian et al. (2017) used the “removal” approach and
also found the largest relative contributions to PM2.5 in China
were from the industrial and residential sectors, with the res-
idential sector dominating contributions in India.

By combining atmospheric chemistry-transport models
with concentration–response functions (from e.g. Burnett et
al., 2014), several studies have quantified the disease burden
associated with exposure to ambient PM2.5 from different
emission sectors either globally (e.g. Lelieveld et al., 2015;
Butt et al., 2016; Silva et al., 2016; Liang et al., 2018) or
specifically for India and/or China (Archer-Nicholls et al.,
2016; Global Burden of Disease from Major Air Pollution
Sources (GBD-MAPS), 2016, 2018; Hu et al., 2017; Au-
nan et al., 2018; Gao et al., 2018; Gu et al., 2018; Upad-
hyay et al., 2018; Guo et al., 2018; Conibear et al., 2018a)
and South-east Asia (Koplitz et al., 2017). Studies that con-
sider contributions from multiple emission sectors generally
find that PM2.5-related health effects are dominated in In-
dia by emissions from residential energy use (Lelieveld et
al., 2015; Silva et al., 2016; GBD-MAPS, 2018; Upadhyay
et al., 2018; Guo et al., 2018; Conibear et al., 2018a) and in
China by emissions from residential energy use (Lelieveld
et al., 2015; Silva et al., 2016; Liu et al., 2016) and indus-
try (GBD-MAPS, 2016; Hu et al., 2017; Gu et al., 2018).
However, the estimates of sectoral contributions to premature
mortality from ambient PM2.5 exposure vary widely between
the studies, largely caused by differences in the applied mor-
tality estimation approaches (“attribution” or “substitution”;
Conibear et al., 2018a), exposure–health impact functions,
model processes and structure (including model grid resolu-
tion), anthropogenic emissions data, and population data. It
is often challenging to distinguish the different methods used
in these studies and to understand the implications of the dif-
ferent methods for the results presented.

The implications of using different approaches for esti-
mating the health burden associated with PM2.5 exposure in
India were explored and demonstrated recently by Conibear
et al. (2018a). Conibear et al. (2018a) found that 52 % of
population-weighted annual mean PM2.5 concentrations and
511 000 (95 % uncertainty interval (95UI): 340 000–697 000)
annual premature mortalities in India were attributed to res-
idential energy use (the “attribution” approach). However,
removing residential emissions would avert only 256 000
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(95UI: 162 000–340 000) annual premature mortalities (26 %
of the total) (the “substitution” approach), due to the non-
linear concentration–response relationship causing health ef-
fects to saturate at high PM2.5 concentrations.

To our knowledge, the potential averted disease burden
from eliminating multiple different pollution sources has not
yet been quantified, specifically for China and South-east
Asia at high spatial resolution. Here we use the source-
“removal” and mortality-“substitution” approaches in a high-
resolution regional model (following Conibear et al., 2018a)
to quantify the sector-specific air quality benefit and avoided
disease burden in China, mainland Southeast Asia, and the
Indian subcontinent. We focus on anthropogenic emission
sectors (land transport, industry, agriculture, power genera-
tion, residential combustion, and shipping) and open biomass
burning (including agricultural and deforestation fires).

In this paper, we also produce the most comprehensive
summary to date of previous studies on sector-specific PM2.5
and disease-burden contributions in India and China. We
document both the methods used and the results from these
previous studies to enable more informed comparisons be-
tween them and also to develop a multi-model range in esti-
mates of the sectoral contributions to PM2.5 and disease bur-
den in India and China.

2 Methods

2.1 Model description

To simulate regional PM2.5 concentrations we used the
Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem; Grell et al., 2005) version 3.7.1,
which simulates the emission, transport, mixing, chemical
transformation, and removal of trace gases and aerosol simul-
taneously with meteorology. We use the same model version
and set-up as Conibear et al. (2018a), who give a detailed
model description in the methods.

Aerosol physics and chemistry are treated using the Model
for Simulating Aerosol Interactions and Chemistry (MO-
SAIC; Zaveri et al., 2008) scheme, including grid-scale aque-
ous chemistry and extended treatment of organic aerosol
(Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). The
MOSAIC scheme treats major aerosol species, including sul-
fate, nitrate, chloride, ammonium, sodium, black carbon, pri-
mary and secondary organic aerosol, and other inorganics
(including crustal and dust particles and residual primary
PM2.5). Four discrete size bins are used within MOSAIC to
represent the aerosol size distribution (with the following dry
particle diameter ranges: 0.039–0.156, 0.156–0.625, 0.625–
2.5, and 2.5–10 µm). Gas-phase chemical reactions are calcu-
lated using the Model for Ozone and Related Chemical Trac-
ers, version 4 (MOZART-4) chemical mechanism (Emmons
et al., 2010), with several updates to the photochemistry of

aromatics, biogenic hydrocarbons, and other species relevant
to regional air quality (Knote et al., 2014).

Simulated mesoscale meteorology is kept in line with anal-
ysed meteorology through grid nudging to the National Cen-
tre for Environmental Prediction (NCEP) Global Forecast
System (GFS) analyses to limit errors in mesoscale transport
(NCEP, 2000, 2007). The model meteorology was reinitial-
ized every month to avoid drifting of WRF-Chem and spun
up for 12 h, while chemistry and aerosol fields were retained
to allow for pollution build-up and mesoscale pollutant trans-
port phenomena to be captured. During the simulations, hor-
izontal and vertical wind, potential temperature, and water
vapour mixing ratio were nudged to GFS analyses in all
model layers. Meteorological conditions were initialized by
NCEP GFS 6-hourly analyses at 0.5◦ resolution. These, to-
gether with GFS 3 h forecasts in between, were also used for
boundary conditions and grid analysis nudging (NCEP, 2000,
2007). MOZART-4/Goddard Earth Observing System Model
version 5 (GEOS5) 6-hourly simulation data (NCAR, 2016)
were used for chemical and aerosol boundary conditions.

We used two model domains, one over the Indian subcon-
tinent and one over East Asia (including eastern and south-
ern China and mainland South-east Asia). Both model do-
mains use a Lambert conformal conical projection with a hor-
izontal resolution of 30 km× 30 km. The model domain over
the Indian subcontinent covers a 140× 140 grid (Conibear
et al., 2018a), while the model domain over East Asia cov-
ers a 130× 124 grid. The domains have 33 vertical levels up
to a minimum pressure of 10 hPa. We re-gridded the model
output, using linear interpolation, onto a regular latitude–
longitude grid at 0.25◦× 0.25◦ resolution. The results pre-
sented in Sect. 3 (including the model evaluation statistics,
sectoral contributions to PM2.5, and health effects) were all
calculated/obtained for the two model domains separately.
The two model domains are combined in Fig. 1a for display
purposes only (where the domains overlap, the grid cells with
the maximum annual mean PM2.5 concentrations in the con-
trol simulation are shown).

We calculated the contribution of specific emission sec-
tors to PM2.5 concentrations using the “removal” approach,
i.e. by switching off emission sectors one at a time in individ-
ual simulations. When the emission sector is switched off in
the model, pollution is no longer emitted from that specific
source. In reality, the removed emission sector may be re-
placed by another pollution source, but this scenario was not
tested in this study. The main emission sectors investigated
were power generation (ENE), industrial non-power (IND),
residential energy use (RES), land transport (TRA), and open
biomass burning (BBU). We also investigated the agricultural
sector (AGR) only in the South Asia domain and the shipping
sector (SHP) only in the East Asia domain. All simulations
were run for the same time period, with identical reinitializa-
tion intervals for the model meteorology (monthly). The sim-
ulation period was for 1 year from 00:00 UTC 9 January 2014
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to 23:00 UTC 8 January 2015, with the first 8 days of Jan-
uary 2014 run as spin-up.

2.1.1 Description of emissions inventories

Anthropogenic emissions were taken from the Emission
Database for Global Atmospheric Research with Task Force
on Hemispheric Transport of Air Pollution (EDGAR-HTAP)
version 2.2 at 0.1◦× 0.1◦ horizontal resolution (Janssens-
Maenhout et al., 2015). For emissions over Asia EDGAR-
HTAPv2.2 uses the Model Intercomparison Study for Asia
Phase III (MIX) mosaic Asian anthropogenic emission in-
ventory version 1.0 at 0.25◦× 0.25◦ horizontal resolution
(M. Li et al., 2017). For China, MIX uses the Multiresolu-
tion Emission Inventory for China (MEIC) developed by Ts-
inghua University (http://www.meicmodel.org, last access:
10 September 2019) for 2010 and a high-resolution ammonia
(NH3) emission inventory by Peking University (Huang et
al., 2012) for 2006 to replace MEIC emissions for NH3 over
China. For India, MIX uses the Indian emission inventory for
2010 provided by Argonne National Laboratory (Lu et al.,
2011; Lu and Streets, 2012) for sulfur dioxide (SO2), black
carbon (BC), and organic carbon (OC) for all sectors as well
as nitrogen oxides (NOx) for power plants, and REAS2.1
(Kurokawa et al., 2013) for 2010 for other species. Gaps in
EDGAR-HTAPv2.2 were filled by the EDGARv4.3 bottom–
up global emission inventory.

The EDGAR-HTAPv2.2 inventory includes emissions of
SO2, NOx, carbon monoxide (CO), non-methane volatile
organic compounds (NMVOC), NH3, BC, and OC from
the following source sectors: aviation, shipping, agriculture,
power generation, industrial non-power, land transport, and
residential energy use. The following descriptions of these
emissions sectors are from Janssens-Maenhout et al. (2015).
The aviation sector includes all international and domes-
tic aviation. The shipping sector includes all international
(marine) shipping, but not inland waterways. The indus-
trial sector includes emissions from manufacturing, mining,
metal, cement, chemical, and solvent industries. Land trans-
port includes all transport by road, railway, inland water-
ways, pipeline, and other ground transport of mobile machin-
ery. The agricultural sector includes emissions from livestock
and crop cultivation, but not from agricultural waste burning
or savannah/grassland burning. Emissions from residential
energy include small-scale combustion devices for heating,
cooking, lighting, and cooling in addition to supplementary
engines for residential, commercial, agricultural, solid waste,
and wastewater treatment.

Daily mean biomass-burning emissions were taken from
the Fire Inventory from NCAR (FINN) version 1.5, with a
spatial resolution of 1 km× 1 km (Wiedinmyer et al., 2011)
for the year 2014. Biogenic emissions were calculated on-
line by the Model of Emissions of Gases and Aerosol
from Nature (MEGAN; Guenther et al., 2006). Dust emis-
sions were calculated online through the Georgia Institute

of Technology-Goddard Global Ozone Chemistry Aerosol
Radiation and Transport (GOCART) model with Air Force
Weather Agency (AFWA) modifications (LeGrand et al.,
2019). Anthropogenic dust emissions (re-suspended road
dust, construction dust, etc.) are not included. It is impor-
tant to note that dust emissions may be underestimated across
Asia in these simulations (Conibear et al., 2018a).

2.1.2 Health impact estimation

We calculated the disease burden due to exposure to am-
bient PM2.5 using the Integrated Exposure-Response (IER)
functions from the Global Burden of Diseases, Injuries, and
Risk Factors Study 2015 (GBD2015) with age-specific mod-
ifiers for each disease to estimate the relative risk of pre-
mature mortality due to exposure to various PM2.5 concen-
trations (GBD2015; Cohen et al., 2017). We estimated the
disease burden from lower respiratory infection (LRI) for
early, late, and post neonatal, and populations between 1 and
80 years upwards in 5-year groupings, and from ischaemic
heart disease (IHD), cerebrovascular disease or stroke (STR),
chronic obstructive pulmonary disease (COPD), and lung
cancer (LC) for adults over 25 years old, split into 5-year age
groups. We used the parameter distributions of α, β, and γ
from the GBD2015 for 1000 simulations to derive the mean
IER with 95 % uncertainty intervals (GBD2015; Cohen et
al., 2017). The IER functions have uniform theoretical min-
imum risk exposure levels (TMREL) for PM2.5 between 2.4
and 5.9 µg m−3. The toxicity of PM2.5 is treated as homoge-
nous regarding source, shape, and chemical composition,
consistent with the GBD project, due to lack of composition-
dependent exposure–response functions. The calculation of
the disease burden and uncertainty is described in further de-
tail in the Supplement (Sect. S1).

As in Conibear et al. (2018a), sector-specific mortality
was calculated using the “subtraction” method. The “subtrac-
tion” method calculates the sector-specific premature mor-
tality (MSECTOR) as the difference between the premature
mortality from all sources (MALL) and the premature mor-
tality when one sector has been removed (MSECTOR_OFF) as
in Eq. (1):

MSECTOR =MALL−MSECTOR_OFF. (1)

We also calculated the sector-specific mortality using the
“attribution” method (following Conibear et al., 2018a) to
compare our results with previous studies that used this
method. The “attribution” method first calculates the frac-
tional sectoral reduction in PM2.5 concentrations from re-
moving an emission sector (PM2.5_SECTOR_OFF) and then
uses this fraction to scale the total premature mortality es-
timate (Eq. 2).

MSECTOR =

MALL
(
PM2.5_ALL−PM2.5_SECTOR_OFF

)/
PM2.5_ALL (2)
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There is large uncertainty associated with calculating the
health effects due to exposure to ambient PM2.5, with recent
studies suggesting that the IER functions may underestimate
relative risk (Yin et al., 2017; Li et al., 2018) and/or disease
burden (Burnett et al., 2018). For example, recent epidemi-
ological cohort studies in China suggest that the IER func-
tions may underestimate the relative risk of cause-specific
mortality due to long-term exposure to PM2.5 for PM2.5 con-
centrations experienced in China and other low- and middle-
income countries (Yin et al., 2017; Li et al., 2018). These
studies suggest that our premature mortality estimates, at
least in China, may be conservative.

The population count (P ) dataset at 0.25◦× 0.25◦ res-
olution was obtained from the Gridded Population of the
World, Version 4 (GPWv4), created by the Centre for In-
ternational Earth Science Information Network (CIESIN)
and accessed from the National Aeronautics and Space Ad-
ministration (NASA) Socioeconomic Data and Applications
Centre (SEDAC) (GPWv4, 2016). The United Nations ad-
justed version was implemented for 2015 with total popu-
lations of 1.302 billion for India and 1.380 billion for China
(1.402 billion for China and Taiwan). The WRF-Chem model
domain used in this study (described in Sect. 2.1) includes
92 % of the population of China. Population age composi-
tion was taken from the GBD2015 population estimates for
2015 (GBD Collaborative Network, 2016).

2.2 Aerosol measurements

2.2.1 PM2.5 measurements

To evaluate our model-simulated surface PM concentrations,
we used measured annual mean PM2.5 and PM10 concentra-
tions from the WHO (2016, 2018). The database consists of
city-average PM2.5 and PM10 concentrations obtained from
multiple ground station measurements. Roughly 75 % of
measurements are from urban areas of at least 20 000 inhab-
itants, with the remaining 25 % from smaller areas of up to
20 000 residents. The years of available measurements range
from 2008 to 2016. Some cities in the database only have
measurements of PM10 concentrations. For these locations,
PM2.5 concentrations have been calculated by the WHO from
the measured PM10 concentration using national conversion
factors (PM2.5 /PM10 ratio) either provided by the country or
estimated as population-weighted averages of urban-specific
conversion factors (estimated as the mean PM2.5 /PM10 ratio
of stations for the same year) for the country (WHO, 2016,
2018). These calculated PM2.5 concentrations make up 41 %
of the measurements used in this study (see Table 1). For
PM2.5 measurements in Vietnam, we found large differences
between measured and converted concentrations and there-
fore only include measured concentrations in the model eval-
uation (Sect. 3.1.1) for this country.

2.2.2 Aerosol composition measurements

To evaluate our model-simulated aerosol composition, we
used measured mass concentrations of non-refractory partic-
ulate matter species (including organics, sulfate, nitrate, and
ammonium) from 33 field campaigns that took place in dif-
ferent locations across China over a range of years (summa-
rized in Table S1 in the Supplement). Measurements were
made using aerosol mass spectrometer (AMS) systems and
were collected together in a review by Y. J. Li et al. (2017).
We also included AMS data from one field campaign in
Guangzhou, China, from Qin et al. (2017).

2.2.3 Comparing simulated and measured aerosol
concentrations

To evaluate model-simulated annual mean PM2.5 concentra-
tions against measurements from the WHO (in Sect. 3.1.1),
we selected measurement years to match or to be or as close
as possible to the simulation year of 2014. The simulated
annual mean surface PM2.5 concentrations from the control
simulation were linearly interpolated to the location of the
measurement station, using the longitude and latitude of the
central part of the relevant town/city/municipality if the mea-
surement represented an average of multiple stations.

To evaluate simulated aerosol composition against AMS
measurements (in Sect. 3.1.2) we averaged total mass con-
centrations of individual aerosol components in the model
(sulfate, nitrate, ammonium, and organic aerosol) over the
matching month(s) of each measurement field campaign (Ta-
ble S1) and linearly interpolated the simulated data to the lo-
cation of the individual measurement site. Results are shown
as an average across all field campaigns.

To quantify the agreement between model and observa-
tions, we use the Pearson correlation coefficient (r) and
normalized mean bias factor (NMBF) as defined by Yu et
al. (2006). A positive NMBF indicates the model overesti-
mates the observations by a factor of NMBF+1. A negative
NMBF indicates the model underestimates the observations
by a factor of 1−NMBF.

3 Results

3.1 Model evaluation

3.1.1 PM2.5 concentrations

The model captures the observed spatial distribution of an-
nual mean PM2.5 concentrations, for the year 2014, partic-
ularly over China, India, Bangladesh, and Thailand (Fig. 1;
r = 0.55). Figure 1 compares simulated and measured an-
nual mean PM2.5 concentrations over the Indian subconti-
nent, mainland South-east Asia, and eastern and southern
China. Figure 1a shows that the model simulates high an-
nual mean PM2.5 concentrations (∼ 80–160 µg m−3) over the
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Table 1. Summary of annual mean PM2.5 measurements from the World Health Organization (WHO) Ambient (outdoor) air quality
database (2016, 2018). The table shows the number of stations with available data, the year(s) the measurements were conducted, and
the number of reported PM2.5 concentrations that were converted from PM10 measurements (see Sect. 2.3.1). The model normalized mean
bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation coefficient (r) against observations are given for each country with available
WHO measurements. The simulated population-weighted annual mean PM2.5 concentration is given for each country within the model do-
main (shown in Fig. 1) and the percentage of population “exposed to” (in the same model grid cell as) annual mean PM2.5 concentrations
greater than the WHO Air Quality Guideline (AQG; 10 µg m−3) and WHO Interim Target 2 (IT-2; 25 µg m−3) (WHO, 2006, 2016).

Country No. of Year(s) of Measured/ Model Model % of population
stations measurements converted PM2.5 NMBF; r population- exposed to PM2.5

weighted PM2.5 > WHO AQG;
(µg m−3) WHO IT-2

Bangladesh 8 2014 Measured −0.26; 0.33 67.1 100 %; 100 %
Bhutan 4 2013, 2014 Converted −0.63; 0.41 46.3 100 %; 92 %
Cambodia – – – – 24.4 100 %; 40 %
China 193 2014 Measured: 192; converted: 1 +0.33; 0.76 72.3 97 %; 94 %
India 127 2012–2016 Measured: 21; converted: 106 −0.05; 0.37 57.7 99 %; 97 %
Rep. of Korea 15 2014 Converted −0.32; 0.11 20.4 98 %; 16 %
Laos – – – – 27.2 100 %; 72 %
Myanmar 16 2009, 2012, 2013, 2015 Converted −1.27; 0.34 25.7 100 %; 60 %
Nepal 1 2013 Measured −0.81; – 50.6 100 %; 88 %
Pakistan 6 2009–2011, 2013 Measured −0.80; 0.64 38.8 96 %; 65 %
Philippines 19 2013, 2015, 2016 Measured: 14; converted: 5 −1.05; 0.19 8.1 43 %; 0 %
Thailand 22 2014 Converted +0.06; 0.38 24.5 89 %; 57 %
Vietnam 2 2016 Measured: 2 +0.46; – 44.2 100 %; 81 %

Indo-Gangetic Plain in northern India and over the North
China Plain and Sichuan Basin regions in China, with lower
concentrations simulated over southern and western India,
southern China, and mainland South-east Asia. The spatial
agreement between model and measurements is improved
when comparing against 2014 measurements only (r = 0.76)
or when we compare against measured PM2.5 only and dis-
card values converted from PM10 (r = 0.63).

Over the whole domain, simulated annual mean PM2.5
concentrations are unbiased against the WHO measurements
(Fig. 1b; NMBF= 0.09, equivalent to a factor 1.09 greater
than measured values). On average, the model simulates
annual mean PM2.5 concentrations within a factor 1.5 of
the measurements in China (NMBF= 0.33; Table 1), Thai-
land (NMBF= 0.06), India (NMBF=−0.05), Bangladesh
(NMBF=−0.26), Vietnam (NMBF= 0.46), and the Repub-
lic of Korea (NMBF=−0.32), and within a factor 2.3 in
Myanmar (NMBF=−1.27), Nepal (NMBF=−0.81), and
Bhutan (NMBF=−0.63). The negative model biases (up to
a factor 2.27 underestimation) may be due to underestima-
tion of open biomass-burning and anthropogenic emissions
in some regions. Simulated PM2.5 concentrations and thus
the estimated PM2.5-related disease burdens for countries
with negative model biases are likely to be conservative.

In China, the model is positively biased against the mea-
surements for annual mean PM2.5 concentrations above ∼
60 µg m−3; this may be due to using anthropogenic emis-
sions data from 2010 and comparing them with measure-
ments from 2014. PM2.5 emissions, particularly those in the

industrial and power generation sectors, are reported to have
decreased across China between 2010 and 2014 (Zheng et
al., 2018). It should be noted, however, that the large ma-
jority (89 %) of simulated values at individual stations in
China are within a factor 2 of the measurements. Figure S1
in the Supplement shows the model is also able to capture
daily variability in measured PM2.5 concentrations at three
Chinese megacities, simulating daily mean concentrations
within a factor 1.8 of the measurements (NMBF= 0.09–
0.80; r = 0.47–0.56).

In India, the model is generally unbiased against the
measurements (NMBF=−0.05), as reported by Conibear
et al. (2018a), who used Central Pollution Control Board
(CPCB) measurement data for 2016 to evaluate simulated
PM2.5 concentrations. The spatial correlation between sim-
ulated and measured annual mean PM2.5 in India (r = 0.37;
Table 1) is low relative to the model–measurement compari-
son in China (r = 0.76). We suggest this is mainly due to the
large range in measurement years for the WHO PM2.5 mea-
surements in India (2012–2016; Table 1), with only 11 sta-
tions with measurements available for 2014 (the simulation
year) and no available measurements for 2010 (the year of
the emissions inventory used). Comparing simulated annual
mean PM2.5 against measurements from 2014 only (11 sta-
tions), we obtain improved spatial correlation and bias be-
tween model and measurements (r = 0.67, NMBF=−0.01).

The model is expected to underestimate measured concen-
trations in countries located towards the boundaries of the re-
gional model domain (the Philippines, Pakistan, and the Re-
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Figure 1. Simulated and measured annual mean surface PM2.5 con-
centrations across South and East Asia. Observation data are from
the World Health Organization database, 2016 and 2018. (a) Map of
the simulated surface distribution of annual mean PM2.5 for 2014
(underlying colours); overlying circles show measured annual mean
PM2.5 concentrations for available years (2009–2016). Regions in
grey are outside the model domain. (b) Simulated versus measured
annual mean PM2.5 concentrations. Circles show measured annual
mean PM2.5 concentrations for the year 2014; diamonds show mea-
sured annual mean PM2.5 concentrations for years other than 2014.
All simulated annual mean PM2.5 concentrations are for the year
2014. The normalized mean bias factor (NMBF; Yu et al., 2006) and
Pearson’s correlation coefficient (r) between simulated and mea-
sured values are displayed in the top left corner.

public of Korea) due to increased influence from the coarse-
resolution global model and potential missing sources out-
side the regional model domain. Therefore, we do not present
results for these countries in the following sections.

3.1.2 Aerosol composition

Section 3.1.1 shows that the model captures the magnitude of
measured PM2.5 concentrations reasonably well across the

model domain. Here, we compare the simulated and mea-
sured composition of non-refractory submicron particulate
matter (NR-PM1) (including organics, sulfate, nitrate, and
ammonium) across China (see Table S1). The measurements
show that the average composition of NR-PM1 in China is
45.5 % organics, 21.9 % sulfate, 18.5 % nitrate, and 14.1 %
ammonium (Fig. S2). In the model the average composi-
tion in China is 60.8 % organics, 27.8 % sulfate, 9.5 % ni-
trate, and 1.8 % ammonium, demonstrating that the model
underestimates the contribution of nitrate and ammonium to
particulate matter in these simulations. Therefore, we do not
test the contribution of agricultural (ammonia) emissions to
PM2.5 concentrations in this study. We note that the measure-
ments used in this section are taken from field campaigns that
took place over a range of years (2006–2014), with only two
campaigns taking place within the simulation year (2014)
and four campaigns in the year of the anthropogenic emis-
sions (2010). Therefore, it is likely that some of the model
discrepancy in aerosol mass concentrations is due to mis-
matching meteorology and/or anthropogenic emissions. Fu-
ture work is needed to run the model over multiple years and
match to the exact time of the measurements.

3.2 Contribution of emission sectors to ambient PM2.5
concentrations

3.2.1 Contribution of emission sectors to PM2.5 by
country

Figure 2 shows the percentage contribution of each an-
thropogenic emission sector to the simulated population-
weighted annual mean PM2.5 concentration for each coun-
try within the model domain. The relative contribution of
each sector is calculated for each country as the percent-
age difference between the simulated population-weighted
annual mean PM2.5 concentrations from the control simula-
tion (with all sources included) and from each of the individ-
ual eliminated-sector simulations. Results for Afghanistan,
Pakistan, the Philippines, and South Korea are not shown in
Fig. 2 due to their proximity to the edges of the model do-
main (Sect. 3.1.1).

In China, the largest contributions to population-weighted
annual mean PM2.5 concentrations are from the industrial
(43 %) and residential (38 %) emission sectors, which is con-
sistent with previous studies (see Sect. 4). The next largest
contributions are from natural and other sources (includ-
ing mineral dust, sea spray, biogenic SOA, and agricultural
emissions) (9 %), power generation (5 %), and road trans-
port (4 %). In India, the population-weighted annual mean
PM2.5 is dominated by the contribution from the residen-
tial sector (52 %) as reported in Conibear et al. (2018a), with
power generation, industry, and transport contributing 21 %,
16 %, and 10 %, respectively. Open biomass-burning emis-
sions contribute relatively small fractions to the population-
weighted annual mean PM2.5 in both China (1 %) and India
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Figure 2. Relative contributions of different anthropogenic emission sectors to population-weighted annual mean PM2.5 concentration by
country in South and East Asia. Emission sectors include agriculture (AGR; South Asia only), power generation (ENE), industrial non-power
(IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU), and shipping (SHP; China and mainland South-east
Asia only). Where the percentage contributions from each sector do not add up to 100 %, the residual fraction is assigned to “Natural and
other sources” (NAT). Sectors are listed in the legend only if their contribution is visible in the pie charts. Relative contribution values of
10 % or greater are shown in the quadrants. Results are shown for the region of China contained within the model domain, which accounts
for 92 % of the Chinese population (Sect. 2.2).

(3 %). However, it is likely that fire emission datasets under-
estimate the emissions from agricultural fires in China (e.g.
Zhang et al., 2016; Shen et al., 2019) and India (e.g. Cus-
worth et al., 2018).

In India, there is a noticeably larger fractional contribution
of power generation emissions to the population-weighted
annual mean PM2.5 concentration (21 %) compared with
China (5 %). This is likely for multiple reasons, including
lack of regulation, lack of flue-gas desulfurization, and low-
energy efficiencies in India (Venkataraman et al., 2018), re-
sulting in higher implied emission factors (emissions per unit
of activity) for PM2.5 from power generation in India rela-
tive to China (Janssens-Maenhout et al., 2015) and higher
fractional contributions of power generation to total primary
PM2.5 emissions (16 % of the total in India; 7 % in China,
M. Li et al., 2017). Conversely there is a larger contribution
of industrial emissions to population-weighted annual mean
PM2.5 concentration in China (43 %) than in India (16 %).
This is likely due to a larger amount of heavy industry in

China compared to in India (primary PM2.5 emissions from
industry contribute 50 % to the total emitted PM2.5 in China
compared to 18 % in India, M. Li et al., 2017). This is likely
to change in the future in India, where industry is becoming
dominant under current policies (Conibear et al., 2018b).

In Bangladesh, the contributions to population-weighted
annual mean PM2.5 are very similar to those in India, with
a larger contribution from the residential sector (58 %) and
slightly smaller contributions from power generation (17 %)
and transport (7 %) emissions. The contributions from in-
dustry (16 %) and open biomass burning (3 %) match those
in India. In Nepal and Bhutan, residential emissions are
even more dominant, contributing 67 %–68 % of population-
weighted annual mean PM2.5.

The residential sector also dominates contributions to
population-weighted annual PM2.5 in Myanmar (38 %), Viet-
nam (52 %), and Cambodia (45 %). Industrial emissions con-
tribute the largest fraction of population-weighted PM2.5
in Thailand (34 %), with relatively large contributions in
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Laos (19 %) and Vietnam (23 %). In Laos, the population-
weighted PM2.5 is dominated by emissions from open
biomass burning (30 %). It is likely that open biomass-
burning emissions are underestimated in South-east Asia
(Reddington et al., 2016; Lasko et al., 2017), and so they
may make a larger contribution to PM2.5 concentrations than
reported here.

The contribution of natural sources (e.g. biogenic SOA,
sea spray, and mineral dust) and other sources (e.g. agri-
culture and aviation) to population-weighted annual mean
PM2.5 is relatively large in China and mainland South-east
Asia compared to the Indian subcontinent. Shi et al. (2016)
also found a relatively large combined contribution from
windblown dust, SOA, and sea salt to province-average
PM2.5 concentrations in China (17 %, calculated as the av-
erage over the provinces included in our model domain).

The residual PM2.5 concentration classed as from “natu-
ral and other” sources also depends on the non-linear effects
of simulated air pollutant concentrations when emissions
are eliminated in the model. Since the atmospheric chem-
istry, aerosol processes, and meteorology are fully coupled
in WRF-Chem, eliminating primary air pollutant emissions
may act to increase PM2.5 concentrations through changes
in wind speed, boundary layer depth, secondary aerosol for-
mation, aerosol removal, etc. This would act to increase the
calculated contribution of “natural and other” sources to sim-
ulated population-weighted annual mean PM2.5 concentra-
tions, although this is typically less than 1 %.

3.2.2 Contribution of emission sectors to PM2.5 by
state or province

Figure 3 shows the contribution of each emission sector
to the population-weighted annual mean PM2.5 concentra-
tion in each province in China (within the model domain)
and each state in India. In all Chinese provinces, either in-
dustrial or residential emissions make the largest contribu-
tions to population-weighted annual mean PM2.5 concentra-
tions, with the exception of Hainan, where natural and other
sources make the largest contribution (Fig. 3a). The contri-
butions from residential emissions range from 17 % to 50 %,
in general with larger contributions from this sector in north-
ern, western, and central provinces compared to southern and
south-eastern provinces, e.g. contributions in Beijing (41 %),
Sichuan (49 %), and Hubei (41 %) compared to Guangdong
(26 %) and Shanghai (17 %). This is due to greater emissions
from heating in colder northern and mountainous regions in
winter months (Archer-Nicholls et al., 2016). The contribu-
tion of the industrial sector to population-weighted annual
mean PM2.5 is prevalent across all provinces (range 23 %
to 60 %), with the largest contributions in the major steel-
producing provinces of Hebei (47 %) and Jiangsu (47 %), in
the major coal-producing province of Shanxi (52 %), and in
Shanghai (60 %).

The contributions from the other emission sectors (land
transport, power generation, shipping, and open biomass
burning) to population-weighted annual mean PM2.5 are rel-
atively small (< 13 %) in all provinces. The contribution of
power generation emissions ranges from 3 % to 11 %, with
the greatest contribution in the provinces of Zhejiang (9 %)
and Ningxia (11 %). The land transport sector generally
makes the largest contributions in eastern and south-eastern
provinces relative to provinces in other regions of China,
with the largest contributions in Shanghai (6 %) and Beijng
(6 %). We find that the contribution of shipping emissions
across China are particularly small relative to the other sec-
tors, with the largest contributions in the Special Administra-
tive Region (SAR) of Hong Kong (2.5 %).

The largest contributions from open biomass-burning
emissions are seen in the south-western and southern
provinces of China, with the largest contribution in Yunnan
province (12 %). These provinces are influenced by transport
of smoke from fires in mainland South-east Asia and north-
eastern India during the burning season (∼ February to April;
see Fig. 5) (Huang et al., 2013; Zhu et al., 2017). Local fires
also occur in these regions (Zhang et al., 2016; Zhu et al.,
2017; Zhou et al., 2017), which will also contribute to simu-
lated province-average PM2.5 concentrations.

In India (Fig. 3b), residential emissions make the largest
contribution to population-weighted annual mean PM2.5 con-
centrations in all states (range 29 % to 64 %), with the ex-
ception of Delhi, where road transport contributes the largest
fraction (as reported by Conibear et al., 2018a). In general,
the contributions of residential emissions are larger than in
Chinese provinces, particularly in the northern and north-
eastern states, with the largest contributions in West Ben-
gal (61 %), Sikkim (60 %), Assam (60 %), and Bihar (64 %).
Land transport emissions also generally contribute a larger
fraction to the population-weighted annual mean PM2.5 in
Indian states (range 6 % to 34 %) compared to in Chinese
provinces (range 1 % to 6 %), with the largest contributions
in Delhi (34 %) and Haryana (25 %).

The power generation sector makes relatively large con-
tributions to the population-weighted annual mean PM2.5
across India (range 13 % to 31 %), with larger contributions
in all Indian states compared to Chinese provinces within
the model domain (range 3 % to 10 %). The largest contri-
butions of power generation emissions are in the states of
central India: Chhattisgarh (31 %), Jharkhand (25 %), Ma-
harashtra (24 %), and Andhra Pradesh (25 %), likely due to
the large coal-fired power plants located in these states (clus-
tered at the pit heads of coal mines; Guttikunda and Jawahar,
2014). In contrast, contributions from the industrial sector
are smaller in almost all states in India (range 11 % to 26 %)
compared to the provinces in China (range 23 % to 60 %),
with the largest contributions in Gujarat (26 %) and Maha-
rashtra (20 %).

Open biomass-burning emissions make relatively large
contributions to PM2.5 in northern and north-eastern states
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Figure 3. Contribution of different emission sectors to population-weighted annual mean PM2.5 concentration (a) by
province/municipality/region in China and (b) by state in India (Union Territories are not shown individually, apart from Delhi Na-
tional Capital Territory (NCT)). The colour of each province in China and each state in India indicates the sector that dominates
contributions to population-weighted annual mean PM2.5 in that province or state. The emission sectors are agriculture (AGR; India only),
power generation (ENE), industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU),
and shipping (SHP; China only). Where the percentage contributions from each sector do not add up to 100 %, the residual fraction is
assigned to “Natural and other sources” (NAT).
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Figure 4. Spatial distribution of the dominant anthropogenic emission sectors for annual mean PM2.5 in South and East Asia. The dominant
emission sector is calculated for each model grid cell as the emission sector that gives the largest reduction in simulated annual mean surface
PM2.5 concentration, i.e. results in the largest absolute difference in µg m−3 from the control simulation. Regions in grey are outside the
model domain.

in India, particularly in Mizoram (27 %), Manipur (23 %),
and Nagaland (22 %). Agricultural fires (involving burning of
crop residues) are widespread across northern India (Vadrevu
et al., 2015), with substantial impacts on regional air quality
(Liu et al., 2018; Sarkar et al., 2018). North-eastern states
may also be affected by transported smoke from deforesta-
tion and agricultural fires in neighbouring Myanmar.

3.2.3 Dominant emission sector contributions to PM2.5

Figure 4 shows the spatial distribution of the anthropogenic
emission sectors that yield the largest reduction in simulated
annual mean surface PM2.5 concentrations. Over the major-
ity of the Indian subcontinent, excluding residential emis-
sions leads to the largest reduction in annual mean PM2.5. In
some small regions of India, the largest reductions in PM2.5
are achieved by excluding the power generation (in parts of
central-eastern India), transport (in Delhi), and industrial (in
eastern Maharashtra and central Gujarat) sectors.

Excluding residential emissions also yields the largest re-
ductions in annual mean PM2.5, relative to the other emission
sectors, in Vietnam, southern Myanmar, central Laos and
Cambodia, and southern and eastern parts of China. In cen-
tral and south-eastern China and central Thailand, the largest
reductions in annual mean PM2.5 are achieved by excluding
industrial emissions. In other parts of mainland South-east
Asia (northern and eastern regions of Myanmar and Thai-
land, and northern and southern regions of Cambodia and
Laos), excluding fire emissions gives the largest reductions
in simulated annual mean PM2.5 concentrations relative to
the other emission sectors.

3.2.4 Seasonal variation in dominant emission sector
contributions to PM2.5

Figure 5 shows the seasonal variation in the dominant emis-
sion sectors contributing to surface PM2.5 over the South
Asia and East Asia model domains. Seasonal variation in
anthropogenic sources contributing to PM2.5 is relatively
low over much of the Indian subcontinent. Over this re-
gion, excluding emissions from residential energy use yields
the largest reduction in seasonal mean PM2.5 concentrations
throughout the year, with a small increase in the areas domi-
nated by industrial emissions (in Maharashtra and Gujarat in
western India) during March to August and power generation
emissions (in central India) during March to May. In north-
eastern India, the dominant emission sector switches from
residential to open biomass burning during March to May.
Open biomass-burning emissions can also be seen to dom-
inate over residential emissions in northern India (states of
Punjab and Haryana) during September to November, likely
due to agricultural burning of rice residues.

In contrast to India, there is strong seasonal variation
in the dominant emission sectors in mainland South-east
Asia. During December to February, excluding emissions
from residential energy use yields the largest reduction in
seasonal mean PM2.5 over much of the region, with fire
emissions dominating seasonal mean PM2.5 in Cambodia.
During March to May, excluding fire emissions yields the
largest reduction in seasonal mean PM2.5 over most of main-
land South-east Asia, but also in Taiwan, northern Philip-
pines, eastern India, and south-western China. During July
to November, the largest reductions in seasonal mean PM2.5
are achieved by excluding industrial emissions in central and
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Figure 5. Spatial distribution of the dominant anthropogenic emission sectors for seasonal mean PM2.5 in South Asia (top panel) and
East Asia (bottom panel). DJF: December, January, February mean; MAM: March, April, May mean; JJA: June, July, August mean; SON:
September, October, November mean. As for Fig. 4, the dominant emission sector is calculated for each model grid cell as the emission
sector that gives the largest reduction in simulated seasonal mean surface PM2.5 concentration, i.e. results in the largest absolute difference
in µg m−3 from the control simulation. Regions in grey are outside the model domain. The emission sectors shown are power generation
(ENE), industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU), and shipping (SHP;
East Asia only).

southern Thailand (and Laos during September to Novem-
ber), power generation emissions in northern Thailand, and
residential emissions in Myanmar, Cambodia, and Vietnam.

In China, excluding emissions from residential energy use
yields the largest reduction in seasonal mean PM2.5 con-
centrations during the winter months (December to Febru-
ary), with the exception of the heavily industrialized re-
gions of the Pearl River delta (PRD) and Yangtze River delta
(YRD), where industrial emissions dominate. During March
to November, excluding either residential or industrial emis-
sions yields the largest reductions in seasonal mean PM2.5 in
central, eastern, and south-eastern China, depending on the
specific region.

3.3 Impacts of emission sectors on human health

Table 1 shows the percentage of population exposed to PM2.5
concentrations above the WHO Air Quality Guideline (AQG)
limits for each country in the model domain. Our model sim-
ulations show that in 2014, the vast majority of the South and
East Asian population was exposed to annual mean PM2.5
concentrations in excess of the WHO AQG of 10 µg m−3

(range per country: 43 %–100 %) and the WHO Level 2 In-
terim Target (IT-2) of 25 µg m−3 (range per country: 0 %–
100 %).

Figure 6a shows the total annual premature mortality due
to long-term exposure to ambient PM2.5 from all sources
in India, China, and countries in mainland South-east Asia.
The spatial distribution of PM2.5-related disease burden in

South and East Asia is shown in Fig. S3. We estimate the
total annual premature mortality in China (including Tai-
wan) to be 1 047 000 (95 % uncertainty interval (95UI):
846 000–1 287 000), with 19 679 000 (95UI: 15 622 000–
24 580 000) years of life lost (YLL) compared to 990 000
(95UI: 660 000–1 350 000) annual premature mortalities and
24 606 000 (95UI: 14 567 000–32 698 000) YLL in India
(Conibear et al., 2018a). The disease burden attributable to
exposure to ambient PM2.5 in China is dominated by stroke
(29 %; Fig. 6a) IHD (26 %) and COPD (26 %), with smaller
contributions from LC (13 %) and LRI (6 %). In India, the
fractions of mortality attributable to stroke (14 %) and LC
(2 %) are less than in China, with larger fractions from COPD
(31 %), IHD (35 %), and LRI (17 %).

In mainland South-east Asia, we estimate the total annual
premature mortality as 109 000 (95UI: 66 000–160 000) with
2 304 000 (95UI: 1 309 000–3 540 000) YLL. The fraction of
premature mortality estimated for each country in South-east
Asia scales roughly with population, with the largest frac-
tions in Vietnam (42 %) and Thailand (31 %) and the small-
est in Laos (3 %). The disease burden is dominated by IHD
in Cambodia (40 %) and Laos (37 %), by stroke in Vietnam
(33 %) and Myanmar (33 %), and by LRI in Thailand (31 %).

Our estimates of the total premature mortality due to long-
term exposure to ambient PM2.5 compare well with those
from GBD2015 (Cohen et al., 2017) for China, India, and
countries in South-east Asia (Fig. S4a). The mean estimates
from this study lie well within the uncertainty bounds of the
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Figure 6. (a) Total annual premature mortality per country due to long-term exposure to ambient PM2.5 from all emission sources. The
colours show premature mortality by disease (chronic obstructive pulmonary disease (COPD), ischaemic heart disease (IHD), stroke (STR),
lung cancer (LC), and lower respiratory infection (LRI)). (b) The number of averted annual premature mortalities due to a reduction in
exposure to ambient PM2.5, achieved by eliminating emissions from each sector individually (agriculture (AGR; India only), power gener-
ation (ENE), industrial non-power (IND), residential energy use (RES), land transport (TRA), open biomass burning (BBU), and shipping
(SHP; East Asia only)). Averted mortalities due to eliminating shipping emissions (in East Asia) and agricultural emissions (in India) are not
visible on the plot scale and so are not displayed in the legend. (c) The number of averted annual premature mortalities per 100 000 head of
population. Error bars in (a), (b), and (c) represent 95 % uncertainty intervals calculated from combining fractional errors in quadrature (see
Sect. S1.1 in the Supplement). Mortality estimates for China include Hong Kong SAR, Macau SAR, and Taiwan.

values reported by Cohen et al. (2017) for each country, with
the exception of Myanmar. For Myanmar, the mean value of
Cohen et al. (2017) is higher than the value from this study by
a factor 1.5, but lies within our estimated uncertainty range.

Figure 6b and Table 2 show the sector-specific averted an-
nual premature mortality due to a reduction in exposure to
ambient PM2.5, using the “substitution” method as described
in Sect. 2.2 and Conibear et al. (2018a). The spatial distri-

bution of the averted disease burden is shown in Fig. S3b–
h. The summation of sector contributions is 437 000 (95UI:
327 000–582 000) premature mortalities per year in China
and Taiwan (42 % of the control simulation), 48 000 (95UI:
27 000–74 000) premature mortalities per year in South-east
Asia (45 % of the control simulation), and 469 000 (95UI:
304 000–626 000) premature mortalities per year in India
(47 % of the control simulation; Conibear et al., 2018a). It
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is important to note that these values are substantially lower
than if we were to use the attribution method as used in
other studies (e.g. Lelieveld et al., 2015; Archer-Nicholls et
al., 2016; GBD-MAPS, 2016; Gao et al., 2018) because of
the non-linear exposure–response relationship (Conibear et
al., 2018a). When using the attribution method, Conibear
et al. (2018a) obtained a summation of 1 012 000 (95UI:
675 000–1 381 000) annual premature mortalities in India,
equivalent to 102 % of the control simulation.

The industrial emission sector is the dominant contributor
to premature mortalities due to exposure to ambient PM2.5 in
China and Thailand. Eliminating emissions from the indus-
trial emission sector would avert 204 000 (95UI: 152 000–
271 000) annual premature mortalities in China and 13 000
(8 000–20 000) annual premature mortalities across South-
east Asia.

Residential energy use is the dominant contributor to pre-
mature mortalities due to exposure to ambient PM2.5 in Viet-
nam, Myanmar, and Cambodia and is the second largest
contributor in China, Thailand, and Laos. Eliminating emis-
sions from residential energy use would avert 188 000 (95UI:
141 000–250 000) and 24 000 (95UI: 13 000–36 000) annual
premature mortalities in China and South-east Asia, respec-
tively.

Open biomass burning is the dominant contributor to pre-
mature mortalities due to exposure to ambient PM2.5 in
Laos. Preventing open biomass burning in East Asia would
avert 8000 (95UI: 4000–13 000) annual premature mortali-
ties across South-east Asia and 7000 (95UI: 6000–9000) an-
nual premature mortalities in China.

The land transport and energy generation emission sec-
tors are not dominant contributors to the national/regional
annual premature mortality estimates in Fig. 6 and Table 2.
However, eliminating emissions from these sectors would
still yield a substantial human health benefit in China, avert-
ing 15 000 (95UI: 11 000–20 000) and 22 300 (95UI: 16 000–
30 000) annual premature mortalities, respectively.

4 Comparison to previous studies

Table 3 summarizes the previous studies that have quantified
the emission source/sector contributions to PM2.5 and asso-
ciated health burden in China and India. These studies have
used a range of different of approaches, methods, and tools,
which lead to a wide range in estimates of sector-specific
contributions to PM2.5 concentrations (Fig. 7; Tables 4 and
5) and annual premature mortalities (Fig. S4; Tables S2 and
S3).

For China we compare the total annual premature mortal-
ity estimate from this study to estimates from the previous
studies listed in Table 3 (Fig. S4b). Our estimate (1 046 900
(95UI: 846 100–1 286 900)) sits well within the multi-model
range of 916 000 to 1 357 000 (UI: 594 000–1 915 000) pre-
mature mortalities. Despite the large differences in modelling
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Figure 7. Comparison of relative sector-specific contributions to annual mean PM2.5 concentrations in (a) China and (b) India from this
study and previous studies. Bars show sector contributions to population-weighted annual mean PM2.5 concentrations, with the exception of
the bars associated with studies shown in the legend with an asterisk (∗), which show estimated sector contributions to surface area-weighted
annual mean PM2.5 concentrations. In our study, population-weighted and area-weighted values differ by less than six percentage points.
The mean relative contribution of each sector is shown above the bars with the range of values (minimum to maximum) in parentheses. The
values for each study are also shown in Tables 4 and 5. The emission sectors are agriculture (AGR), power generation (ENE), industrial
non-power (IND), residential energy use (RES), land transport (TRA), and open biomass burning (BBU). We note that the contribution of
the agricultural section to PM2.5 is not quantified for China in this study.

tools, emissions inventories and health functions used in
these studies, our estimate (and uncertainty range) for China
overlaps with all previous estimates in Fig. S4 apart from
Lelieveld et al. (2015) (whose estimate also includes prema-
ture mortality due to exposure to ozone and does not report a
UI specifically for China). We note that the larger mortality
estimate from Lelieveld et al. (2015) will primarily be due
to the GBD2010 IER function, which predicted much larger
relative risks for cardiovascular diseases (IHD and stroke)
compared to relative risks from GBD2015. The multi-model
mean for China is 1 135 000 (UI: 746 000–1 398 000) annual
premature mortalities. It is important to note that these esti-
mates apply to a range of years (ranging from 2001 to 2014
in terms of meteorology and from 2005 to 2015 in terms of
anthropogenic emissions; Table 3).

Figure 7 compares estimates of sector-specific contribu-
tions to annual mean PM2.5 concentrations in China and In-
dia. Previous studies consistently find that residential energy
use and industry are the dominant emission sectors in China
for annual mean PM2.5 (Fig. 7a and Table 4). Residential

emissions contribute an average of 26 % (13 %–38 %) and in-
dustrial emissions contribute an average of 30 % (8 %–43 %)
to annual mean PM2.5 concentrations in China (see Fig. 7a
and Table 4). Other sectors make a smaller contribution, with
emissions from power generation contributing an average of
14 % (range 5 %–33 %), land transport an average of 7 %
(range 3 %–15 %), open biomass burning an average of 4 %
(range 1 %–8 %), and agriculture an average of 16 % (range
11 %–29 %).

In India, previous studies consistently find that residen-
tial emissions dominate contributions to annual mean PM2.5
concentrations (Fig. 7b and Table 5), with an average con-
tribution of 38 % (22 %–56 %) over all studies. Other sectors
make a smaller contribution, with emissions from industry
contributing an average of 14 % (range 7 %–20 %), power
generation an average of 18 % (range 7 %–40 %), land trans-
port an average of 8 % (range 2 %–20 %), open biomass burn-
ing an average of 5 % (range 3 %–7 %), and agriculture an
average of 6 % (range 0.3 %–12 %).
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Table 4. Comparison of relative sector-specific contributions to simulated annual mean PM2.5 concentrations over China from this study and
previous studies. Emission sectors are residential energy use (RES), industrial non-power (IND), power generation (ENE), land transport
(TRA), biomass burning (BBU), agriculture (AGR), and shipping (SHP). The largest relative contribution for each study is in bold. The
average over all studies (multi-model mean) is shown for population-weighted, area-weighted, and all annual mean PM2.5 concentrations
and relative contributions.

Reference Population-weighted Annual mean Relative sector-specific contributions to simulated
or area-weighted PM2.5 concentration annual mean PM2.5 concentrations (%)
annual mean PM2.5 for China

RES IND ENE TRA BBU AGR SHP

Lelieveld et al. (2015) Population-weighted – 32 8 18 3 1 29 –
Silva et al. (2016)a Population-weighted 34.2 32 26 17 6 – – –
Archer-Nicholls et al. (2016) Not specified (assume

population-weighted)
– 37 – – – – – –

GBD-MAPS (2016)b Population-weighted 54.3 19.2 27.3 9.4 15.0 7.6 – –
Karagulian et al. (2017)c Not specified (assume

population-weighted)
55 26.7 38.2 14.5 6.4 3.0 11.3 –

Hu et al. (2017) Population-weighted 62.6 21.7 30.5 10.3 5.7 4.9 12.2
Aunan et al. (2018)d Population-weighted 58 19.0 – – – – – –
Butt et al. (2019) Population-weighted – 34 – – – – – –
This study Population-weighted 72.3 38.1 43.1 5.3 3.8 1.0 – 0.1
Butt et al. (2016) Area-weighted – 13 – – – – – –
Shi et al. (2017)e Area-weighted – 18.5 26.6 9.6 4.7 6.4 10.8 –
Gao et al. (2018)f Area-weighted – 24.2 35.7 33.2 6.9 – – –
Gu et al. (2018)g Area-weighted – 24.9 32.0 12.8 7.3 – 15.6 –
This study Area-weighted 32.2 39.1 37.1 5.3 3.1 2.9 – 0.1
Multi-model mean Population-weighted 56 29 29 12 7 4 18 –
Multi-model mean Area-weighted – 24 33 15 6 5 13 –
Multi-model mean All values 52 26 30 14 7 4 16 –

a Relative contributions are for all of East Asia (including China). b Relative contributions calculated using mean values from Table 6 of GBD-MAPS (2016). ENE: power plant coal;
IND: industrial coal+ non-coal industrial; RES: domestic coal+ domestic biomass burning. c Relative contributions calculated from national annual mean PM2.5 concentrations in
Sect. 3.1 of Karagulian et al. (2017). The missing sector for China (open biomass burning) was calculated from the remaining fraction of PM2.5 (Table T5 is missing from the report).
d Relative contributions calculated from values of “population-weighted exposure to ambient air pollution” in Table 1 of Aunan et al. (2018). e Relative contributions calculated as
average fractions across all provinces from Table 3 of Shi et al. (2017). f Relative contributions taken from Fig. S5 of Gao et al. (2018), showing sectoral contributions to
area-weighted mean PM2.5 concentrations. g Relative contributions for the RES, IND, and TRA sectors taken from the text (Sect. Impacts on air quality of Gu et al., 2018) assuming
these refer to area-weighted annual mean concentrations. Individual relative contributions for AGR and ENE sectors calculated from the combined value in the text (28.4 %) and
relative contributions of population-weighted concentrations in Fig. 2 of Gu et al. (2018).

Although previous studies consistently agree on the domi-
nant emission sectors contributing to ambient PM2.5 concen-
trations in India and China, there is considerable variability
in the estimated contribution from each sector. For most sec-
tors the fractional contribution from any one sector varies by
a factor of 2 to 5, with the largest range for open biomass
burning (up to a factor of 8). Our study is the only one in
Table 3 to quantify the contribution of shipping emissions to
population-weighted annual mean PM2.5, and so the contri-
bution of this sector is also likely to be uncertain. However,
we note that the contribution of shipping emissions to PM2.5
concentrations is only likely to be important for coastal re-
gions (Lv et al., 2018) and relatively small compared to other
emission sectors.

We have not quantified the contribution of the agricultural
sector to PM2.5 in China. Our model simulations underesti-
mate ammonium concentrations over China (Sect. 3.1.2) and
therefore it is likely that we would underestimate the con-
tribution of the agriculture sector to PM2.5 concentrations.

Previous studies have found this sector contributes as much
as 11 %–29 % (mean 16 %; Table 4) in China and 0.3 %–
12 % (mean 6 %; Table 5) in India to annual mean PM2.5
concentrations. There have been fewer studies quantifying
the contribution of agriculture to PM2.5 concentrations in
China and India relative to the other emission sectors, and
the contribution of this sector has large uncertainty. Future
work requires a detailed comparison of simulated and ob-
served composition-resolved aerosol mass to help inform
these sector-based emission studies.

The different model simulation and anthropogenic emis-
sion years will contribute to the range across previous stud-
ies, particularly since China and India have experienced rapid
changes in emissions in the last decade (Saikawa et al., 2017;
Zheng et al., 2018). Reducing the multi-model range in the
future will require up-to-date and consistent anthropogenic
emissions inventories (with improved quantification of the
fractional contributions of the different sectors) to use in air
quality models. It will also be important to run the same air
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Table 5. Comparison of relative sector-specific contributions to simulated annual mean PM2.5 concentrations over India from this study
and previous studies. Emission sectors are residential energy use (RES), industrial non-power (IND), power generation (ENE), land transport
(TRA), biomass burning (BBU), and agriculture (AGR). The largest relative contribution for each study is in bold. The average over all studies
(multi-model mean) is shown for population-weighted, area-weighted, and all annual mean PM2.5 concentrations and relative contributions.

Reference Population-weighted Annual mean Relative sector-specific contributions to
or area-weighted PM2.5 concentration simulated annual mean PM2.5 concentrations (%)
annual mean PM2.5 for India

RES IND ENE TRA BBU AGR

Lelieveld et al. (2015) Population-weighted – 50 7 14 5 7 6
Silva et al. (2016) Population-weighted 28.5 43 11 15 7 – –
Karagulian et al. (2017)a Not specified (assume

population-weighted)
51 42 18 21 10 – –

GBD-MAPS (2018)b Population-weighted 74.3 23.9 9.9 7.6 2.1 5.5 –
Guo et al. (2018) Population-weighted 32.8 55.5 19.7 6.8 1.9 – 11.9
Butt et al. (2019) Population-weighted – 28 – – – – –
This study and Conibear et al. (2018a) Population-weighted 57.2 51.6 16.3 21.0 10.3 2.8 0.3
Butt et al. (2016) Area-weighted – 22 – – – – –
Gao et al. (2018)c Area-weighted – 23.9 16.2 40.1 19.8 – –
This study and Conibear et al. (2018a) Area-weighted 42.1 47.4 15.2 22.4 10.3 4.0 0.3
Multi-model mean Population-weighted 49 42 14 14 6 5 6
Multi-model mean Area-weighted – 31 16 31 15 – –
Multi-model mean All values 49 38 14 18 8 5 6

a Relative contributions calculated from national annual mean PM2.5 concentrations quoted in Sect. 3.1 of Karagulian et al. (2017). Two sectors are missing for India (biomass burning
and agriculture), so we were unable to calculate these fractions (Table T5 is missing from the report). b Relative contributions taken from Table 2 of GBD-MAPS (2018). c Relative
contributions taken from Fig. S5 of Gao et al. (2018), showing sectoral contributions to national mean PM2.5 concentrations. We assume the fraction quoted in the text (32 % in India; Gao
et al., 2018) is the contribution to the population-weighted annual mean PM2.5 concentration.

quality models at different spatial resolutions to ensure that
the fractional contributions of some sectors (e.g. land trans-
port and residential energy use) to ambient PM2.5 concen-
trations are not underestimated due to missing or underrep-
resented sub-grid emission sources. Model grid resolution is
also important to consider when estimating the health im-
pacts of emissions from different sectors, particularly for
land transport and residential energy use, where the expo-
sure (or intake fraction) depends strongly on co-location of
sources and high population (US National Research Council,
2012). Comparing model results of emission sector contribu-
tions with in situ source-apportionment measurements (as in
Karagulian et al., 2017) may help to constrain the range in
multi-model estimates.

The large variability in the disease burden estimates (Ta-
bles S2 and S3) is strongly influenced by the concentration–
response function used in each study. The IER functions
were developed for GBD2010 by Burnett et al. (2014). Each
subsequent GBD study (2013, 2015, 2016, and 2017) up-
dates the coefficients used to calculate relative risk within
the IER functions (Sects. 2.2 and S1) due to the incorpo-
ration of more epidemiological evidence. In general, with
the same PM2.5 concentration fields, applying coefficients
from GBD2010 will yield the highest estimates of relative
risk and mortality, applying coefficients from GBD2013 will
yield the lowest estimates, while applying coefficients from
GBD2015 and GBD2016 will yield medium estimates. Re-
sults from GBD2017 give slightly lower estimates of risk

and mortality than GBD2015 and GBD2016, primarily due
to the different approach to combining risk from household
and ambient PM2.5 and avoiding overestimation for those
exposed to both. A recent study that constructed a PM2.5-
mortality hazard ratio function based only on cohort stud-
ies of ambient air pollution, rather than the IER approach of
integrating several sources (ambient and household air pol-
lution, passive and active smoking), finds estimates that are
120 % higher than the GBD2015 IER (Burnett et al., 2018).
Future work should move to using consistent and up-to-date
concentration–response functions to reduce the multi-model
range in health impact estimates, although the associated un-
certainty range will likely remain large.

5 Discussion and conclusions

In this study we used a high-resolution air quality model to
explore the contribution of six different anthropogenic emis-
sion sectors to surface PM2.5 concentrations across South
and East Asia, and calculated the human health impacts if
emissions from each of these sectors were to be eliminated.

We found that the vast majority of the South and East
Asian populations are exposed to annual mean PM2.5 con-
centrations exceeding the WHO Air Quality Guideline,
which we estimated to cause 1 047 000 (95U: 846 000–
1 287 000), 990 000 (95UI: 660 000–1 350 000), and 109 000
(95UI: 66 000–160 000) annual premature mortalities in
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China, India, and mainland South-east Asia, respectively.
Emissions from the residential, industrial, and open biomass-
burning sectors dominate contributions to population-
weighted annual mean PM2.5 concentrations in South and
East Asia. Eliminating emissions from these sources would
substantially reduce the population exposed to ambient con-
centrations of PM2.5 above the WHO Air Quality Guideline
and avert numerous PM2.5-related premature mortalities and
years of life lost.

In China, we found that eliminating emissions from the
industrial sector yielded the largest reduction in population-
weighted annual mean PM2.5 concentrations (by 43 % in our
study, on average 29 % across previous studies), averting
the largest number of annual premature mortalities (204 000
(95UI: 152 000–271 000) in our study). Eliminating residen-
tial solid-fuel combustion also yielded substantial reductions
in population-weighted annual mean PM2.5 concentrations
(by 38 % in our study, on average 29 % across previous stud-
ies) and annual PM2.5-related premature mortalities (188 000
(95UI: 141 000–250 000) in our study).

In South-east Asia, eliminating emissions from residen-
tial solid-fuel combustion yielded the largest reductions in
population-weighted annual mean PM2.5 in Myanmar (by
38 %), Vietnam (by 52 %), and Cambodia (by 45 %) and the
second largest reductions in Thailand (by 20 %) and Laos
(by 25 %). Removing this sector would avert 24 000 (95UI:
13 000–36 000) annual premature mortalities across the re-
gion. Other important emission sectors in this region are
industry and open biomass burning: removing these emis-
sions would avert 13 000 (95UI: 8000–20 000) and 8000
(95UI: 4000–13 000) annual premature mortalities in South-
east Asia, respectively.

Future work should focus on identifying the most effective
options within the residential, industrial, and open biomass-
burning emission sectors to improve air quality across South
and East Asia. For the residential sector, switching from
solid-fuel combustion to combustion of clean fuels (such as
liquefied petroleum gas (LPG)) will likely be the most ef-
fective option. Large reductions in ambient PM2.5 concen-
trations have already been achieved in China between 2005
and 2015, which may have been driven by a reduction in res-
idential emissions from widespread adoption of clean fuels
(due to increasing wealth and urbanization rather than con-
trol policies) (Zhao et al., 2018). However, despite reductions
in ambient PM2.5 concentrations, exposure to air pollution in
China remains a leading risk factor for human health. In In-
dia, there are programmes now in place to promote LPG to
the poorest households (Goldemberg et al., 2018), aiming to
increase the use of LPG from 30 % in 2015 to 90 % by the
early 2020s. The air quality benefits of these programmes in
India are yet to be explored.

Effective options also exist within the agricultural sector
to reduce emissions from open biomass burning and im-
prove air quality, including “no burn” alternatives to clear-
ing agricultural residues and/or stricter enforcement of bans

on open burning. The occurrence of wildfires is more diffi-
cult to control, but may be reduced by improving forest and
land management and by employing fire prevention strate-
gies. Emissions from agricultural fires are likely underesti-
mated in China, India, and South-east Asia by the fire emis-
sions dataset used in this study, and so open biomass burn-
ing may make a larger contribution to PM2.5 concentrations
than reported here. Open biomass-burning emissions in some
regions in Asia show strong inter-annual variation, and so
contributions to PM2.5 concentrations may vary from year to
year. The contribution of open biomass burning to air pollu-
tant concentrations in Asia should be analysed in detail in
future work, using additional observations for model con-
straint.

Anthropogenic emissions are changing rapidly across
Asia, leading to large changes in air pollutant concentrations
(e.g. Silver et al., 2018), so future work should include more
up-to-date emission inventories that are becoming available
for China and India to explore how the contributions of
emission sectors to PM2.5 pollution have changed over time.
There is a strong need for development of up-to-date anthro-
pogenic emission inventories for countries in South-east Asia
to improve our understanding of the contributions of pollu-
tion sources in this region for recent years.

Previous studies agree that emissions from the residential
and industrial sectors dominate population-weighted PM2.5
concentrations in China and emissions from the residential
sector dominate in India. Despite this qualitative agreement,
we found the contribution of individual sectors varied by a
factor of 2–5 or more. It will be important for future work to
explore the reasons for these differences between model esti-
mates of the contribution of different sources to air pollutant
concentrations and the associated health burden.

This study can inform effective emission-reduction strate-
gies at the local level across South and East Asia to improve
air quality and reduce the substantial disease burden from
air pollution exposure. Our work has demonstrated that the
combustion of solid fuels dominates contributions to ambi-
ent PM2.5 concentrations and associated health effects in In-
dia, China, and mainland South-east Asia. We therefore rec-
ommend that emission-reduction strategies in these countries
should focus on reducing the combustion of solid fuels in
homes, industry, and through open burning.

Data availability. Data from all WRF-Chem model simulations
and post-processing codes are available from the correspond-
ing author on request. Measured annual mean PM2.5 and PM10
concentrations from the World Health Organization database are
available at https://www.who.int/airpollution/data/cities/en/ (WHO,
2018). Campaign-average aerosol mass spectrometer (AMS) mea-
surements of aerosol composition are available from Y. J. Li et
al. (2017) (Table S3) and Qin et al. (2017).
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