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E8 spectral curves

Andrea Brini

Abstract

I provide an explicit construction of spectral curves for the affine E8 relativistic Toda chain.
Their closed-form expression is obtained by determining the full set of character relations in
the representation ring of E8 for the exterior algebra of the adjoint representation; this is in
turn employed to provide an explicit construction of both integrals of motion and the action-
angle map for the resulting integrable system. I consider two main areas of applications of these
constructions. On the one hand, I consider the resulting family of spectral curves in the context of
the correspondences between Toda systems, five-dimensional Seiberg–Witten theory, Gromov–
Witten theory of orbifolds of the resolved conifold, and Chern–Simons theory to establish a
version of the B-model Gopakumar–Vafa correspondence for the slN Lê–Murakami–Ohtsuki
invariant of the Poincaré integral homology sphere to all orders in 1/N . On the other, I consider a
degenerate version of the spectral curves and prove a one-dimensional Landau–Ginzburg mirror
theorem for the Frobenius manifold structure on the space of orbits of the extended affine Weyl
group of type E8 introduced by Dubrovin–Zhang (equivalently, the orbifold quantum cohomology
of the type-E8 polynomial CP 1 orbifold). This leads to closed-form expressions for the flat
coordinates of the Saito metric, the prepotential, and a higher genus mirror theorem based on
the Chekhov–Eynard–Orantin recursion. I will also show how the constructions of the paper lead
to a generalisation of a conjecture of Norbury–Scott to ADE P1-orbifolds, and a mirror of the
Dubrovin–Zhang construction for all Weyl groups and choices of marked roots.
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1. Introduction

Spectral curves have been the subject of considerable study in a variety of contexts. These
are moduli spaces S of complex projective curves endowed with a distinguished pair of
meromorphic Abelian differentials and a marked symplectic subring of their first homology
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group; such data define (one or more) families of flat connections on the tangent bundle of
the smooth part of moduli space. In particular, a Frobenius manifold structure on the base
of the family, a dispersionless integrable hierarchy on its loop space, and the genus zero part
of a semi-simple CohFT are then naturally defined in terms of periods of the aforementioned
differentials over the marked cycles; a canonical reconstruction of the dispersive deformation
(respectively, the higher genera of the CohFT) is furthermore determined by S through the
topological recursion of [50].

The one-line summary of this paper is that I offer two constructions (related to Points (II)
and (IV)) and two isomorphisms (related to Points (III), (V) and (VI)) in the context of
spectral curves with exceptional gauge symmetry of type E8.

1.1. Context

Spectral curves are abundant in several problems in enumerative geometry and mathematical
physics. In particular:

(I) in the spectral theory of finite-gap solutions of the KP/Toda hierarchy, spectral curves
arise as the (normalised, compactified) affine curve in C2 given by the vanishing
locus of the Burchnall–Chaundy polynomial ensuring commutativity of the operators
generating two distinguished flows of the hierarchy; the marked Abelian differentials
here are just the differentials of the two coordinate projections onto the plane. In this
case, to each smooth point in moduli space with fibre a smooth Riemann surface Γ
there corresponds a canonical theta-function solution of the hierarchy depending on
g(Γ) times, and the associated dynamics is encoded into a linear flow on the Jacobian
of the curve;

(II) in many important cases, this type of linear flow on a Jacobian (or, more generally,
a principally polarised Abelian subvariety thereof, singled out by the marked basis
of 1-cycles on the curve) is a manifestation of the Liouville–Arnold dynamics of an
auxiliary, finite-dimensional integrable system. Coordinates in moduli space correspond
to Cauchy data, that is, initial values of involutive Hamiltonians/action variables, and
flow parameters are given by linear coordinates on the associated torus;

(III) all the action has hitherto taken place at a fixed fibre over a point in moduli space;
however additional structures emerge once moduli are varied by considering secular
(adiabatic) deformations of the integrals of motions via the Whitham averaging
method. This defines a dynamics on moduli space which is itself integrable and admits
a τ -function; remarkably, the logarithm of the τ -function satisfies the big phase-space
version of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations, and its restriction
to initial data/small phase space defines an almost Frobenius manifold structure on
the moduli space;

(IV) from the point of view of four-dimensional supersymmetric gauge theories with
eight supercharges, the appearance of WDVV equations for the Whitham τ -function
is equivalent to the constraints of rigid special Kähler geometry on the effective
prepotential; such equivalence is indeed realised by presenting the Coulomb branch
of the theory as a moduli space of spectral curves, the marked differentials giving rise
to the Seiberg–Witten 1-form, the BPS central charge as the period mapping on the
marked homology sublattice, and the prepotential as the logarithm of the Whitham
τ -function;

(V) in several cases, the Picard–Fuchs equations satisfied by the periods of the SW dif-
ferential are a reduction of the Gelfand–Kapranov–Zelevinsky (GKZ) hypergeometric
system for a toric Calabi–Yau variety, whose quantum cohomology is then isomorphic
to the Frobenius manifold structure on the moduli of spectral curves. What is more,
spectral curve mirrors open the way to include higher genus Gromov–Witten invariants
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in the picture through the Chekhov–Eynard–Orantin topological recursion: a universal
calculus of residues on the fibres of the family S , which is recursively determined by the
spectral data. This provides simultaneously a definition of a higher genus topological
B-model on a curve, a higher genus version of local mirror symmetry, and a dispersive
deformation of the quasi-linear hierarchy obtained by the averaging procedure;

(VI) in some cases, spectral curves may also be related to multi-matrix models and topo-
logical gauge theories (particularly Chern–Simons theory) in a formal 1/N expansion:
for fixed ’t Hooft parameters, the generating function of single-trace insertion of the
gauge field in the planar limit cuts out a plane curve in C2. The asymptotic analysis of
the matrix model/gauge theory then falls squarely within the above set-up: the formal
solution of the Ward identities of the model dictates that the planar free energy is
calculated by the special Kähler geometry relations for the associated spectral curve,
and the full 1/N expansion of connected multi-trace correlators is computed by the
topological recursion.

A paradigmatic example is given by the spectral curves arising as the vanishing locus for the
characteristic polynomial of the Lax matrix for the periodic Toda chain with N + 1 particles.
In this case (I) coincides with the theory of N -gap solutions of the Toda hierarchy, which has
a counterpart (II) in the Mumford–van Moerbeke algebro-geometric integration of the Toda
chain by way of a flow on the Jacobian of the curves. In turn, this gives a Landau–Ginzburg
picture for an (almost) Frobenius manifold structure (III), which is associated to the Seiberg–
Witten solution of N = 2 pure SU(N + 1) gauge theory (IV). The relativistic deformation of
the system relates the Frobenius manifold above to the quantum cohomology (V) of a family
of toric Calabi–Yau threefolds (for N = 1, this is KP1×P1), which encodes the planar limit of
SU(M) Chern–Simons–Witten invariants on lens spaces L(N + 1, 1) in (VI).

1.2. What this paper is about

A wide body of literature has been devoted in the last two decades to further generalising
at least part of this web of relations to a wider arena (for example, quiver gauge theories).
A somewhat orthogonal direction, and one where the whole of (I)–(VI) have a concrete
generalisation, is to consider the Lie-algebraic extension of the Toda hierarchy and its
relativistic counterpart to arbitrary root systems R associated to semi-simple Lie algebras,
the standard case corresponding to R = AN . Constructions and proofs of the relations above
have been available for quite a while for (II)–(IV) and more recently for (V)–(VI), in complete
generality except for one egregious example: R = E8, whose complexity has put it out of reach
of previous treatments in the literature. This paper fills the gap in this exceptional case and
provides, as an upshot, a series of novel applications of Toda spectral curves which may be
of interest for geometers and mathematical physicists alike. As was mentioned, the aim of the
paper is to provide two main constructions, and prove two isomorphisms, as follows.

Construction 1. The first construction gives a closed-form expression for arbitrary moduli
of the family of curves associated to the relativistic Toda chain of type Ê8 for its sole
quasi-minuscule representation — the adjoint. This is achieved in two steps: by determining
the dependence of the regular fundamental characters of the Lax matrix on the spectral
parameter, and by subsequently computing the polynomial character relations in the
representation ring of E8 (viewed as a polynomial ring over the fundamental characters)
corresponding to the exterior powers of the adjoint representation. The last step, which is
of independent representation theoretic interest, is of significant computational complexity
and is solved by a reduction to an equivalent large-sized linear problem which is amenable
to an efficient solution by distributed computation. This is beyond the scope of this paper
and will find a detailed description in [23]: I herein limit myself to announce and condense
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Figure 1. Duality web for the B-model on Toda spectral curves.

the ideas of [23] into the two-page summary given in Appendix C, and accompany this
paper with a Mathematica package† containing the solution thus achieved. As an immediate
spin-off I obtain the generating function of the integrable model (in the language of [56])
as a function of the basic involutive Hamiltonians attached to the fundamental weights, and
a family of spectral curves as its vanishing locus. In the process, this yields a canonical set
of integrals of motion in involution in cluster variables and in Darboux coordinates for the
integrable system on a special double Bruhat cell of the coextended Poisson–Lie loop group

Ê8

#
, which, by analogy with the case of Â-series, I call ‘the relativistic Ê8 Toda chain’, and

whose dynamics is solved completely by the preceding construction.
Construction 2. The previous construction gives the first element in the description of the

spectral curve — a family of plane complex algebraic curves, which are themselves integrals
of motion. The next step determines the three remaining characters in the play, namely
the two marked Abelian differentials and the distinguished sublattice of the first homology
of the curves; this goes hand in hand with the construction of appropriate action–angle
variables for the system. I identify the phase space of the Toda system with a fibration over
the Cartan torus of E8 (times C⋆) by Abelian varieties, which are Prym–Tyurin subtori
of the spectral curve Jacobian. These are selected by the curve geometry itself, due to an
argument going back to Kanev [69], and the Liouville–Arnold flows linearise on them. The
Hamiltonian structure inherited from the embedding of the system into a Poisson–Lie–Bruhat
cell translates into a canonical choice of symplectic form on the universal family of Prym–
Tyurins, and it pins down (up to canonical transformation) a marked pair of Abelian third
kind differentials on the curves.

Altogether, the family of curves, the marked 1-forms, and the choice of preferred cycles
lead to the assignment of a set of Dubrovin–Krichever data (Definition 3.1) to the family of
spectral curves. Armed with this, I turn to some of the uses of Toda spectral curves in the
context of Figure 1.

Isomorphism 1. Toda spectral curves have long been proposed to encode the Seiberg–Witten
solution of N = 2 pure gluodynamics in four-dimensional Minkowski space [60, 86], as well
as of its higher dimensional N = 1 parent theory on R4 × S1 [95] in the relativistic case.
From the physics point of view, Constructions 1 and 2 provide the Seiberg–Witten solution

†This is available at http://tiny.cc/E8SpecCurve. Part of the complexity is reflected in the size of the
compressed data containing the final solution (∼180 Mb — should the reader wish to have a closer look at this,
they should be aware that this unpacks to binary files and a Mathematica notebook that are collectively almost
1 GB of data).

http://tiny.cc/E8SpecCurve
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for minimal, five-dimensional supersymmetric E8 Yang–Mills theory on R4 × S1; and as the
latter should be related to (twisted) curve counts on an orbifold of the resolved conifold Y =
OP1(−1)⊕OP1(−1) by the action of the binary icosahedral group Ĩ, the same construction
provides a conjectural one-dimensional mirror construction for the orbifold Gromov–Witten
theory of these targets, as well as to its large N Chern–Simons dual theory on the Poincaré
sphere S3/Ĩ ≃ Σ(2, 3, 5) [3, 15, 59, 100]. I do not pursue here the proof of either the bottom
horizontal (SW/integrable systems correspondence) or the diagonal (mirror symmetry) arrow
in the diagram of Figure 1, although it is highlighted in the text how having access to the
global solution on its Coulomb branch allows to study particular degeneration limits of
the solution corresponding to superconformal (maximally Argyres–Douglas) points where
mutually non-local dyons pop up in the massless spectrum, and limiting versions of mirror
symmetry for the Toda curves in Isomorphism 2 are also considered. What I do prove instead
is a version of the vertical arrow: namely, that the Chern–Simons/Reshetikhin–Turaev–
Witten invariant of Σ(2, 3, 5) restricted to the trivial flat connection (the Lê–Murakami–
Ohtsuki invariant), as well as the quantum invariants of fibre knots therein in the same limit
and for arbitrary colourings, are computed to all orders in 1/N from the Chekhov–Eynard–

Orantin topological recursion on a suitable subfamily of Ê8 relativistic Toda spectral curves.
The strategy resorts to studying the trigonometric eigenvalue model associated to the LMO
invariant of the Poincaré sphere at large N and to prove that the planar resolvent is one of
the meromorphic coordinate projections of a plane curve in (C⋆)2, which is in turn shown

to be the affine part of the spectral curve of the Ê8 relativistic Toda chain.
Isomorphism 2. I further consider two meaningful operations that can be performed on the

spectral curve set-up of Constructions 1 and 2. The first is to take a degeneration limit to the
leaf where the natural Casimir function of the affine Toda chain goes to zero; this corresponds
to the restriction to degree 0 orbifold invariants on the top-right corner of Figure 1, and to
the perturbative limit of the five-dimensional prepotentials of the bottom-right corner. The
second is to replace one of the marked Abelian integrals with their exponential; this is a
version of Dubrovin’s notion of (almost) duality of Frobenius manifolds [42].

I conjecture and prove that the resulting spectral curve provides a one-dimensional
Landau–Ginzburg mirror for the Frobenius manifold structure constructed on orbits of the
extended affine Weyl group of type E8 by Dubrovin and Zhang [44]. Their construction
depends on a choice of simple root, and the canonical choice they take matches with the
Frobenius manifold structure on the Hurwitz space determined by our global spectral curve.
This opens the way to formulate a precise conjecture for how the general case, encompassing
general choices of simple roots in the Dubrovin–Zhang construction, should receive an
analogous description in terms of Toda spectral curves for the corresponding Poisson–Lie
group and twists thereof by the action of a Type I symmetry of WDVV (in the language of
[40]). Restricting to simply laced Lie algebras, this gives a mirror theorem for the quantum
cohomology of ADE orbifolds of P1: our genus zero mirror statement then lifts to an all-
genus statement by virtue of the equivalence of the topological recursion with Givental’s
quantisation for R-calibrated Frobenius manifolds. This provides a version, for the ADE
series, of statements by Norbury–Scott [47, 53, 97] for the Gromov–Witten theory of P1.

1.3. Structure of the paper and relation to other work

The two constructions and two isomorphisms above will find their place in Section 2–5,
respectively. The main novel results of the paper are structured in the following logical
progression.

• Claim 2.3 (which is Theorem 2.4 in the companion paper [23]) and Lemma 2.2 provide

the explicit form of relativistic Ê8 Toda spectral curves of Construction 1.
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• Theorems 3.3, 3.4 and 3.6 establish the linearisation of the flows on the canonical Prym–
Tyurin fibration over the family of Toda spectral curves, as well as their Hamiltonian nature,
completing Construction 2.
• Theorem 4.8 proves the weak B-model Gopakumar–Vafa correspondence for the Poincaré

sphere in Isomorphism 1.
• Conjecture 5.8 and Theorem 5.5 provide, respectively, a uniform construction of Landau–

Ginzburg mirrors of the Dubrovin–Zhang Frobenius manifolds associated to orbits of extended
affine Weyl groups in all cases, and a proof for the type E8 group and the canonical marked
node, which is Isomorphism 2.

Some facets of the problems addressed here have surfaced with a different angle in previous
works in the literature, and in order to make the text self-contained we review as necessary
the links with their methodology at the beginning of each section. The input datum of our
Construction 1 is the Lax formalism with spectral parameter of Fock–Marshakov in [56], which
is the starting point of our reduction of the computation of spectral curves to a problem in
Lie theory. Construction 2, while new for relativistic systems of type other than Ân, owes an
intellectual debt to the classical ideology of [38, 61, 69, 88, 118] in the non-relativistic case,
and to the construction of algebro-geometric symplectic forms of [36, 76], both of which are
shown in this paper to be adaptable to the relativistic setting at hand. Isomorphism 1 concludes
a program initiated in my joint work with Borot [15] to prove the B-model Gopakumar–
Vafa correspondence for Clifford–Klein 3-manifolds by treating the central missing case of the
Poincaré sphere, and furthermore completes it to the full higher genus theory by proving that
the Chern–Simons planar two-point function agrees with the symmetrised Bergmann recursion
kernel on the Toda curves, thereby establishing the equality of initial data for the Chekhov–
Eynard–Orantin recursion on the two sides of the correspondence. The previous state of the art
in the construction of mirrors for Dubrovin–Zhang Frobenius manifolds in type other than An

was given by [43], where a version of Isomorphism 2 is given by an entirely different route for
extended affine Weyl groups associated to Spin(n,C) and Sp(n,C) groups. Our construction
instead provides a general method which is applicable uniformly to all simple, simply connected
Lie groups, including exceptional cases and all choices of marked roots, recovers as a particular
case [43, 44] by restricting to Dynkin types A, B, C, and D, and is shown in particular to yield
the correct mirror for the most exceptional case of E8. More details for the other exceptional
groups will appear in [29].

I have tried to give a self-contained exposition of the material in each of Sections 2–5,
and to a good extent the reader interested in a particular angle of the story may read them
independently (in particular Sections 4 and 5).

2. The E8 and Ê8 relativistic Toda chain

I will provide a succinct, but rather complete account of the construction of Lax pairs for
the relativistic Toda chain for both the finite and affine E8 root system. This is mostly to fix
notation and key concepts for the discussion to follow, and there is virtually no new material
here until Section 2.4. I refer the reader to [56, 99, 106, 115, 119] for more context, references,
and further discussion. I will subsequently move to the explicit construction of spectral curves
and the action-angle map for the affine E8 chain in Sections 2.4 and 3.

2.1. Notation

I will start by fixing some basic notation for the foregoing discussion; in doing so I will endeavour
to avoid the uncontrolled proliferation of subscripts ‘8’ related to E8 throughout the text, and
stick to generic symbols instead (such as G for the E8 Lie group, g for its Lie algebra, and so
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Figure 2 (colour online). The Dynkin diagrams of type E8 and, superimposed in red, type E
(1)
8 ;

roots are labelled following Dynkin’s convention (left to right, bottom to top). The numbers in
blue are the Dynkin labels for each vertex — for the non-affine roots, these are the components
of the highest root in the α-basis.

on). I wish to make clear from the outset though that whilst many aspects of the discussion
are general, the focus of this section is on E8 alone; the attentive reader will note that some
of its properties, such as simply lacedness, or triviality of the centre, are implicitly assumed in
the formulas to follow.

Let then g � e8 denote the complex simple Lie algebra corresponding to the Dynkin
diagram of type E8 (Figure 2). I will write G = exp g for the corresponding simply connected
complex Lie group, T = exp h for the maximal torus (the exponential of the Cartan algebra
h ⊂ g), and W = NT /T for the Weyl group. I will also write Π = {α1, . . . , α8} for the set
of simple roots (see, for example, (B.1)), and Δ, Δ∗, Δ(0), Δ± to indicate, respectively, the
full root system, the non-vanishing roots, the zero roots, and the negative/positive roots;
the choice of splitting Δ± determines accordingly Borel subgroups B± intersecting at T .
Each Borel realises G as a disjoint union of double cosets G = B±WB± =

∐
w∈W B±wB± =∐

(w+,w−)∈W×W(B+w+B+ ∩ B−w−B−) =:
∐

(w+,w−)∈W×W Cw+,w−
, the double Bruhat cells of

G. The Euclidean vector space (spanRΠ; 〈, 〉) ⊂ h∗ is a vector subspace of h∗ with an inner
product structure 〈β, γ〉 given by the dual of the Killing form; in particular, 〈αi, αj〉 � C

g
i,j

is the Cartan matrix (B.3). For a weight λ in the lattice Λw(G) � {λ ∈ h∗|〈λ, α〉 ∈ Z}, I will
write Wλ = StabλW for the parabolic subgroup stabilised by λ; the action of W on weights
is the restriction of the coadjoint action on h∗; since Z(G) = e in our case, the weight lattice
is isomorphic to the root lattice Λr(G) = Z〈Π〉 ≃ Λw(G). Corresponding to the choice of Π,
Chevalley generators {(hi ∈ h, e±i ∈ Lie(B±)|i ∈ Π} for g will be chosen satisfying

[hi, hj ] = 0,

[hi, ej ] = sgn(j)δi|j|ej ,

[ei, e−i] = sgn(i)C g
ijhj ,

(adei)
1−C

g

ijej = 0 for i + j 	= 0. (2.1)

Accordingly, the corresponding time-t flows on G lead to Chevalley generators Hi(t) = exp thi,
Ei(t) = exp tei for the Lie group. Finally, I denote by R(G) the representation ring of G, namely
the free Abelian group of virtual representations of G (that is, formal differences), with ring
structure given by the tensor product; this is a polynomial ring Z[ω] over the integers with
generators given by the irreducible G-modules having ωi ∈ Λw(G) as their highest weights,
where 〈ωi, αj〉 = δij .

Most of the notions (and notation) above carries through to the setting of the Kac–Moody

group† Ĝ = exp g(1), where g(1) ≃ g⊗ C[λ, λ−1]⊕ Cc is the (necessarily untwisted, for g ≃ e8)

†It should be noted that, while in (2.1) passing from hi to h′
i =

∑
C

g
ijhj is an isomorphism of Lie algebras,

the same is not true in the affine setting as the Cartan matrix is then degenerate. Our discussion below sticks to
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affine Lie algebra corresponding to e8. In this case we adjoin the highest (affine) root α0 as
in (B.2), leading to the Dynkin diagram and Cartan matrix in Figure 2 and (B.4). Elements

g ∈ Ĝ are linear q-differential polynomials in the spectral parameter λ; namely, g = M(λ)qλ∂λ,
with the pointwise multiplication rule leading to

g1g2 = M1(λ)M2(q1λ) (q1q2)
λ∂λ. (2.2)

The Chevalley generators for the simple Lie group G are then lifted to Ĥi(q) � Hi(q)q
diλ∂λ,

with di the Dynkin labels as in Figure 2, and extended to include (H0, E0, E0̄), where

H0(q) = qλ∂λ, E0 = exp(λe0), E0̄ = exp(e0̄/λ) (2.3)

with e0 ∈ Lie(B+) and e0̄ ∈ Lie(B−) the Lie algebra generators corresponding to the highest
(lowest) roots, that is, the only non-vanishing iterated commutators of order h(g) = 30 of ei
(eī), i = 1, . . . , 8.

2.2. Kinematics

Consider now the 16-dimensional symplectic algebraic torus

P ≃
(
(C⋆

x)8 × (C⋆
y)

8, {, }G
)

with Poisson bracket

{xi, yj}G = C
g
ijxiyj . (2.4)

Semi-simplicity of G amounts to the non-degeneracy of the bracket, so that P is symplectic.
There is an injective morphism from P to a distinguished Bruhat cell of G, as follows. Note

first that G carries an adjoint action by the Cartan torus T which obviously preserves the
Borels, and therefore, descends to an action on the double cosets of the Bruhat decomposition.
Consider now Weyl group elements w+ = w− = w̄ where w̄ is the ordered product of the eight
simple reflections in W. The corresponding cell PToda � Cw̄,w̄ ⊂ G/T has dimension 16 [56],
and it inherits a symplectic structure from G, as I now describe. Recall that the latter carries a
Poisson structure given by the canonical Belavin–Drinfeld–Olive–Turok solution of the classical
Yang–Baxter equation [11, 98]:

{g1
⊗, g2}PL =

1

2
[r, g1g2], (2.5)

with r ∈ g⊗ g given by

r =
∑

i∈Π

hi ⊗ hi +
∑

α∈∆+

eα ⊗ e−α. (2.6)

Since T is a trivial Poisson submanifold, PToda inherits a Poisson structure from the parent
Poisson–Lie group. Consider now the (Lax) map

Lx,y : P → PToda

(x, y) → ∏8
i=1 Hi(xi)EiHi(yi)E−i.

(2.7)

Then the following proposition holds.

the Lie algebra relations as written in (2.1), rather than their more common dualised form; in the affine setting,
this substantial difference leads to the centrally coextended loop group instead of the more familiar central
extension in Kac–Moody theory. In [56], this is stressed by employing the notation G# for the co-extended
group; as I make clear from the outset in (2.1) what side of the duality I am sitting on, I somewhat abuse

notation and denote Ĝ the resulting Poisson–Lie group.
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Proposition 2.1 (Fock–Goncharov [55]). L is an algebraic Poisson embedding into an
open subset of PToda.

Similar considerations apply to the affine case. In (C⋆)18 ≃ (C⋆
x)9 × (C⋆

y)
9 with exponentiated

linear coordinates (x0, x1, . . . , x8; y0, y1, . . . , y8) and log-constant Poisson bracket

{xi, yj}Ĝ = C
g(1)

ij xiyj , (2.8)

consider the hypersurface P̂ � V(
∏8

i=0(xiyi)
di − 1), where {di}i are the Dynkin labels of

Figure 2. Since KerC g(1)

= 1, P̂ is not symplectic anymore, unlike the simple Lie group case
above; in particular, the regular function

O(P̂) ∋ ℵ �

8∏

i=0

xdi
i =

8∏

i=0

y−di
i (2.9)

is a Casimir of the bracket (2.8), and it foliates P̂ symplectically. As before, there is a double

coset decomposition of Ĝ indexed by pairs of elements of the affine Weyl group Ŵ, and
a distinguished cell Cw̄,w̄ labelled by the element w̄ corresponding to the longest cyclically

irreducible word in the generators of Ŵ . Projecting to trivial central (co)extension

Ĝ ∋ g = M(λ)qλ∂λ
π→M(λ) ∈ Loop(G) (2.10)

induces a Poisson structure on the projections of the cells Cw+,w−
(and in particular Cw̄,w̄),

as well as their quotients Cw+,w−
/AdT by the adjoint action of the Cartan torus, upon lifting

to the loop group the Poisson–Lie structure of the non-dynamical r-matrix (2.5). I will write

P̂Toda � π(Cw̄,w̄)/AdT for the resulting Poisson manifold; and we have now that [56]

dimCPToda = 2 length(w̄)− 1 = 2× 9− 1 = 17.

Consider now the morphism

L̂x,y(λ) : P̂ → P̂Toda

(x, y) → ∏8
i=0 Ĥi(xi)ÊiĤi(yi)Ê−i.

(2.11)

It is instructive to work out explicitly the form of the loop group element corresponding to
L̂x,y; we have

L̂x,y(λ) =

8∏

i=0

Ĥi(xi)ÊiĤi(yi)Ê−i

= E0(λ/y0)E0̄(λ)

[
8∏

i=0

(xiyi)
di

]λdλ 8∏

i=1

Hi(xi)EiHi(yi)E−i

= E0(λ/y0)E0̄(λ)

8∏

i=1

Hi(xi)EiHi(yi)E−i, (2.12)

where in moving from the first to the second line we have expanded g ∈ Ĝ as a linear
q−differential operator and grouped together all the multiplicative q−shifts, and then used
that

∏8
i=0(xiyi)

di = 1 on P̂, which gives indeed an element with trivial co-extension. The

same line of reasoning of Proposition 2.1 shows that L̂ is a Poisson monomorphism.
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2.3. Dynamics

For functions H1, H2 ∈ O(P̂Toda), the Poisson bracket (2.5) reads, explicitly,

{H1, H2}PL = −1

2

∑

α∈∆+

[
LeαH1Re−α

H2 − (1↔ 2)
]
, (2.13)

where LX (respectively, RX) denotes the left (respectively, right) invariant vector field
generated by X ∈ TeG ≃ g. Then a complete system of involutive Hamiltonians for (2.5) on G,
and any Poisson Ad-invariant submanifold such as PToda, is given by Ad-invariant functions
on the group, or equivalently, Weyl-invariant functions on T . This is a subring of O(PToda)
generated by the regular fundamental characters

Hi(g) = χρi
(g), i = 1, . . . , 8, (2.14)

where ρi is the irreducible representation having the ith fundamental weight ωi as its highest
weight. In the affine case the same statements hold, with the addition of the central Casimir ℵ
in (2.9). The Lax maps (2.7), (2.11) then pull back this integrable dynamics to the respective

tori P and P̂. Fixing a faithful representation ρ ∈ R(G) (say, the adjoint), the same dynamics

on PToda and P̂Toda takes the form of isospectral flows [7, Sections 3.2 and 3.3]:

∂ρ(L)

∂ti
= {ρ(L), Hi(L)}PL = [ρ(L), (Pi(ρ(L)))+] (2.15)

∂ρ(L̂)

∂ti
=

{
ρ̂(L), Hi(L̂)

}
PL

=
[
ρ̂(L), (Pi(ρ̂(L)))+

]
, (2.16)

where Pi ∈ C[x] is the expression of the Weyl-invariant Laurent polynomial χωi
∈ O(T )W in

terms of power sums of the eigenvalues of ρ(g), and ()+ : G → B+ denotes the projection to
the positive Borel.

2.4. The spectral curve

We henceforth consider the affine case only. Since (2.16) is isospectral, all functions of the

spectrum σ(ρ(L̂)) of ρ(L̂) are integrals of motion. A central role in our discussion will be
played by the spectral invariants constructed out of elementary symmetric polynomials in
the eigenvalues of L̂, for the case in which ρ = g is the adjoint representation, that is, is the
minimal-dimensional non-trivial irreducible representation of G. I write

Ξg(μ, λ) � det
g

(
L̂(λ)− μ1

)
(2.17)

for the characteristic polynomial of L̂ in the adjoint, thought of as a 2-parameter family of
maps Ξg(μ, λ) : P̂ → C. It is clear by (2.16) that Ξg(μ, λ) is an integral of motion for all (μ, λ),
and so is therefore the plane curve in A2 given by its vanishing locus V(Ξg).

We will be interested in expanding out the flow invariant (2.17) as an explicit polynomial
function of the basic integrals of motion (2.14). I will do so in two steps: by determining

the dependence of (2.14) on the spectral parameter when g = L̂(λ) in (2.12) and (2.14), and
by computing the dependence of Ξg(μ, λ) on the basic invariants (2.14). We have first the
following.

Lemma 2.2. Hi(L̂), i = 1, . . . , 8 are Laurent polynomials in λ, which are constant except

for i = 3. In particular, there exist functions ui ∈ O(P̂) such that

Hi(L̂) = ui(x, y)− δi,3

(
λ′ +

ℵ2

λ′

)
(2.18)

with ∂x0
ui(x, y) = ∂y0

ui(x, y) = 0 and λ′ = λy0ℵ2.
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Proof sketch. The proof follows from a lengthy but straightforward calculation from (2.12).
Since we are looking at the adjoint representation, explicit matrix expressions for the Chevalley
generators (2.1) can be computed by systematically reading off the structure constants in (2.1),
the full set of which for all the dim g = 248 generators of the algebra is determined from the
canonical assignment of signs to so-called extra-special pairs of roots reflecting the ordering
of simple roots within Π (see [35] for details). The resulting 248× 248 matrix in (2.12), with
coefficients depending on (λ, x, y), is moderately sparse, which allows to compute power sums
of its eigenvalues efficiently. We can then show from a direct calculation that (2.18) holds for
i = 3, . . . , 7 the relations in R(G)

ρω7
= g, ρω6

= ∧2g⊖ g, ρω5
= ∧3g⊖ ρω6

⊕ ∧2g⊖ g⊗ g

ρω4
= ∧4g⊖ ρω6

⊗ g⊕ ρω6
, ρω3

= ∧5g⊕ ρω5
⊗ (1⊖ g)⊖ Sym3g (2.19)

which are an easy consequence of the decomposition into irreducibles of ∧ng, Symng,
and their tensor powers for n � 5,† and the use of Newton identities relating power sum
polynomials (that is, traces of powers) to elementary/complete symmetric polynomials (that
is, antisymmetric/symmetric traces). A little more work is required to show that ui is constant
for i = 1, 2, 8; this uses the more complicated character relations (2.25)–(2.26) of Appendix C.
The final result is (2.18). �

It is immediately seen from (2.18) that ui(x, y) are involutive, independent integrals of
motion; they are equal to the fundamental Hamiltonians (2.14) for i 	= 3, and for i = 3 they

are a C[λ, λ−1] linear combination of H3 and the Casimir ℵ. Denote now by U = �u(P̂) ⊂ C8

the image of P̂ under the map �u = (ui)i : P̂ → C8 . It is clear from (2.17) and (2.18) that

Ξg : P̂ → C[λ′,ℵ2λ−1, μ] factors through �u and a map p =
∑

k(−)kpk : U → C[λ′,ℵ2λ′−1, μ]
given by the decomposition of the characteristic polynomial into fundamental characters:

Ξg(λ, μ) =

248∑

k=0

(−μ)kχ∧kgL̂x,y(λ)

=
124∑

k=0

(−)kpk
(
u1, u2, u3 +

(
λ′ + ℵ2/λ′

)
, u4, . . . , u8

)(
μk + μ248−k

)
, (2.20)

where the reality of the adjoint representation has been used. Here pk is the polynomial relation
of formal characters

χ∧kg = pk(χω1
, . . . , χω8

) ∈ Z[χω1
, . . . , χω8

] ≃ R(G) (2.21)

evaluated at the group element L̂. For fixed (ui)i ∈ U and ℵ ∈ C, the vanishing locus V(Ξg)
of the characteristic polynomial is a complex algebraic curve in C2; I shall write Bg � U × A1

for the variety of parameters this polynomial will depend on. Even though g is irreducible,
the curve V(Ξg) is reducible since Ξg is. Indeed, conjugating L̂ to an element exp l ∈ T in the
Cartan torus, l ∈ h, we have

Ξg(λ, μ) = det
g

(
L̂− μ1

)
=

∏

α∈∆

(exp(α(l))− μ)

= (μ− 1)8
∏

α∈∆+

(exp(α(l))− μ)(exp(−α(l))− μ). (2.22)

For a general representation ρ, we would obtain as many irreducible components as the number
of Weyl orbits in the weight system. When ρ = g, and for this case alone, we have only one

†We used Sage for the decomposition of the plethysms, and LieART for that of the tensor powers.
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non-trivial orbit, as well as eight trivial orbits corresponding to the zero roots. I will factor out
the trivial component corresponding to zero roots by writing Ξg,red = Ξg/(μ− 1)8.

Definition 2.1. For (u,ℵ) ∈ Bg, let Γ(u,ℵ) be the normalisation of the projective closure
of Spec(C[λ, μ]/〈Ξg,red〉). We call the corresponding family of plane curves π : Sg → U × C,

(2.23)

the family of spectral curves of the Ê8 relativistic Toda chain in the adjoint representation.
In (2.23), Pi are the points added in the compactification of V(Ξg,red) (see Remark 2.5 and
Table 1) and Σi are the sections marking them.

As is known in the more familiar setting of Ĝ = ŝlN , and as we will discuss in Section 3,
spectral curves are a key ingredient in the integration of the Toda flows. Knowledge of the
spectral curves is encoded into knowledge of the character relations (2.21), which grant access
to the explicit form of the polynomial Ξg,red to spectral curves for arbitrary moduli (u,ℵ):
the description of the spectral curves is then reduced to the purely representation-theoretic
problem of determining these relations.

In view of this, denote θ• � χρω•
, φ• � χ∧•g. What we are looking for are explicit polynomials

pk(θ) =
∑

I∈M

nI,k

8∏

j=1

θ
d
(I)
j

j , (2.24)

where the index I runs over a suitable finite set M ∋ (d
(I)
1 , . . . , d

(I)
8 ), M ⊂ N8, and nI,k ∈ Z.

Since what we are ultimately interested in is the reduced characteristic curve Γu,ℵ, it suffices
to compute {nI,k} (and hence pk) for k � 120.

Claim 2.3 [23]. We determine {nI,k ∈ Z} for all I ∈M , k � 120.

Table 1. Points at infinity in Γ′′
u. I indicate the value of their

x-projection, their degree of ramification in y, and the order of
the poles of y in the second, third, and fourth column,
respectively. Here φ = (

√
5 + 1)/2 is the golden ratio.

i x(P ′′
i ) ey(P ′′

i ) −ordyP ′′
i

1 −2 1 1
2 −1 1 3
3 −φ 1 5
4 φ−1 1 5
5 ∞ 1 5
6 ∞ 1 6
7 ∞ 1 10
8 ∞ 1 10
9 ∞ 2 15
10 ∞ 1 15
11 ∞ 1 15
12 ∞ 1 30
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This is the result of a series of computer-assisted calculations, of independent interest and
whose details will appear elsewhere [23], but for which I provide a fairly comprehensive
summary in Appendix C. For the sake of example, we obtain for the first few values of k,

p6 = θ7θ
2
1 − θ3

1 − θ6θ
2
1 − θ2

1 + 2θ2
7θ1 + 2θ2θ1 − θ4θ1 + θ5θ1 − θ6θ1 + θ6θ7θ1 − 2θ7θ1 − θ8θ1 − θ2

6

+ θ6θ
2
7 − θ2

7 − θ3 + θ2θ6 + θ5θ6 + θ2θ7 + θ4θ7 − 2θ6θ7 + θ2θ8 − θ6θ8 − θ7θ8, (2.25)

p7 = θ4
7 + 2θ1θ

3
7 − 4θ3

7 + θ2
1θ

2
7 − 6θ1θ

2
7 + 2θ2θ

2
7 + 2θ5θ

2
7 − 2θ6θ

2
7 + θ2

7 − 2θ3
1θ7 − θ2

1θ7 + 4θ1θ7

+ 4θ1θ2θ7 − θ3θ7 + θ4θ7 + 2θ1θ5θ7 − 4θ5θ7 + θ1θ6θ7 + 4θ6θ7 − θ1θ8θ7 − θ6θ8θ7

+ θ3
1 + 2θ2

1 + θ2
2 + θ2

5 + θ1θ
2
6 + θ2

6 + θ1θ
2
8 + θ1 − θ1θ2 − 2θ1θ3 − θ3 + θ1θ4 + θ4 − 2θ2

1θ5

+ 2θ2θ5 − θ5 + 2θ2
1θ6 + 3θ1θ6 − θ2θ6 + θ4θ6 − 2θ5θ6 + θ6 − θ2

1θ8 − θ1θ8 + θ2θ8

− 2θ2θ7 − θ8θ7 + 2θ7 − θ4θ8 − θ1θ6θ8 − 3θ1θ5 (2.26)

p8 = θ8 − θ4
1 − θ6θ

3
1 + 2θ2

7θ
2
1 + 3θ2θ

2
1 − θ4θ

2
1 + θ5θ

2
1 + θ6θ

2
1 − θ7θ

2
1 − 2θ7θ8θ

2
1 − 2θ3

7θ1 + θ2
6θ1

+ 3θ6θ
2
7θ1 − 3θ3θ1 + 2θ4θ1 − θ5θ1 + 2θ2θ6θ1 + θ5θ6θ1 + 2θ6θ1 + 2θ2θ7θ1 + θ4θ7θ1

+ 2θ6θ7θ1 + 5θ7θ1 + θ2
7θ8θ1 + θ2θ8θ1 − 2θ5θ8θ1 − 3θ7θ8θ1 + θ8θ1 − 2θ4

7 + θ6θ
3
7 + θ3

7

− 2θ2
5 + θ2

6 − θ2θ
2
7 + 2θ4θ

2
7 − 4θ5θ

2
7 + 3θ2

7 − θ2
8 + θ2 + θ3 + θ2θ4 − θ4 − 2θ2θ5

− 2θ3θ6 + θ4θ6 − θ5θ6 + θ2
6θ7 + θ2θ7 − 3θ3θ7 + θ5θ7 + 2θ2θ6θ7 + θ5θ6θ7 + θ6θ7 − 2θ7

− θ2θ8 − 3θ3θ8 + 2θ4θ8 − 3θ5θ8 + 2θ6θ8 + 3θ2θ7θ8 + 2θ6θ7θ8 + 4θ7θ8,

− θ2
7θ1 + 2θ4θ5 + 2θ5 − 3θ5θ7θ1 + θ3

8 − θ2
2 − 4θ2

7θ8 (2.27)

p9 = 2θ2
1θ

3
7 − 2θ4

7 − 7θ1θ
3
7 − 3θ6θ

3
7 + 4θ3

7 − 2θ3
1θ

2
7 − θ2

1θ
2
7 + θ2

6θ
2
7 + θ2

8θ
2
7 + 10θ1θ

2
7 + 4θ1θ2θ

2
7

− 2θ3θ
2
7 + θ4θ

2
7 + 2θ1θ5θ

2
7 − 5θ5θ

2
7 + 2θ1θ6θ

2
7 + 2θ6θ

2
7 + θ6θ8θ

2
7 − θ8θ

2
7 − 2θ2

7 + 2θ3
1θ7

+ θ2
1θ7 + θ2

2θ7 + 2θ1θ
2
6θ7 + 6θ2

6θ7 + θ1θ
2
8θ7 − 2θ2

8θ7 − θ1θ7 − 3θ1θ2θ7 + 5θ2θ7 − 4θ1θ3θ7

+ 2θ3θ7 + 2θ1θ4θ7 − 2θ2
1θ5θ7 − 6θ1θ5θ7 + 2θ2θ5θ7 + 5θ5θ7 + θ2

1θ6θ7 + 5θ1θ6θ7 + 2θ2θ6θ7

+ 3θ4θ6θ7 − 4θ5θ6θ7 + 4θ6θ7 − 2θ1θ8θ7 + θ4θ8θ7 − 2θ5θ8θ7 − 2θ1θ6θ8θ7 − θ6θ8θ7 + θ8θ7

− θ3
1 + 2θ3

6 + 2θ2
4 − θ2

5 + 2θ1θ
2
6 + θ2θ

2
6 + 3θ2

6 − θ1θ
2
8 + θ2θ

2
8 + θ5θ

2
8 + 2θ1θ2 + θ2 + θ2

1θ3

+ θ1θ3 − 2θ2θ3 − θ1θ4 − 2θ2θ4 − θ4 + θ2
1θ5 + 2θ1θ5 − 2θ2θ5 − 3θ3θ5 − θ2

1θ6 + θ1θ6

+ θ1θ2θ6 + 4θ2θ6 − 2θ3θ6 + θ1θ4θ6 − θ4θ6 − 2θ1θ5θ6 + θ5θ6 + θ6 − θ3
1θ8 + 2θ1θ2θ8 − θ3θ8

− 2θ1θ4θ8 + θ4θ8 + θ1θ5θ8 − θ2
1θ6θ8 + θ2θ6θ8 − θ5θ6θ8 − θ2

1 + θ2
1θ4 − 4θ2θ

2
7 − θ4θ7. (2.28)

2.4.1. Genus, ramification points and points at infinity. The curves Γu,ℵ have two obvious
involutions, coming from the Z2 × Z2 symmetry (2.20) of the reduced characteristic polynomial
Ξg,red,

Ξg,red(λ′, μ) = Ξg,red(ℵ/λ′, μ), Ξg,red(λ′, μ) = μ240Ξg,red(λ′, 1/μ). (2.29)
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Figure 3 (colour online). The Newton polygon of Ξ′′
g,red (in red); blue spots depict monomials in

Ξ′′
g,red with non-zero coefficients; the purple cross marks the vanishing of the coefficient of x101y3

on the boundary of the polygon.

This realises Γu,ℵ
y→ Γ′

u,ℵ
x→ Γ′′

u,ℵ, where x = μ + μ−1, y = λ + ℵλ−1, as a branched fourfold

cover of a curve Γ′′
u,ℵ � {Ξ′′

g,red(y, x) = 0}, so that

Ξg,red(λ′, μ) =: μ120Ξ′′
g,red

(
λ′ +

ℵ
λ′

, μ +
1

μ

)
. (2.30)

We see from (2.20) and (C.2) that degy Ξ′′
g,red(y, x) = 9, degx Ξ′′

g,red = 120. The Newton polygon
of Ξ′′

g,red is depicted in Figure 3. By way of example, some of the simplest coefficients on the
boundary are given by

[y9]Ξ′′
g,red = (x + 1)3(x + 2)

(
−1 + x + x2

)5
, (2.31)

{[
xdegx [yi]Ξ′′

g,red

]
Ξ′′
g,red

}8

i=0
= {1,−1,−1,−3u7 − 5, 1, 2, 1,−2, 1}. (2.32)

Let us now compute the genus of Γ′′
u, Γ′

u and Γu,ℵ.

Proposition 2.4. We have, for generic (u,ℵ) ∈ Bg,

g(Γ′′
u) = 61, g(Γ′

u) = 128, g(Γu,ℵ) = 495. (2.33)

Proof. Since Lemma 2.2 and Claim 2.3 determine the polynomial Ξ′′
g,red completely, the

calculation of the genus can be turned into an explicit calculation of discriminants of Ξ′′
g,red;

and because degy Ξ′′
g,red ≪ degx Ξ′′

g,red, it is much easier to start from the y-discriminant. This
is computed to be

DiscryΞ
′′
g,red = (x + 2)4Δ1(x)Δ2(x)2Δ3(x)2, (2.34)

where deg Δ1 = 133, deg Δ2 = 215 and deg Δ3 = 392. Call rki , i = 1, 2, 3, k = 1, . . . ,deg Δi the
roots of Δi. We can verify directly by substitution into Ξ′′

g,red that the roots x = rk2 and

x = rk3 correspond to images on the x-line of exactly one point with ∂yΞ
′′
g = 0, which is always
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an ordinary double point. Similarly, we get that the roots x = −2 and x = rk1 correspond in
all cases to degree 2 ramification points; there are four of them lying over x = −2. On the
desingularised projective curve Γ′′

u, the nodes are resolved into pairs of unramified points; and
Puiseux expansions of Ξ′′

g,red at infinity show that we have one extra point with degree 2
ramification above x =∞ (see below). By Riemann–Hurwitz, this gives

g(Γ′′
u) = 1− degy Ξ′′

g,red +
1

2

∑

P |dx(P )=0

ex(P ) = 1− 9 +
133 + 1 + 4

2
= 61. (2.35)

The genera of the branched double covers x : Γ′
u → Γ′′

u, y : Γu,ℵ → Γ′
u follow from an elementary

Riemann–Hurwitz calculation. �

Remark 2.5. It can readily be deduced from (2.31) that the smooth completion Γ′′
u is

obtained topologically by adding 12 points at infinity P ′′
i ; their relevant properties are shown

in Table 1. Their preimages in Γ′
u and Γu,ℵ will be labelled P ′

k and Pj , respectively, k = 1, . . . , 23
(note that P ′′

1 is a branch point of x : Γ′
u → Γ′′

u), j = 1, . . . , 46.

2.5. Spectral versus parabolic versus cameral cover

The construction of Γu,ℵ as the non-trivial irreducible component of the vanishing locus of
(2.17)–(2.22) realises it as a ‘curve of eigenvalues’: it is a branched cover of the space of

spectral parameters λ ∈ P1 \ {0,∞} of the Lax matrix L̂x,y(λ); the fibre over a λ-unramified

point is given by the eigenvalues μα of L̂x,y(λ) that are different from 1. By (2.22), each sheet
μα is labelled by a non-trivial root α ∈ Δ∗, and there is an action of the Weyl group W on
Γu,ℵ given by the interchange of sheets corresponding to the Coxeter action of W on the root
space Δ.

Away from the ramification locus, this structure can be understood as follows. Let

Gred = {g ∈ G|dimC CG(g) = rank G = 8}
be the Zariski open set of regular elements of G; I will similarly append a superscript T red for
the regular elements of T . Then the projection

π : G/T × T red → Gred

(gT , t) → Adgt (2.36)

is a principal W-bundle on Gred, the fibre over a regular element g′ being NT /T ≃ W. We can

pull this back via L̂x,y to a W-bundle

Θx,y � L̂x,y

∗
(G/T × T red)

over P1 \D, where D = L̂x,y

−1
(G \ Gred). This is a regularW-cover and each weight ω ∈ Λw(G)

determines a subcover Θω
x,y ≃ Θx,y/Wω, where we quotient by the action of the stabiliser of

ω by deck transformations. Write Θx,y and Θω
x,y for the pull-back to C⋆ ≃ P1 \ {0,∞} of the

closure of (2.36) in G/T × T → G. As in [38], we call Θx,y (respectively, Θω
x,y) the cameral

(respectively, the ω-parabolic) cover associated to L̂x,y.
Note that when ω = ω7 = α0 is the highest weight of the adjoint representation, that is, the

highest (affine) root α0, W/Wα0
is set-theoretically the root system of g, minus the set of

zero roots; the residual W action is just the restriction to Δ of the Coxeter action on h∗. In
particular, we have that Θω

x,y is a degree |W/Wα0
| = |Weyl(e8)/Weyl(e7)| = 696 729 600

2 903 040 = 240
branched cover of P1, with sheets labelled by non-zero roots α ∈ Δ∗.

Proposition 2.6. There is a birational map ι : Γu,ℵ ��� Θω7
x,y given by an isomorphism

ι : Γu,ℵ \ {dμ = 0} ∼→ Θω7
x,y

(λ, μα(λ)) → (λ, α) (2.37)

away from the ramification locus of the λ-projection.
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Proof. The proof is nearly verbatim the same as that of [87, Theorem 13]. �

From the proposition, we learn that a possible source of ramification λ : Γu,ℵ → P1 comes

from the spectral values λ such that L̂x,y(λ) is an irregular element of G; and from (2.22), we
see that this happens if and only if α(l) = 0 for some α ∈ Δ.

Proposition 2.7. For generic (u,ℵ), there are exactly 18 values of λ,

b±i � λ(Q±
i ), i = 1, . . . , 9, (2.38)

such that L̂x,y(λ) is irregular, that is, α(log L̂x,y(λ)) = 0 for some α ∈ Δ. Furthermore, α ∈ Π
is a simple root in each of these cases.

Proof. To see this, look at the base curve Γ′′
u. It is obvious that Ξg,red has only double zeroes

at x = 2, since Ξg has only double zeroes at μ = 1 as roots come in (positive/negative) pairs
in (2.22). For each of the nine points

{Q′′
i }9i=1 � x−1(2) ⊂ Γ′′

u,

we compute from Lemma 2.2 and Claim 2.3 that

ex(Q′′
i ) = 28 (2.39)

for all i. Calling αi ∈ Δ+ the positive root such that αi · l(λ(Qi)) = 0, we see from (2.22) that

ex(Q′′
i ) = card

{
β ∈ Δ+|β − αi ∈ Δ+

}
. (2.40)

It can be immediately verified that the right-hand side is less than or equal to 28, with equality
if and only if αi is simple. It is also clear that there are no other points of ramification in
the affine part of the curve†; indeed, from Table 1, we have that ex(∞) = 120− 12 = 108, and
from (2.33) we see that

60 = g(Γ′′
u)− 1 = − degx Ξ′′

g,red +
1

2

∑

dx(P )=0

ex(P ) = −120 +
9× 28 + 108

2
. (2.41)

As the covering map x : Γ′
u → Γ′′

u is ramified at x = 2, and y : Γu,ℵ → Γ′
u is generically

unramified therein for generic ℵ, we have two preimages Qi,± on Γu,ℵ for each Q′′
i ∈ Γ′′

u. �

3. Action-angle variables and the preferred Prym–Tyurin

Since (2.14) are a complete set of Hamiltonians in involution on the leaves of the foliation

of P̂ by level sets of ℵ, the compact fibres of the map (u,ℵ) : P̂ → C9 are isomorphic to a
rank(g) = eight-dimensional torus by the (holomorphic) Liouville–Arnold–Moser theorem. A
central feature of integrable systems of the form (2.16) is an algebraic characterisation of their
Liouville–Arnold dynamics, the torus in question being an Abelian subvariety of the Jacobian
of Γu,ℵ.

I determine in this section the action-angle integration explicitly for the Ê8 relativistic Toda
chain, which results in endowing Sg with extra data [39, 75], as per the following.

Definition 3.1. We call Dubrovin–Krichever data a n-tuple (F ,B, E1, E2,D,Λ,ΛL), with

†In principle, from (2.22), this would be the case if α(l(λ)) = β(l(λ)) for α− β /∈ Δ, leading to a double zero
at μ �= 1 in (2.22), which we cannot a priori rule out without appealing to (2.33) and (2.39) as we do below.
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• π : F → B a family of (smooth, proper) curves over an n-dimensional variety B;
• D a smooth normal crossing divisor intersecting the fibres of π transversally;
• meromorphic sections Ei ∈ H0(F , ωF/B(logD)) of the relative canonical sheaf having

logarithmic poles along D;
• (ΛL,Λ) a locally constant choice of a marked subring Λ of the first homology of the fibres,

and a Lagrangian sublattice ΛL thereof.

Definition 3.1 isolates the extra data attached to spectral curves that were identified in [39,
75] (see also [40, 76]) to provide the basic ingredients for the construction of a Frobenius
manifold structure on B and a dispersionless integrable dynamics on its loop space given by
the Whitham deformation of the isospectral flows (2.16); the logarithm of those τ -functions
respects the type of constraints that arise in theory with eight global supersymmetries (rigid
special Kähler geometry). These will be key aspects of the story to be discussed in Sections 4
and 5; in the language of [39], when the pull-back of E1 to the fibres of the family is exact,
the associated potential is the superpotential of the Frobenius manifold, and E2 its associated
primitive differential. Now, Claim 2.3 and Definition 2.1 gave us F = Sg, B = Bg already.
We will see, following [76], how the remaining ingredients are determined by the Hamiltonian
dynamics of (2.16): this will culminate with the content of Theorem 3.6. I wish to add from the
outset that the process leading up to Theorem 3.6 relies on both common lore and results in
the literature that are established and known to the cognoscenti at least for the non-relativistic
limit; the gist of this section is to unify several of these scattered ideas and adapt them to the
setting at hand. For the sake of completeness, I strived to provide precise pointers to places in
the literature where similar arguments have been employed.

3.1. Algebraic action-angle integration

From now until the end of this section, I will be sitting at a generic point (x, y) ∈ P̂, and
correspondingly, smooth moduli point (u,ℵ) ∈ Bg. As is the case for the ordinary periodic
Toda chain with N particles, and for initial data specified by (u,ℵ), the compact orbits of

(2.16) are geometrically encoded into a linear flow on the Jacobian variety Pic(0)(Γu,ℵ) [2, 61,

74, 118]; I recall here why this is the case. The eigenvalue problem† at time-t,

L̂x,y(λ)Ψx,y = μΨx,y (3.1)

with x = x(�t), y = y(�t), endows the spectral curve with an eigenvector line bundle Lx,y → Γu,ℵ

and a section Ψ : Γu,ℵ → Lx,y given as follows. We have an eigenspace morphism

Ex,y : Γu,ℵ → Pdim g−1 = P247 (3.2)

that, away from ramification points of the λ : Γu,ℵ → P1 projection, assigns to a point (λ, μ) ∈
Γu,ℵ the (time-dependent) eigenline of (3.1) with eigenvalue μ; this in fact extends to a locally
free rank one sheaf on the whole of Γu,ℵ [7, Ch. 5, II Proposition, p. 131]. We write

Lx,y � E∗x,yOP247(1) ∈ Pic(Γu,ℵ) (3.3)

for the pull-back of the hyperplane bundle on Pdim g−1 via the eigenline map Ex,y, and fix
(non-canonically) a section of the latter by

Ψj(λ, μi(λ)) =
Δj1

(
L̂x,y(λ)− μi(λ)

)

Δ11

(
L̂x,y(λ)− μi(λ)

) , (3.4)

†For ease of notation, and since we have fixed ρ = g in the previous section, I am dropping here any reference
to the representation ρ of the Lax operator.
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where μi(λ) = exp(αi(l(λ)) (cf. (2.22)) and we denoted by Δij(M) the (i, j)th minor of a
matrix M . As t and x(t), y(t) vary, so will Lx(t),y(t), and

Bx,y(t) � Lx,y(t)⊗ L∗
x,y(0) ∈ Pic(0)(Γu,ℵ) ≃ H1(Γu,ℵ,O)

H2(Γu,ℵ,Z)
(3.5)

is a time-dependent degree 0 line bundle on Γu,ℵ.
The flows (2.16) thus determine a flow t→ Bx(t),y(t) in the Jacobian of Γu,ℵ, which is actually

linear in Cartesian coordinates for the torus Pic(0)(Γu,ℵ). Indeed, let {ωk}k be a basis for the
C-vector space of holomorphic differentials on Γu,ℵ, C〈{ωk}k〉 = H1(Γu,ℵ,O), and let

ψ : SymgΓu,ℵ → Pic(0)(Γu,ℵ)

(γ1 + · · ·+ γg) →
g∑

i=1

A(pi) (3.6)

be the surjective, degree 1 morphism from the gth-symmetric power of Γu,ℵ to its Jacobian,
given by taking the Abel sums of g unordered points on Γu,ℵ; here

A : Γu,ℵ → Pic(0)(Γu,ℵ)

γ →
(∫ γ

dω1, . . . ,

∫ γ

dωg

)
(3.7)

denotes the Abel map for some fixed choice of base point. Writing

Symg ∋ γ(t) = (γ1(t), . . . , γg(t)) = ψ−1(Bx(t),y(t))

for the inverse of Bx(t),y(t), which is unique for generic time t by Jacobi’s theorem, we have
that [118, Theorem 4]

Ωik �
∂

∂ti

g∑

j=1

∫ γj(t)

ωk =
∑

p∈λ−1(0)∪λ−1(∞)

Resp

[
ωkPi(L̂x,y(λ))

]
∀ k = 1, . . . , g. (3.8)

The left-hand side is the derivative of the flow on the Jacobian (its angular frequencies) in

the chart on Pic(0)(Γu,ℵ) determined by the linear coordinates H1(Γu,ℵ,O) with respect to the
chosen basis {ωk}k. The right-hand side shows that this is independent of time, and hence the

flow is linear in these coordinates, since ωk and Pi(L̂x,y(λ))) are: the former since it only feels

the dynamical phase-space variables {xi, yi}8i=0 in L̂x,y(λ) via Γu,ℵ, itself an integral of motion,
and the latter by (2.16).

3.2. The Kanev–McDaniel–Smolinsky correspondence

The story above is common to a large variety of systems (the Zakharov–Shabat systems with

spectral-parameter-dependent Lax pairs), and the Ê8 relativistic Toda fits entirely into this
scheme. In particular, in the better known examples of the periodic relativistic and non-
relativistic Toda chain with N -particles (that is, g = slN ; ρ = � in (2.16)), where the spectral
curves have genus g = N − 1, the action-angle map {xi, yi} → (Γu,ℵ,Lx,y) gives a family of
rankg = N − 1 commuting flows on their N − 1-dimensional Jacobian. A question that does
not arise in these ordinary examples, however, is the following: in our case, we have way more
angles than we have actions, as the genus of the spectral curve is much higher than the rank
of g = e8. Indeed, the Jacobian is 495-complex dimensional in our case by (2.33); but the
(compact) orbits of (2.33) only span an eight-dimensional Abelian subvariety of the Jacobian.

How do we single out this subvariety geometrically? In the non-relativistic case, pinning
down the dynamical subtorus from the geometry of the spectral curve has been the subject
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of intense study since the early studies of Adler and van Moerbeke [2] for g = bn, cn, dn, g2,
and the fundamental works of Kanev [69], Donagi [38] and McDaniel–Smolinsky [88, 89] in
greater generality. We now work out how these ideas can be applied to our case as well.

Recall from Proposition 2.6 that we have a W-action on Γu,ℵ by deck transformations given
by

φ :W × Γu,ℵ → Γu,ℵ

(w, λ, μα(λ)) → (λ, μw(α)(λ)) (3.9)

which is just the residual action of the vertical transformations on the cameral cover. Write
φw � φ(w,−) ∈ Aut(Γu,ℵ) for the automorphism corresponding to w ∈ W. Extending by
linearity, φw induces an action on Div(Γu,ℵ) which obviously descends to give actions on the

Picard group Pic(Γu,ℵ), the Jacobian Pic(0)(Γu,ℵ) ≃ Jac(Γu,ℵ) (since φw is compatible with
degree and linear equivalence), and the C-space of holomorphic 1-forms H1(Γu,ℵ,O). At the
divisorial level we have furthermore an action of the group ring

ϕ : Z[W]×Div(Γu,ℵ) → Div(Γu,ℵ),
⎛
⎝∑

i

aiwi,
∑

j

bj(λj , μα(λj))

⎞
⎠ →

∑

i,j

aibj(λj , μwi(α)(λj)). (3.10)

Recall from Proposition 2.6 that, since the group of deck transformations of the cover Γu,ℵ \
{dμ = 0} is isomorphic to the Coxeter action of W on the root space Δ ≃ W/Wα0

, the map
(3.10) factors through the coset projection map W → Δ, that is,

ϕ(w,−) = |Wα0
|
∑

α∈∆

ãαwα, (3.11)

for some {ãα ∈ Z}α∈∆. Restrict now to elements ϕ(w,−) ∈ Z[W] such that ϕ(w,−) : Z[W]→
Z[Aut(Γu,ℵ)] is a ring homomorphism. Then the action (3.10) is the pull-back of an action of
the maximal subgroup of Z[Δ] which respects the product structure induced from Z[W]: this
is the Hecke ring H(W,Wα0

) ≃ Z[Wα0
\W/Wα0

] ≃ Z[Δ]Wα0 . Its additive structure is given by
the free Z-module structure on the space of double cosets of W by Wα0

, and its product is
defined as the push-forward† of the product on Z[W]. In practical terms, this forces the integers
aα in the sum over roots in Δ∗ (that is, right cosets of W/Wα0

) to be constant over left cosets
Wα0

\W in (3.11).
The Weyl-symmetry action is the key to single out the Liouville–Arnold algebraic torus that

is home to the flows (2.16). We first start from the following.

Definition 3.2. Let D ∈ Div(Γ× Γ) be a self-correspondence of a smooth projective
irreducible curve Γ and let C ∈ End(Γ) be the map

C : Jac(Γ) → Jac(Γ)

γ → (p2)∗(p
∗
1(γ) · D), (3.12)

where pi denotes the projection to the ith factor in Γ× Γ. The Abelian subvariety

PTC(Γ) � (id− C)Jac(Γ) (3.13)

†That is, the image under the double-quotient projection of the product of the pull-back functions on W,
which is well defined on the double quotient even when Wα0 is not normal, as in our case.
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is called a Prym–Tyurin variety if and only if

(id− C)(id− C − qC) = 0 (3.14)

for qC ∈ Z, qC � 2.

By (3.14), the tangent fibre at the identity Te(Jac(Γ)) splits into eigenspaces Te(Jac(Γ)) =
tPT ⊕ t∨PT of C with eigenvalues 1 and 1− qC . Because qC ∈ Z, these exponentiate to subtori
TPT = exp tPT, T ∨

PT = exp t∨PT, with TPT = PTC(Γ), such that Jac(Γ) = TPT × T ∨
PT. In partic-

ular, in terms of the linear spaces VPT ≃ T̃PT, V ∨
PT ≃ T̃ ∨

PT which are the universal covers of the
two factor tori, we have

PTC(Γ) ≃ VPT/ΛPT, (3.15)

where ΛPT = H1(Γ,Z) ∩ VPT. Furthermore [69], there is a natural principal polarisation Ξ on
PTC(Γ) given by the restriction of the Riemann form Θ on H1(Γ,O) ≃ VPT ⊕ V ∨

PT to VPT;
we have Θ = qCΞ, with Ξ unimodular on ΛPT. In particular, id− C acts as a projector on the
space of 1-holomorphic differentials, and, dually, 1-homology cycles on Γ, such that

• the projection selects a symplectic vector space VPT ⊂ H1(Γ,O) and dual subring ΛPT ∈
H1(Γ,Z); 1-forms in VPT have zero periods on cycles in Λ∨

PT;

• bases {ω1, . . . , ωdimVPT
}, {(Ai, Bi)}dimVPT

i=1 can be chosen such that the corresponding
matrix minors of the period matrix of Γ satisfy

∫

Aj

ωi = qCδij ,

∫

Bj

ωi = τij (3.16)

with τij non-degenerate positive definite.

There is a canonical element of H(W,Wα0
) which has particular importance for us, and which

will eventually act as a projector on a distinguished Prym–Turin subvariety of Jac(Γu,ℵ). This
is the Kanev–McDaniel–Smolinsky self-correspondence† [69, 88, 89]

Pg �
∑

w∈W/Wα0

〈
w−1(α0), α0

〉
w. (3.17)

I summarise here some of its key properties, some of which are easily verifiable from the
definition (3.17), with others having been worked out in meticulous detail in [88, Sections 3–
5]. Some further explicit results that are relevant to our case, but that did not fit in the
discussion of [88], are presented below.

Proposition 3.1. In the root space (h∗, 〈, 〉) consider the hyperplanes

Hi = {β ∈ h∗|〈β, α0 = i〉}. (3.18)

Then, set-theoretically, Wα0
\W/Wα0

≃ {δi � Hi ∩Δ}2i=−2. Letting W π1−→W/Wα0

π2−→
Wα0

\W/Wα0
be the projection to the double coset space and {si}2i=−2 = π2(Δ), we

furthermore have

Pg = π∗
2

⎡
⎣ ∑

δi∈Wα0
\W/Wα0

isi ∈ H(W,Wα0
)

⎤
⎦. (3.19)

†This has also been considered in the gauge theory literature, implicitly in [65, 86] and more diffusely in
[83].
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Proof. The fact that Pg ∈ Z[Δ]Wα0 = H(W,Wα0
) follows immediately from its definition

in (3.17) and the constancy of 〈w−1(α0), α0〉 on left cosets. The rest of the proof follows from
explicit identification of the elements of H(W,Wα0

) in terms of the hyperplanes of (3.18), and
evaluation of (3.17) on them. The proof is somewhat lengthy and the reader may find the
details in Appendix A. �

Corollary 3.2. Pg satisfies the quadratic equation in H(W,Wα0
) with integral roots

P
2
g = qgPg (3.20)

with

qg = 60. (3.21)

In particular, the correspondence C = 1−Pg defines a Prym–Tyurin variety PT1−Pg
(Γu,ℵ) ⊂

Jac(Γu,ℵ).

Proof. This is a straightforward calculation from equation (3.19). �

In the following, I will simply write PT(Γu,ℵ), dropping the 1−Pg subscript which will be
implicitly assumed.

The main statement about PT(Γu,ℵ) is the subject of the next theorem. Note that this bears
a large intellectual debt to previous work in [69, 89]; the modest contribution of this paper is
a combination of the results of this and the previous section with [69, 89] to prove that the
Liouville–Arnold torus (the image of the flows (2.16) on the Jacobian) is indeed isomorphic to
the full Kanev–McDaniel–Smolinsky Prym–Tyurin, rather than being just a closed subvariety
thereof.

Theorem 3.3. The flows (2.16), (3.8) of the Ê8 relativistic Toda chain linearise on the
Prym–Tyurin variety PT(Γu,ℵ) and they fill it for generic initial data (u,ℵ).

Proof. The linearisation of the flows on PT(Γu,ℵ) amounts to say that

∑

p∈λ−1{0,∞}

Resp

[
ωPi(L̂x,y(λ))

]
	= 0 ⇒ P

∗
gω = ω (3.22)

in (3.8). This is essentially the content of [69, Theorem 8.5] and especially [89, Theorem 29],
to which the reader is referred. The latter paper greatly relaxes an assumption on the spectral
dependence of L̂x,y(λ) [69, Condition 8.4] which renders incompatible [69, Theorem 8.5] with
(2.12); this restriction is entirely lifted in [89, Theorem 29], where the fact that (2.12) depends
rationally on λ is sufficient for our purposes. While [69, 89] deal with the non-relativistic
counterpart of the system (2.16), it is easy to convince oneself that replacing their Lie-algebraic
setting with the Lie-group arena we are playing in in this paper amounts to a purely notational
redefinition of g to G in the arguments leading up to [89, Theorem 29].

Since the first part of the statement has been settled in [89], I now move on to prove that

the Prym–Tyurin is the Liouville–Arnold torus. Denoting φ
(i)
t : P̂ → P̂ be the time-t flow of

(2.16), and for fixed (x, y) ∈ P̂, the above proves that

φ
(1)
t1 · · · · · φ

(8)
t8 : P1 × · · · × P1 → P̂

(x, y) → (x(�t), y(�t)) (3.23)

surjects to an eight-dimensional subtorus of PT(Γu,ℵ). To see the resulting torus is the

Prym–Tyurin, we use the dimension formula of [88, Theorem 17]. Let C⋆ � P1 \ {b±i }9i=1,
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M : π1(C⋆)→W be the Galois map of the spectral cover Γu,ℵ, and for P ∈ Γu,ℵ write S(P )

for the stabiliser of P in the group of deck transformations of Γu,ℵ, and h∗P for the fixed point
eigenspace of S(P ) ⊂ W. Then [88, Theorem 17]

dimC PT(Γu,ℵ) =
1

2

∑

λ(p)|dμ(p)=0

(
8− dimC h∗p

)
− 8 +

〈
h,C[W/M(π1(P

1
⋆))]

〉
, (3.24)

where one representative p is chosen in each fibre of λ : Γu,ℵ → P1. In our case, M(π1(P1
⋆)) =W

by Proposition 2.6 and the fact that the α0-parabolic cover is irreducible (hence a connected
covering space of P1), so the last term vanishes. Then

dimC PT(Γu,ℵ) =
1

2

∑

i=1,...9,j=±

(
8− dimC h∗Qi,j

)
+

1

2

∑

j=±

(
8− dimC h∗Q∞,j

)
− 8 (3.25)

where Qi,j=± are the ramification points of the λ-projection as in Proposition 2.7. Since
αk(i) · μ(Qi,±) = 0 for some permutation k : {1, . . . , 8} → {1, . . . , 8}, the deck transformations

in S(Qi,±) are simple reflections that stabilise the hyperplane orthogonal to the root αk(i), so
that dimC h∗Qi,j

= 7. As far as Q∞,± are concerned, the deck transformation associated to a
simple loop around them corresponds to the product of the Coxeter element of W times a
simple root, as this is the lift under the projection to the base curve of a loop around all
branch points on the affine part of the curve†. Then dimC h∗Q∞,j

= 1, dimC PT(Γu,ℵ) = 8, and

the flows (3.23) surject on the latter. �

An explicit construction of Kanev’s Prym–Tyurin PT(Γu,ℵ), after [86, Section 3], can be
given as follows. With reference to Figure 4, let γ±

i be a simple counterclockwise loop around
the branch point b±i . I will similarly write γ−

0 (respectively, γ+
0 ) for analogous loops around

λ = 0 (respectively, λ =∞). For α ∈ Δ∗ and i = 1, . . . , 8, I define Cα
i , Dα

i ∈ C1(Γu,ℵ,Z) to be
the lifts of the contours in red (respectively, in blue) to the cover Γu,ℵ, where we fix arbitrarily
a base point r ∈ γ±

i and we look at the path in Γu,ℵ lying over γ±
i with starting point on the

λ-preimage of r labelled by α. In other words,

Cα
i � λ−1

σi(α)

(
γ+
i

)
· λ−1

α

(
γ−
0

)
,

Dα
i � λ−1

σi(α)

(
γ+
i

)
· λ−1

α

(
γ−
i

)
. (3.26)

Let now

Ai �
1

qg
(Pg)∗C

α0
i , Bi �

1

2
(Pg)∗D

α0
i , (3.27)

where the normalisation factor for Ai, Bi will be justified momentarily. Note that Ai, Bi ∈
Z1(Γu,ℵ,Q) are closed paths on the cover: every summand Cα

i and Dα
i is indeed always

accompanied by a return path C
σi(α)
i and D

σi(α)
i , which has opposite weight in (3.27). Denoting

by the same letters Ai, Bi their conjugacy classes in homology, we identify H1(Γu,ℵ,Q) ⊃
ΛPT � Z〈{Ai, Bi}8i=1〉. If {ω1, . . . , ω8} is any choice of 1-holomorphic differentials such that
dimP∗

gC〈ω1, . . . , ω8〉 = 8, then

PT(Γu,ℵ) =
P∗

gC〈ω1, . . . , ω8〉
Z〈{Ai, Bi}8i=1〉

(3.28)

†The root in question is the one that is repeated in the sequence {k(i)}9
i=1. There could be more of them

in principle, but this would be in contrast with M(π1(P1
⋆)) = W; equivalently, a posteriori, this would lead to

dimC PT(Γu,ℵ) < 8, contradicting the independence of the flows (2.16), which in turn is a consequence of the
algebraic independence of the fundamental characters θi in R(G).
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Figure 4 (colour online). Contours on P1
⋆ = C∗ \ {b±i }9

i=1. Projections of the A- and B-cycles
are depicted in red and blue, respectively.

by construction. It is instructive to compute the intersection index of the cycles (3.27): we
have, from (3.26), that

(Ai, Bj) =
1

2qg

∑

β,γ∈∆∗

(Cβ
i , Dγ

j ) =
δij
2qg

∑

β,γ∈∆∗

δβγ〈α0, β〉2 = δij , (3.29)

(Ai, Aj) = (Bi, Bj) = 0, (3.30)

so that they are a symplectic basis for ΛPT; the normalisation factor (3.27) has been chosen
to ensure both that this is so and to render the period integrals on {Ai, Bi} compatible with
the usual form of special geometry relations.

3.3. Hamiltonian structure and the spectral curve differential

The fact that the isospectral flows (2.16) turn into straight-line motions on PT(Γu,ℵ) is the

largest bit in the proof of the algebraic complete integrability of the Ê8 relativistic Toda. We
conclude it now by working out in detail a choice of Darboux coordinates {Si, ϑ

i}8i=1, with
ϑi ∈ S1, such that the Hamiltonians (2.18) are functions of Si alone. In the process, this will
complete the construction of the Dubrovin–Krichever data of Definition 3.1.

Composing the surjection (3.17) with the Abel–Jacobi map gives an Abel–Prym–Tyurin
map

APT : Γu,ℵ → PT(Γu,ℵ)

p → Pg · A(p). (3.31)
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Since PT(Γu,ℵ) is principally polarised, an analogue of the Jacobi theorem holds for APT [68,
Lemma 2.1], and the Abel–Prym–Tyrin map (3.31) is an embedding of Γu,ℵ into PT(Γu,ℵ) as

a qg = 60-multiple of its minimal curve Ξ7

7! . Then, taking Abel sums of 8 points on Γu,ℵ and
projecting their image to PT,

APT : Sym8Γu,ℵ → PT(Γu,ℵ)

(γ1 + · · ·+ γg) → (Pg)∗

8∑

i=1

A(γi) (3.32)

gives a finite, degree q8
g = 2163858 surjective morphism† from the eight-fold symmetric product

of Γu,ℵ to PT(Γu,ℵ) which maps the fundamental class [Sym8(Γu,ℵ)]→ q8
g[PT(Γu,ℵ)] to q8

g the

fundamental class of the Prym–Tyurin. The fibre A−1
PT(ξ) of a point ξ ∈ PT(Γu,ℵ) is given by

q8
g unordered 8-tuples of points γ1 + · · ·+ γ8 on Γu,ℵ satisfying

ξ = APT

(∑

i

γi

)
= (Pg)∗

8∑

i=1

A(γi) = (Pg)∗

8∑

i=1

(∫ γi

dω1, . . . ,

∫ γi

dω495

)
,

=

8∑

i=1

(∫ Pg(γi)

dω1, . . . ,

∫ Pg(γi)

dω495

)
,

=

8∑

i=1

(∫ γi

P
∗
gdω1, . . . ,

∫ γi

P
∗
gdω495

)
. (3.33)

Let us now reconsider the action-angle map {xi, yi} → (Γu,ℵ,Bx,y) of (2.18), (3.5) and (3.8) in
light of Theorem 3.3. By the above reasoning, the flows (x(t), y(t)) are encoded into the motion
of Bx,y(t), or equivalently, any of the preimages A−1

PTB(t) = (γ1(t) + · · ·+ γ8(t)). I want to
study the motion in terms of the latter, and argue that the Cartesian projections of γi provide
logarithmic Darboux coordinates for (2.5). I begin with the following.

Theorem 3.4. Write ωPL for the symplectic 2-form on an ℵ-leaf of PToda and let
δ : Ω•(P̂)→ Ω•+1(P̂) denote exterior differentiation on P̂. Then

ωPL = P
∗
g

8∑

i=1

δμ(γi)

μ(γi)
∧ δλ(γi)

λ(γi)
. (3.34)

Proof. Recall that (see, for example, [7, Section 3.3]) any Lax system of the type (2.16)
with rational spectral parameter and with L(λ) ∈ g can be interpreted as a flow on a coadjoint
orbit of g∗ which is Hamiltonian with respect to the Kostant–Kirillov bracket. More in detail,
the pull-back of the Kostant–Kirillov symplectic 2-form reads [7, Sections 3.3, 5.9, and 14.2]

ωKK =
1

2dim g

∑

λk=0,∞

Resλk
Tr

(
(Ak)−g−1

k δgk ∧ g−1
k δgk

)
, (3.35)

where we diagonalise‡. L(λ) = g−1
k Akgk locally around the poles at λ = 0,∞, we denote

M−(λ0) the projection to the Laurent tail around λ = λ0, and δ indicates exterior differ-

entiation on P̂. This can be rewritten in terms of the Baker–Akhiezer eigenvector line bundle

†I slightly abuse notation here and call it with the same symbol of (3.31).
‡Note that the eigenvalue 1 of L̂x,y(λ) has full geometric multiplicity 8, and the other eigenvalues are all

distinct when λ is in a punctured neighbourhood of 0 or ∞.
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(3.3) and its marked section (3.4) as an instance of the Krichever–Phong universal symplectic
form ωKP [36, 76]. Let Ψ = (Ψj) be the 248× 248 matrix whose jth column is the normalised
eigenvector (3.4). Then [36, Section 5]

ωKK = ω
(1)
KP �

1

dim g

∑

λk=0,∞

Resλk
Tr

(
Ψ−1

x,yδL̂x,y ∧ δΨx,y

)
dλ, (3.36)

where d : Ω(P1)→ Ω(P1) is the exterior differential on the spectral parameter space.
This is pretty close to what need, and it would recover the results of obtained in [1] in a

related context, but it actually requires two extra tweaks to get the symplectic form we are
after, ωPL. First off, as explained in [7, Section 6.5], if we are interested in the r-matrix solution

(2.6) for the Toda lattice, what we need to consider is rather a version ω
(1)
KP of the universal

symplectic form which is logarithmic in λ, that is,

ω
(1)
KP �

1

dim g

∑

λk=0,∞

Resλk
Tr

(
Ψ−1

x,yδL̂x,y ∧ δΨx,y

)dλ

λ
. (3.37)

Secondly and more importantly, since we are dealing with an integrable system on a Poisson–
Lie Kac–Moody group, rather than a Lie algebra, ωPL is given by a different† Poisson bracket,

as explained in [36, Section 5.3]. This is the logarithmic Krichever–Phong Poisson bracket ω
(2)
KP

ωPL = ω
(2)
KP �

1

dim g

∑

λk=0,∞

Resλk
Tr

(
Ψ−1

x,yL̂x,y

−1
δL̂x,y ∧ δΨx,y

)dλ

λ
. (3.38)

The calculation of the residues of (3.38) is straightforward (see [7, Section 5.9] for a completely
analogous calculation in the context of the Kostant–Kirillov form (3.35)). From the general
theory of Baker–Akhiezer functions‡ and (3.8), ln Ψx,y has simple poles, with residue equal to
the identity, at a divisor D(t) ∈ Div(Γu,ℵ) such that

A(D(t))−A(D(0))

t
=

∑

p∈λ−1(0)∪λ−1(∞)

Resp

[
ωkPi(L̂x,y(λ)))

]
, (3.39)

and by Theorem 3.3, the left-hand side is actually in the Prym–Tyurin variety PT(Γu,ℵ). This
means that Ψx(t),y(t) has simple poles at (Pg)∗(γ1(t) + · · ·+ γ8(t)) for some γ = γ1(t) + · · ·+
γ8(t) ∈ Sym8(Γu,ℵ); different γ have the same image under (Pg)∗. Write

∑
rkǫk � γ =

∑

i,α

〈w(α0), α0〉w∗γi (3.40)

for some rk ∈ Z, ǫk ∈ Γu,ℵ. Near ǫk we have then

δΨx,y =
Ψδλ(ǫk)

λ− λ(ǫk)
(1 +O(λ− λ(ǫk))). (3.41)

It turns out that the rest of the expression (3.38) is regular at ǫk. Indeed, exterior differentiation
of the eigenvalue equation (3.1) yields

δ
[

̂lnLx,y − lnμΨx,y

]
=

(
L̂x,y

)−1

δL̂x,y −
δμ

μ
Ψx,y − lnμδΨx,y = 0. (3.42)

†But, non-trivially, compatible: the resulting system is then bi-Hamiltonian.
‡See, for example, the discussion in [77, Section 2].
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Multiplying by (λΨx,y)
−1 and exploiting the fact that Ψ−1

x,y(L̂x,y − μ) = 0 for the dual section
of Lx,y, we get

Resλ(ǫk)Tr
(
Ψ−1

x,yL̂x,y

−1
δL̂x,y ∧ δΨx,y

)δλ

λ
= Resλ(ǫk)Tr

(
Ψ−1

x,yL̂x,y

−1
δL̂x,yΨx,y

)
∧ δλ(ǫk)

λ− λ(ǫk)

dλ

λ
,

= Tr
(
Ψ−1

x,yL̂x,y

−1
δL̂x,yΨx,y

)
∧ δλ(ǫk)

λ(ǫk)
,

= 248δ lnμ(ǫk) ∧ δ lnλ(ǫk). (3.43)

Swapping orientation in the contour giving the sum over residues (3.38) amounts to picking
up residues over the affine part of Γu,ℵ \ λ−1(0). We have two possible contributions here: one
is the sum over residues at the Baker–Akhiezer poles ǫk that we have just computed. Another

is given by the branch points of the λ projection, since detΨx,y(b
±
i ) = O(

√
λ− b±i ): hence

both Ψ−1
x,y and δ|λ=constΨx,y develop a (simple) pole there. Whilst the residues are individually

non-zero, their sum vanishes: it is a simple observation that adding a contribution of the form

ΔKP =
∑

λk=0,∞

Resλk
Tr

(
Ψ−1

x,yδ lnμΨx,y

)
∧ δλ

λ
(3.44)

to (3.38) exactly offsets the aforementioned non-vanishing residues at the branch points, and
it has opposite residues at λ = 0 and ∞. Taking into account sign changes and summing over
poles, images of the Weyl action as in (3.40), and preimages of the Abel–Prym–Tyurin map
returns (3.34). �

We are now ready to write down explicitly the action-angle integration variables for the
system. Let πsym : S

sym
g → Bg be the family of Abelian varieties obtained by replacing Γu,ℵ

with its eightfold symmetric product in the top left corner of (2.23); this is a q8
g-cover of P̂.

Let Dg ∈ DivSg be the sum of Σi(Bg) in (2.23).
On the open set where the Prym–Tyurin does not degenerate,

B
reg
g � {(u,ℵ) ∈ Bg|dimC PT(Γu,ℵ) = 8} (3.45)

introduce the (vertical) 1-forms on S
sym
g written, on a bundle chart ((u,ℵ); (γi)i), as

L �

8∑

i=1

dλ(γi)

λ(γi)
∈ ωS

sym
g /Bg

(Breg
g ),

M �

8∑

i=1

dμ(γi)

μ(γi)
∈ ωS

sym
g /Bg

(Breg
g ),

dS �

8∑

i=1

dσ(γi) �

8∑

i=1

log μ(γi)
dλ(γi)

λ(γi)
∈ ωS

sym
g /Bg

(Breg
g ). (3.46)

The same notation dS and dσ will indicate the pull-backs to fibres Sym8(Γu,ℵ) and Γu,ℵ of
the respective families; in (3.46) dσ is an arbitrary choice of branch of the log-meromorphic
differential logμd log λ on Γu,ℵ. Note that

ωPL = ω
(1)
KP = P

∗
gM ∧L .
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Lemma 3.5. We have that

∂dσ

∂ui
∈ H0(Γu,ℵ,Ω

1) ∀i = 1, . . . , 8, (3.47)

where the moduli derivative in (3.47) is taken at fixed μ : Γu,ℵ → P1.

Proof. By definition,

dκi �
∂dσ

∂ui
= −∂ui

λdμ

λμ
= − λ9∂ui

Ξg,reddμ

∂λ(λ9Ξg,red)λμ
. (3.48)

Recall that, for a generic polynomial P (x, y), the 1-forms

dωij =
xi−1yj−1dx

∂yP

with (i, j) in the strict interior of the Newton polygon of P (x, y) are holomorphic 1-forms on
{P (x, y) = 0}. The expression (3.48) is a linear combination of terms that are exactly of this
form: note that the doubly logarithmic form of dσ in (3.46) is crucial to ensure the presence
of the product λμ at the denominator which makes this statement true. However λ9Ξg,red is
highly non-generic, and by the way Γu,ℵ was introduced in Definition 2.1 the 1-forms in (3.48)
may still have simple poles with opposite residues at the strict transform of the nodes in (2.34).
A direct computation however shows that

∂Ξg,red

∂ui
(p) = 0 if dμ(p) = 0, μ(p) +

1

μ(p)
= rki , i = 2, 3, (3.49)

which entails the vanishing of the residues on the normalisation, and thus dκj ∈
H1(Γu,ℵ,O) ∀j = 1, . . . , 8. �

As a consequence, an algebraic Liouville–Arnold-type statement can be made as follows.
Locally on Γu,ℵ and its eightfold symmetric product, consider the Abelian integral

σ(p) =

∫ p

dσ (3.50)

and correspondingly S(pi) =
∑

i σ(pi). Define the Ai-periods of dσ as

αi �

∮

Ai

dσ. (3.51)

By Corollary 3.2 and Theorem 3.4, these are phase-space areas (action variables) for the angular
motion on PT(Γu,ℵ). Indeed,

αi =

∮

Ai

dσ =
1

qg

∮

(Pg)∗(Ai)

dσ

=
1

qg

∮

Ai

P
∗
gdσ =

1

qg

∮

D2|∂D2=Ai

ωPL. (3.52)

Define the normalised basis of holomorphic 1-forms

dϑi =
∑

j

(
∂α

∂u

)−1

ij

dκj ∈ H1(Γu,ℵ,O), (3.53)

so that
∮
Aj

dϑi = δij . This is the normalised C-basis of the vector space V− of Pg-invariant

forms on Γu,ℵ with respect to our choice of A and B cycles in (3.27).
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Theorem 3.6. We have

ωPL =
1

qg

8∑

i=1

dui ∧ dκi =
1

qg

8∑

i=1

dαi ∧ dϑi (3.54)

and in the action-angle coordinates (αi, ϑi)
8
i=1 the flows (2.16), (3.8) are Hamiltonian with

respect to ωPL, with Hamiltonian ui = ui(α). In particular, the angular frequencies in (3.8) are
given by the Jacobian

Ωij =

(
∂α

∂u

)−1

ij

. (3.55)

Proof. The statement just follows from writing down the symplectic change-of-variables
given by looking at S as a type II generating function of canonical transformation, first in u
and then in α,

μ(γi) = exp
(
λ(γi)∂λ(γi)S

)
, κi =

∂S
∂ui

=

∫
dκi, ϑi =

∂S
∂αi

=

∫
dθi, (3.56)

and use of Lemma 3.5. �

Keeping in mind the discussion below Definition 3.1, the constructions of this section bestow
on Sg a canonical choice of Dubrovin–Krichever data as follows:

F ←→ Sg

B ←→ Bg

D ←→
∑

i

Σi(Bg)

E1 ←→ L ←→ dλ

λ

E2 ←→ M ←→ dμ

μ

Λ ←→ ΛPT (3.57)

which is complete but for the choice of the Lagrangian sublattice ΛL. The latter is left
unspecified by the Toda dynamics, and, in the applications of the next two sections its choice
will vary depending on the circumstances.

4. Application I: gauge theory and Toda

I will now consider the first application of the constructions of the previous two sections: this
will culminate with a proof of a B-model version of the Gopakumar–Vafa correspondence for
the Poincaré homology sphere. For the sake of completeness, I will set the stage by recalling
all the necessary ingredients of Figure 1; the reader familiar with them may skip directly to
Section 4.2.

4.1. Seiberg–Witten, Gromov–Witten and Chern–Simons

4.1.1. Gauge theory. From the physics point of view, the first object of interest for us is
the minimal supersymmetric five-dimensional gauge theory on the product M5 = R4 × S1

R of
four-dimensional Minkowski space times a circle of radius R with gauge group the compact
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real form ER
8 . On shell, and at R→∞, its gauge/matter content consists of one ER

8 vector
multiplet (A, λ, ϕ) with real scalar ϕ, gluino λ, and gauge field A; upon compactification this is
enriched by an extra scalar ϑ, which is the Wilson loop around the fifth-dimensional S1

R. The
infrared dynamics of the compactified theory is characterised by a dynamical holomorphic scale
in four dimensions Λ4 [101, 108], which is (perturbatively) a renormalisation group invariant.
For generic vacua parametrised by R ∈ R+ and the complexified scalar vev φ = 〈ϕ + iθ〉, and
assuming that the latter is much higher than the non-perturbative scale |φ| ≫ Λ4, the massless
modes are those of a theory of ranke8 = 8 weakly coupled photons in four dimensions, whose
Wilsonian effective action is given by integrating out both perturbative (electric) and non-
perturbative (dyonic) contributions of BPS saturated Kaluza–Klein states. This is expressed
(up to two derivatives in the U(1) gauge superfield strengths W i

α, and in four-dimensional
N = 1 superspace coordinates (x, θ)) by the Wilsonian effective Lagrangian

L =
1

4π
Im

[∫
d4θ

∂F SYM
0

∂Ai
Āi +

1

2

∫
d2θ

∂2F SYM
0

∂Ai∂Aj
W i

αW̄
α,j

]
, (4.1)

which is entirely encoded by the prepotential F SYM
0 ; in particular, the Hessian

∂2FSYM
0

∂Ai∂Aj
returns

the gauge coupling matrix for the low-energy photons.
Mathematically, this gauge theory prepotential should coincide with the equivariant limit

of a suitable generating function of instant on numbers. Let Bunk(G) be the moduli space of
principal E8-bundles on the projective compactification P2 ≃ C2 ∪ P1

∞ of R4 ≃ C2 with second
Chern class k, which I assume to be positive in the following; here ‘framed’ means that we fix
a trivialisation of the projective line at infinity. Bunk(G) is an irreducible smooth quasi-affine
variety of dimension 2h(g)k = 60k, and it admits an irreducible, affine partial compactification
given by the Uhlenbeck stratification

Uk(G) = Bunk(G) ⊔
(
Bunk−1(G)× C2

)
⊔
(
Bunk−2(G)× Sym2C2

)
· · · ⊔

(
SymkC2

)
. (4.2)

There is an algebraic T× (C⋆)2 ≃ (C⋆)10 torus action on Bunk(G), where the two factors act
by scaling the trivialisation at infinity and the linear coordinates of C2, respectively, and which
extends to the whole of Uk(G) [22], and leads to a ten-dimensional torus action on the vector
space H0(Uk(G),O) of regular functions on Uk(G). Denoting the characters of T× (C⋆)2 by μ,
the latter decomposes

H0(Uk(G),O) =
⊕

μ

(
H0(Uk(G),O)

)
μ

(4.3)

as a direct sum of weight spaces which are, non-trivially, finite-dimensional over C (see,
for example, [93]). Let ai = c1(Li), i = 1, . . . , 8 for the first Chern class of the dual of the
ith tautological line bundle Li → BT , and likewise write ǫ1,2 = c1(L1,2) for the equivariant
parameters of the right (spacetime) (C⋆)2 factor in T× (C⋆)2 � Uk(G). The instanton partition
function of the five-dimensional gauge theory† is then defined to be the Hilbert sum

Z inst
G (a1, . . . , a8; ǫ1, ǫ2, Q)

=
∑

n∈Z+

(
QRqge−qgR(ǫ1+ǫ2)/2

)n ∑

μ

dimC

(
H0(Uk(G),O)

)
μ

exp [μ · (�a,�ǫ)]. (4.4)

†Physically this should be thought to be in an Ω-background, with equivariant parameters (ǫ1, ǫ2)
corresponding to the torus weights of the (C⋆)2 factor acting on C2 above.
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The prepotential (4.1) is recovered as the sum of the non-equivariant limit of ǫ1ǫ2 lnZ inst
G ,

which is well defined [92, 94], plus a classical + one-loop perturbative contribution. Namely,

F SYM
0 � Fcl + F1−loop + Finst, (4.5)

where

Fcl =
τijaiaj

2
,

F1−loop =
∑

α∈∆∗

[
(α · a)2 log(RΛ4)

2
− (α · a)3

R

12
+ Li3

(
e−Rα·a

)]
,

Finst = lim
ǫi→0

ǫ1ǫ2 logZ inst
G (a1, . . . , a8; ǫ1, ǫ2,Λ4), (4.6)

where τ is the bare gauge coupling matrix. In the following, I am going to measure energies in
units of Λ4 and thus set Λ4 = 1; the dependence on Λ4 can be restored by appropriate rescaling
of the dimensionful quantities ai and 1/R.

4.1.2. Topological strings. It has long been argued that the prepotential (4.6) might also
be regarded as the generating function of genus zero Gromov–Witten invariants on a suitable
non-compact Calabi–Yau threefold [70, 79]. Let

X = Tot
(
O⊕2

P1 (−1)
)

=
{
(A, v) ∈ Mat(2,C)× P1|Av = 0

}
(4.7)

be the minimal toric resolution of the singular quadric detA = 0 in A4; columns of A give
trivialisations of O(−1) over the North/South affine patches of P1. Any Γ ⊳ SL2(C), |Γ| <
∞ gives an action Γ � X by left multiplication, (γ ∈ Γ, A)→ γ ·A, which is trivial on the
canonical bundle of X, and covers the trivial action on the base P1. The quotient space is thus
a singular Calabi–Yau fibration over P1 by surface singularities of the same ADE type of Γ [104];
and type E8 corresponds to taking Γ ≃ Ĩ the binary icosahedral group (see Appendix B.2).

There are two distinguished chambers in the stringy Kähler moduli space of X � [X/Ĩ] that
are of importance in our discussion. One is the large radius chamber: in this case we take
the minimal crepant resolution π : Y → X/Ĩ, which corresponds to fibrewise resolving the E8

singularities on a chain of rational curves whose intersection matrix equates −C
g
ij [104]. In

particular, H2(Y,Z) = Z〈H;E1, . . . , E8〉, where H (respectively, Ei) is the pull-back to Y from

the base P1 (respectively, the blow-up Ĉ2/Ĩ of the fibre singularity) of the fundamental class
of the base curve (respectively, of the class of the ith exceptional curve). The Gromov–Witten
potential of Y is the generating sum

FGW(Y ; ǫ; tB, t1, . . . , t8) =
∑

d∈H2(Y,Z),g∈Z+

ǫ2g−2e−d·tNY
g,d

=
∑

g∈Z+

ǫ2g−2FGW
g (Y ; tB, t1, . . . , t8), (4.8)

where

NY
g,d =

∫

[Mg(Y,d)]vir

1 (4.9)

is the genus g, degree d Gromov–Witten invariant of Y , and we write d = dB [H] + d1[E1] +
· · ·+ d8[E8] for the degrees of stable maps from P1 to Y . Owing to the non-compactness of Y ,
what is really meant by NY

g,d is a sum of degrees of the localised virtual fundamental classes
at the fixed loci with respect to a suitable C⋆ action: note that Y supports a rank two torus
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action given by a diagonal scaling the fibres (which commutes with Γ, and with respect to
which the resolution map π is equivariant) and a C⋆ rotation of the base P1. In particular we
can always cut out a 1-torus action which is trivial on KY (the equivariantly Calabi–Yau case)
by tuning the weights of the two factors appropriately, and this is the choice that is picked† in
(4.9). Furthermore, natural Lagrangian A-branes L →֒ Y and a counting theory of open stable
maps can be constructed (at least operatively) via localisation [15, 25, 71]; in a vein similar
to (4.8)–(4.9), one defines

WGW
g,h (Y, L;λ; tB , t1, . . . , t8, λ) =

∑

d∈H2(Y,L,Z)

∑

w1,...,wh∈H1(L,Z)}

e−d·t
∏

i

λwi
i NY,L

g,h,d,w, (4.10)

where

NY,L
g,h,d,w =

∫

[Mg,h(Y,L,d,w)]virt

1 (4.11)

is the genus g, h-holed open Gromov–Witten invariant of (X,L) of relative degree d and winding
numbers {wi}hi=1, ∂d =

∑
wi.

The relation of these curve-counting generating functions and the instanton prepotentials
of the previous section is given by the so-called geometric engineering of gauge theories, a
(partial) statement of which can be given as follows.

Claim 4.1 [70,79]. The genus zero Gromov–Witten potential of Y equates the five-
dimensional gauge theory prepotential/instanton generating function

F SYM
0 (R, a1, . . . , a8) = FY

0 (tB, t1, . . . , t8) + cubic (4.12)

under the identification

ai = tiR, R = e−tB/4. (4.13)

Claim 4.1 has an extension to higher genera wherein gravitational corrections to F SYM
0 are

considered [5, 12], or equivalently, the gauge theory is placed in the Ω-background (without
taking the limit (4.6)) and one restricts to the self-dual background ǫ1 = −ǫ2 = ǫ [96]. The
open string potentials (4.10) have similarly a counterpart in terms of surface operators in the
gauge theory [4, 73].

The second chamber is the orbifold chamber: here we consider the stack quotient X =
[O(−1)⊕2/Ĩ], which has a P1 worth of Ĩ-stacky points. Open and closed Gromov–Witten
invariants of X can be defined, if only computationally, along the same lines as before by virtual
localisation on moduli of twisted stable maps [25]; I refer the reader to [15, Sections 3.3 and
3.4] where this is more amply discussed.

4.1.3. Chern–Simons theory. The previous Calabi–Yau geometry has been argued in [15],
following the earlier work [3], to be related to the large N limit of U(N) Chern–Simons theory
on the Poincaré sphere. This is a real 3-manifold Σ obtained from S2 × S1 after rational surgery
with exponents 1/2, 1/3 and 1/5 on a 3-component unlink wrapping the fibre direction of
S1 × S2 → S2, and it is the only Z-homology sphere, other than S3, to have a finite fundamental
group. Equivalently, it can be realised as the quotient S3/Ĩ ≃ RP3/I of the three-sphere by the
left-action of the binary icosahedral group [121].

I will very succinctly present the statement we are after, referring the reader to the beautiful
review [85] or the presentation of [15] for more details. Let k ∈ Z+, A a smooth gauge

†This is the choice that is picked, for toric targets, by the topological vertex; this is consistent with the fact
that, by the equivariant CY condition, this is a rational number (rather than an element of HBC⋆ (pt,Q)).
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connection on the trivial U(N) bundle on Σ. The U(N) Chern–Simons partition function
of Σ at level k is the functional integral

ZCS(Σ, k,N) = 〈1〉CS =

∫

A /G

[DA] exp

(
ik

2π
CS[A]

)
, (4.14)

CS[A] =

∫

Σ

Tr�

(
A ∧ dA+

2

3
A3

)
, (4.15)

where (4.15) is the Chern–Simons action. For K →֒ Σ a link in Σ and ρ ∈ R(U(N)), we will
also consider the expectation value under the measure (4.14)–(4.15) of the ρ-character of the
holonomy around K,

WCS(Σ,K, k,N, ρ) =
〈TrρHolK(A)〉CS

ZCS
= Z−1

CS

∫

A /G

[DA] exp

(
ik

2π
CS[A]

)
TrρHolK(A). (4.16)

Equations (4.14)–(4.16) were proposed by Witten [120] to be smooth† invariants of Σ and
(Σ,K), reflecting the near metric independence of (4.14) at the quantum level [105]; when Σ
is replaced by S3, (4.16) is the HOMFLY polynomial of K coloured in the representation ρ.

We will be looking at (4.14) in two ways, which are both essentially disentangled with
the question of giving a rigorous treatment of the path integral (4.14). One is in Gaussian
perturbation theory at large N , where we take (4.14) as a formal expansion in ribbon graphs
[85, 116]. Writing

gYM =
2πi

k + N
, t = gYMN, (4.17)

the perturbative free energy takes the form

FCS(Σ, gYM, t) = lnZCS(Σ, k,N)

=
∑

g�0

FCS
g (Σ, t)g2g−2

YM ∈ g−2
YMQ[[t, g2

YM]]. (4.18)

Similarly, for h > 0, l ∈ Nh and K ∈ Σ a link in Σ, we get for the connected Chern–Simons
average of a Wilson loop around K that

W
(h)
CS (Σ,K, k,N, {λi}hi=1) �

∑

l∈Nh

∏

i

λli
i

1

|l|!
∂|l| log

〈
e
∑

i qiTr(HolK(A))i
〉

CS

∂ql11 . . . ∂qlss

∣∣∣∣∣
qi=0

,

=
∑

g�0

Wg,h(Σ,K, t, {λi})g2g−2+h
YM ∈ gh−2

YM Q[[t, g2
YM]]. (4.19)

The second way of looking at (4.18) and (4.19) comes from their independent mathematical
life as the Uq(slN ) Reshetikhin–Turaev–Witten invariants of Σ and K →֒ Σ, respectively [105].
Recall that Σ has a Hopf-like realisation as a circle bundle over the orbifold projective line P1

2,3,5

with three orbifold points with isotropy group Zs(n), with s(1) = 2, s(2) = 3, s(3) = 5. I will
write s =

∏
i s(i) = 30, and Kn ≃ S1 for the knots wrapping the exceptional fibre labelled by

n. Then the Reshetikhin–Turaev–Witten (RTW) invariants of Σ and (Σ,Kn) can be computed
explicitly from a rational surgery formula [63] (or equivalently, Witten’s surgery prescription

†More precisely, ZCS is only invariant under diffeomorphisms of Σ that preserve a given framing of its
tangent bundle, and changes in a definite way under change-of-framing; the same applies for WCS and a choice
of framing on K. In the following I implicitly work in canonical framing for both Σ and K; also the change of
framing will not affect the large N behaviours of FCS but for a constant in t, O(N0) (unstable) term.
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for Chern–Simons vevs [120]), leading to closed-form expressions for (4.18) and (4.19) alike in
terms of Weyl-group sums [84]. Denote by Fl the set of dominant weights ω of SU(N) such
that, if ω =

∑
aiωi in terms of the fundamental weights ωi, then

∑
i ai < l. Then,

ZCS(Σ, k,N) = N (Σ)
∑

β∈Fk+N

1
∏

α>0 sin
(

πβ·α
k+N

)
3∏

i=1

∑

fi∈Λr/s(i)Λr

∑

wi∈SN

ǫ(wi)

× exp

{
iπ

(k + N)s(i)

(
−β2 − 2β((k + N)fi + w(ρ)) + ((k + N)fi + w(ρ))

2
)}

,

(4.20)

where ρ is the Weyl vector of slN , ρ =
∑N−1

i=1 ωi, Λr is the slN root lattice, and N (Σ) is
an explicit multiplicative factor involving the surgery data and the Casson–Walker–Lescop
invariant of Σ. A similar expression holds for the (un-normalised) Chern–Simons vevs of the
Wilson loops around fibre knots: this is obtained by replacing ρ→ ρ + Λ for Λ a dominant
weight in (4.18), after which (4.19) can be recovered by expressing the representation-basis
colouring by the connected power sum colouring of (4.19), and powers multiple of si for i =
1, 2, 3 single out the holonomies around the ith exceptional fibre (see [15, 17] and the discussion
of Section 4.2.1).

Two remarks are in order about (4.20). Firstly, unlike (4.18)–(4.19), (4.20) is an exact
expression at finite N ; among its virtues however, as first emphasised in [84], is the possibility
to express it as a matrix-like integral, and thus use standard asymptotic methods in random
matrix theory to study its large N , finite t regime: this fact will be used extensively in the
next section. Secondly, as pointed out in [84] and further confirmed in [10, 13] by a functional
integral analysis, the sum over fi in (4.20) may be interpreted as a sum over critical points of
the Chern–Simons functional (4.15),

CritNCS = {A ∈ Conn(Σ, U(N))|FA = 0} = Hom(π1(Σ), U(N))/U(N) (4.21)

namely, flat U(N)-connections on Σ; this is a finite set at finite N since |π1(Σ)| <∞. In the
monodromy representation of the latter equality in (4.21), these can be labelled by integers
(f0, f1, . . . , f8) satisfying

∑

i

difi = N, (4.22)

where di, i = 0, . . . , 8 is the dimension of the ith irreducible representation of π1(Σ) = Ĩ (see
Table B2; equivalently, the ith Dynkin label in Figure 2), the trivial connection contribution
to (4.20) being given by fi = 0, i > 0. The latter is the exponentially dominant summand
in the limit gYM → 0, as the classical Chern–Simons functional attains there its minimum
value (equal to zero), and it leads to a quantum invariant of 3-manifolds in its own right:
this is the Lê–Murakami–Ohtsuki (LMO) invariant, which is a derivation of the universal
Vassiliev–Kontsevich invariant by taking its Kirby-move-invariant part [80].

In landmark papers by Gopakumar and Vafa [59] and Ooguri–Vafa [100], it was proposed
that the large N expansion of the Chern–Simons invariants of S3 and K =© yield the genus
expansion of the topological A-model on the resolved conifold X = O(−1)⊕O(−1)→ P1.
Following in this direction and that of its generalisation of [3] for lens spaces†, it was proposed
amongst other things in [15] that the large N limit of the connected averages (4.18) and
(4.19) should be interpreted (respectively) as the generating functions of closed and open

†Some of these arguments require extra care when one considers non-SU(2) quotients of the three-sphere;
see, for example, [28].
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Gromov–Witten invariants (4.8) and (4.10) of the orbifold-of-the-conifold X , as I now recall.
Let Crit∞CS = limN→∞ CritNCS be the direct limit of the finite critical point sets (4.21) with
respect to the composition of morphisms of sets induced by U(N) →֒ U(N + 1). A point in
Crit∞CS consists of a flat background [A]t parameterised by ti � NigYM for i ∈ {0, . . . , 8}. Write
now Fg(Σ, t) andWg,n(Σ, t; �x) for the contribution of each [A]t at large N to the perturbative
free energies and correlators of U(N) Chern–Simons theory (4.18) and (4.19).

Claim 4.2 [15]. There is an affine linear change-of-variables (τ, tB) = L (t) such that

FCS
g (Σ, t) = FGW

g (X ,L (t)), WCS
g,h(Σ,K; t, λ1, . . . , λh) = WGW

g,h (X ,L,L (t);λ1, . . . , λh).

(4.23)

Consequently, the LMO contribution to the Chern–Simons free energy (fi = 0 for i > 0) is
obtained as the corresponding restriction of GW potentials:

FCS
g (Σ, ti = t0δi0) = FGW

g (X ,L (t))
∣∣∣
ti=t0δi0

,

WCS
g,h(Σ, ti = t0δi0, λ1, . . . , λh) = WGW

g,h (X ,L,L (t);λ1, . . . , λh)
∣∣∣
ti=t0δi0

. (4.24)

I will refer to (4.23) and (4.24) as, respectively, the strong and weak A-model Gopakumar–
Vafa correspondence for Σ.

4.1.4. Toda spectral curves and the topological recursion. A major point of the foregoing
discussion is to argue that there exist completions of the Dubrovin–Krichever data (3.57) of the
E8 relativistic Toda spectral curves in the form Lagrangian sublattices ΛL

PT ⊂ ΛPT leading to
the existence of genus zero prepotentials FToda

0 from rigid special Kähler geometry relations† on
Bg, as well as higher genus open/closed potentials FToda

g , WToda
g,h from the Chekhov–Eynard–

Orantin topological recursion [50], which are purported to be the all-genus solutions of the
open/closed topological B-model with Sg as its target geometry [19]. Following completely
analogous statements [3, 19, 52, 62, 95] for the SU(N) case, and in [15] for ADE types
other than E8, it will be proposed that the open and closed B-model theory on the relativistic
Toda spectral curves Sg with Dubrovin–Krichever data specified by (3.57) give in one go the
Seiberg–Witten solution of the five-dimensional E8 gauge theory in a self-dual Ω-background,
the mirror theory of the A-model on (Y, L) and (X ,L), and a large-N dual of Chern–Simons
theory on Σ.

For definiteness, let us put again ourselves at a generic moduli point (u,ℵ) . The first step to
define a prepotential from the assignment (3.57) to Sg is to consider periods of dσ = logμd log λ
on ΛPT [39, 75, 114]. At genus zero, define

ΠAi
(dσ) =

1

2πi
αi =

1

2πi

∮

Ai

dσ, ΠBi
(dσ) =

1

2

∮

Bi

dσ, (4.25)

for the set of (Ai, Bi)
8
i=1 cycles generating the Pg-invariant part of H1(Γu,ℵ,Z). I am first of

all going to fix ΛL
PT � Z〈{Ai}i〉; what this means is that, locally around ai =∞, the A-periods

(4.25) will define a map

ai : Bg → C

(u,ℵ) → ΠAi
(dσ), (4.26)

†This type of relations, which condense the fact there exists a prepotential for the periods on the mirror
curve, have different names and tasks in different communities: in gauge theory, they are a manifestation
of N = 2 super-Ward identities; and in Whitham theory, they codify the existence of a τ -structure for the
underlying hierarchy.
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with the B-periods (4.25) being further subject to the rigid special Kähler relations [39, 75,

114]

ΠBi
(dσ) =

∂FToda

∂ai
(4.27)

for a locally defined analytic function FToda(a) in a punctured neighbourhood of ai =∞.

Conjecture 4.3. We have

FToda
0 = F SYM

0 = FY
0 (4.28)

locally around ai =∞ = ti, under the identifications of (4.13), and after setting ℵ = R =
e−tB/4. Furthermore, let Ãi � −Bi, B̃i � Ai and define

ãi �
1

2πi
ΠÃi

(dσ),
∂F̃Toda

0

∂ai
�

1

2
ΠB̃i

(dσ). (4.29)

Then there exist linear change-of-variables ã = L1(τ) = L2(t) such that

F̃Toda
0 (ã) = FXI

0 (L −1
1 τ) = FCS

0 (L −1
2 t). (4.30)

For the reader familiar with Figure 1 in the SU(N) case, this is all by and large expected
provided we show that our choice of A and B cycles in (3.29)–(3.30) reflects the corresponding
choice of SW cycles in the weakly coupled (electric) duality frame in the gauge theory, and
of mirror B-model cycles for the smooth chamber in the stringy Kähler moduli space of Y :
that would justify the first part of the claim, with the second following by composing with
the S-duality transformation (Ai, Bi)→ (Ãi, B̃i) to the orbifold/Chern–Simons chamber. For
the first bit, I re-introduce Λ4 everywhere on the gauge theory side by dimension counting
and take the limit Λ4 → 0 holding fixed ai and R, which corresponds to switching off the non-
perturbative part of (4.5). At the level of the Toda chain variables this is ℵ → 0 with ui kept
fixed. Recall that the branch points b±i of λ : Γu,ℵ come in pairs related by

b=i
ℵ
b+i

. (4.31)

In particular, in the degeneration limit ℵ → 0, where Γu,0 ≃ Γ′
u,0, the branch points b−i in

Figure 4 all collapse to zero, and therefore, the contours Cα
i are given by the difference of the

lifts to the sheet labelled by α and σi(α) of a simple loop around the origin in the λ-plane. In
other words, and in terms of the Cartan torus element exp(l) in (2.22), we find

lim
ℵ→0

∮

Ai

dσ = lim
ℵ→0

1

2qg

∑

α∈∆∗

〈α, αi〉
∮

Cα
i

log μ
dλ

λ
,

=
1

2qg

∑

α∈∆∗

〈α, αi〉
∮

λ=0

lim
ℵ→0

(σi(α)(l)− α(l))dλ

λ
,

=
1

2qg

∑

α∈∆∗

(〈α, αi〉)2αi(l)|ℵ=λ=0 = αi(l)|ℵ=λ=0, (4.32)

where we have used (see [69, 83])

1

2qg

∑

α∈∆∗

(〈α, αi〉)2 = 1. (4.33)

The right-hand side of (4.32) is just the semi-classical Higgs vev (ai)Λ4=0 for the complexified
scalar φ = ϕ + iϑ [86]. This pins down Ai as the correct choice of an electric cycle for
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the ith U(1) factor in the IR theory, with logarithmic monodromy around the weakly
coupled/maximally unipotent monodromy point ai =∞, and Bi (up to monodromy) as their
doubly logarithmic counterpart.

The identifications in (4.3) pave the way to an extension to the higher genus theory upon
appealing to the remodelled-B-model recursive scheme of [19]. Let Ψ be a sublattice of
H1(Γu,ℵ,Z) containing {Ai}i which is maximally isotropic with respect to the intersection
pairing. Denote by BToda ∈ H0(Sym2Γu,ℵ \Δ(Γu,ℵ)),K⊠2

Γu,ℵ
) the unique (up to scale) mero-

morphic bidifferential on Γu,ℵ with double pole on the diagonal Δ(Γu,ℵ), vanishing residues
thereon, and vanishing periods on all cycles C ∈ Ψ; we fix the scaling ambiguity by imposing
the coefficient of the double pole to be 1 in the local coordinate patch given by the λ projection.
I further write

BToda(p, q) � P
∗
gEΨ(p, q) (4.34)

whose definition, by the nature of (Pg)∗ as a projection on PT(Γu,ℵ), is independent of the
choice of the particular Lagrangian extension Ψ ⊃ ΛPT. Further write, for λ(q) locally near b±i ,

KToda
0,2 (p, q) �

1

2

∫ q

q′=q̄
BToda(p, q′)

log μ(q̄)− log μ(q)
, (4.35)

where locally around each ramification point λ−1(b±i ), q̄ is the local deck transformation μ(q) =
α · l→ α · l + 〈αi, α〉αi · l. We call BToda and KToda, respectively, the symmetrised Bergmann
kernel and recursion kernel for the DK data (3.57).

Remark 4.4. In terms of the Dubrovin–Krichever data (3.57), note that the family of
differentials BToda is determined by Sg and ΛL

PT ⊂ ΛPT alone – that is, by the curves
themselves, the invariant periods ΛPT, and the specific marking of the ‘A’ cycles in ΛL

PT to
be those with vanishing periods for BToda. On the other hand, KToda feels on top of that the
specific choice of relative differential M ↔ d lnμ in (3.57), which is reflected by the presence of
the logarithm of the universal map μ to P1 of (2.23) in the denominator of (4.35). The further
choice of L ↔ d lnλ will play a role momentarily in the definition of the topological recursion.

Definition 4.1. For g, h ∈ N, 2g − 2 + h > 0, the Chekhov–Eynard–Orantin generating
functions [33, 50] for the Toda spectral curve Sg with DK data (3.57) are recursively defined
as

WToda
0,2 (p, q) �

BToda(p, q)

dpdq
− λ′(p)λ′(q)

(λ(p)− λ(q))2
, (4.36)

WToda
g,h+1(p0, p1 . . . , ph) =

∑

b±i

Res
λ(p)=b±i

KToda
0,2 (p0, p)

(
WToda

g−1,h+2(p, p̄, p1, . . . , ph)

+

g∑

l=0

′∑

J⊂H

WToda
g−l,|J|+1(p, pJ )WToda

(l),|H|−|J|+1(p̄, pH\J )
)
, (4.37)

where I ∪ J = {p1, . . . , ph}, I ∩ J = ∅, and
∑′

denotes omission of the terms (h, I) = (0, ∅)
and (g, J). Furthermore, for g > 0 we define the higher genus-free energies

FToda
1 �

1

2

[
− log τKK(Ξg,red) +

1

12
log det Ω

]
,

FToda
g �

1

2− 2g

∑

b±i

Res
λ(p)=b±i

σ(p)WToda
g,1 , (4.38)
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where τKK is the Kokotov–Korotkin τ -function of the branched cover Ξg,red [72], Ω is the
Jacobian matrix of angular frequencies (3.55), and σ is the Poincaré action (3.50).

Equation (4.37) is the celebrated topological recursion of [50], which inductively defines
generating functions {WToda

g,h }g,h purely in terms of the Dubrovin–Krichever data (3.57). The
root motivation of Definition 4.1, which arose in the formal study of random matrix models,
is that the generating functions thus constructed provide a solution of Virasoro constraints
whenever the spectral curve set-up arises as the genus zero solution of the planar loop equation
for the 1-point function; it was put forward in [19], and further elaborated upon in [37], that the
very same recursion solves W-algebra constraints for the open/closed Kodaira–Spencer theory
of gravity/holomorphic Chern–Simons theory on local Calabi–Yau threefolds of the form

νξ = Φ(λ, μ),

with B-branes wrapping either of the lines ν = 0 or ξ = 0. We follow the same path of [15, 19]
by setting Φ = Ξg,red, taking (4.37)–(4.38) as the definition of the higher genus/open string
completion of the Toda prepotential (4.27), and submit the following.

Conjecture 4.5. We have

FToda
g = F SYM

g = FGW
g (4.39)

locally around ai =∞ = ti and under the same identifications of (4.3); here we defined the
gravitational correction

F SYM
g = [ǫ2g]F SYM(ǫ,−ǫ), (4.40)

as the O((ǫ1 = −ǫ2)
2g) coefficient in an expansion of the Ω background around the flat space

limit. Furthermore, denote by (W̃g,h, F̃g) the Toda/CEO generating functions obtained upon

applying (4.37)–(4.38) to the Toda spectral curves with zero Ãi-period normalisation for (4.34)
and (4.35). Then, with the same notation as in (4.3), we have that

F̃Toda
g (ã) = FGW

g (X ;L −1
1 t) = FCS

g (L −1
2 t),

W̃Toda
g,h (ã, λ1, . . . , λh) = WGW

g,h (X ,L;L −1
1 t, λ1, . . . , λh) = WCS

g,h(L −1
2 t, λ1, . . . , λh),

(4.41)

where we have identified λi = λ(pi).

As in claim 4.2, I will refer to the equality of Toda and Chern–Simons generating functions
as the strong/weak B-model Gopakumar–Vafa correspondence for Σ, according to whether the
restriction to the trivial connection ti = t0δi0 is taken or not.

Remark 4.6. The two claims above are slightly asymmetrical between Y and X in that
they do not include the open string sector in the latter. On the GW side, exactly by the same
token as for the orbifold chamber and in keeping with the toric cases [19], the same type of

statement should hold, namely that the topological recursion potentials WToda
g,h equate to WY,L

g,h ;
for the gauge theory, the extension one is after requires the introduction to surface defects in
the gauge theory [4, 73]. I do not further discuss these here, and refer the reader to [15, 73]
for more details.
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4.2. On the Gopakumar–Vafa correspondence for the Poincaré sphere

After much conjecturing I will prove at least one of the correspondences of the previous
section. In the next section, I will show that the weak version of the B-model Gopakumar–
Vafa correspondence holds for all genera, colourings, and degrees of expansion in the ’t
Hooft parameter.

4.2.1. LMO invariants and matrix models. I will set

FLMO
g (Σ; τ) = FCS

g (Σ; ti = τδi0, x)

WLMO
g,h (Σ,K; τ, λ1, . . . , λh) = WCS

g,h(Σ,K; ti = τδi0, λ1, . . . , λh) (4.42)

to designate the LMO contribution (fi = 0) to the Chern–Simons partition function (4.20) of
Σ, and quantum invariants of the fibre knot K, respectively; similarly I will use ZLMO for the
restricted partition function. The first step to relate the latter to spectral curves, as in [3], is
to re-write (4.20) as a matrix model as first pointed out in [84] (see also [8, 13]): this follows
from taking a Gaussian integral representation of the exponential in (4.20) and using Weyl’s
denominator formula. The upshot [84] is that the restriction of (4.20) to its summand at fi = 0
is the total mass of an eigenvalue model

ZLMO(Σ, k,N) = N (Σ)Edμ(1) = N (Σ)

∫

RN

dμ, (4.43)

with measure given by a Gaussian 1-body potential, and a trigonometric Coulomb 2-body
interaction,

dμ � dNκ
∏

i<j

∏3
l=1 sinh

κi−κj

2s(l)

sinh
κi−κj

2

e−
Nκ·κ
2τ , (4.44)

with τ = gYMN , gYM = 2πi(k + N)−1. The integral of (4.43) is by fiat a convergent matrix
(eigenvalue) model, and it takes the form of a perturbation of the ordinary (gauged) Gaussian
matrix model by double-trace insertions, owing to the sinh-type 2-body interaction of the
eigenvalues (see [3, Section 6]). The Chern–Simons knot invariants (4.19) are similarly
computed as

WLMO
h (Σ,K, k,N, λ1, . . . , λh) = Econn

dμ

⎛
⎝

h∏

i=1

N∑

j=1

xi

xi − eκi

⎞
⎠, (4.45)

where the coefficients of degree ki in λi, for ki = (30/s(l))ji and ji ∈ Z, gives the perturbative
quantum invariant (in colouring given by the jth connected power sum) of the knot going along
the fibre of order s(l) in s, l = 1, 2, 3.

This type of eigenvalue measures falls squarely under the class of N -dimensional eigenvalue
models considered in [18], for which the authors rigorously prove that a topological expansion of
the form (4.18) and (4.19) applies to the asymptotic expansion of (4.43) and (4.45), respectively.
What is more, in [16] the authors prove that the topological recursion (4.37)–(4.38) with initial
data for the induction given by

WLMO
0,1 (x) � lim

N→∞

1

N
Edμ

(
N∑

i=1

x

x− eκi

)
, (4.46)
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WLMO
0,2 (x1, x2) � lim

N→∞

[
Edμ

⎛
⎝

N∑

i1,i2=1

x1x2

(x1 − eκi1 )(x2 − eκi2 )

⎞
⎠

− Edμ

(
N∑

i1=1

x1

x1 − eκi1

)
Edμ

(
N∑

i2=1

x2

x2 − eκi2

)]
(4.47)

computes the all-order, higher genus, all-colourings quantum invariants of fibre knots K. As is
typical in most settings where the topological recursion applies, the planar two point function
(4.47) can be written as a section WCS

0,2 ∈ K⊠2
ΓLMO
τ

(Sym2ΓLMO
τ \Δ(ΓLMO

τ )) on the double

symmetric product (minus the diagonal) of the smooth completion ΓLMO
τ of the algebraic†

plane curve y = WLMO
0,1 (x): the LMO spectral curve. A strategy to determine the family of

Riemann surfaces ΓLMO
τ as the base parameter τ is varied was put forward in the extensive

analysis of Chern–Simons-type matrix models of [17], and is summarised in the next section.

4.2.2. The planar solution, after Borot–Eynard. The LMO spectral curve can be expressed
as the solution of the singular integral equation describing the equilibrium density for the
eigenvalues in (4.43) [17]. Introduce the density distribution

̺(x) � lim
N→∞

1

N
Edμ

(
N∑

i=1

δ(x− eκi)

)
. (4.48)

As in the case of the Wigner distribution, Borot–Eynard in [17] prove that, for τ ∈ R+, the
large N eigenvalue density ̺ ∈ C0

c (R) is a continuous function with compact support C̺ =
[−b(t), b(t)] given by a single segment, symmetric around the origin, at whose ends ±b(τ)̺ has
square-root vanishing, ̺ = O(

√
x± b(τ). Furthermore, by (4.43), ̺ satisfies the saddle-point

equation

κ

τ
=

3∑

l=1

pv

∫

R

̺(κ′)

[
coth

κ− κ′

2s(l)
− coth

κ− κ′

2

]
. (4.49)

By the Plémely lemma, this is equivalent to a Riemann–Hilbert problem for the planar 1-point
function (4.46),

WLMO
0,1 (x + i0) + WLMO

0,1 (x− i0)−
s∑

ℓ=1

WLMO
0,1 (ζℓx) +

3∑

m=1

s/s(m)−1∑

ℓm=1

WLMO
0,1 (ζℓm

s/s(m)x)

= (s2/κ) lnx + s (4.50)

with ζk a primitive kth root of unity; note that WLMO
0,1 (x) has a cut for x ∈ C̺ � supp̺, with

jump equal to 2πi̺. Following [27], and setting

c � exp(τ/2s). (4.51)

the exponentiated resolvent

Y(x) � −cx exp

(
τWLMO

0,1 (x)

s2

)
(4.52)

†From the discussion above this does not need to be more than just analytic; it turns however that

ey = eW
CS
0,1 (x) is algebraic, as follows from the proof of [17, Proposition 1.1], and as we will review in

Section 4.2.2.
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is holomorphic on C \ C̺, it asymptotes to

Y(x) ∼ −cx, x = 0,

Y(x) ∼ −c−1x, x =∞, (4.53)

and further satisfies

Y(x + i0)Y(x− i0)

[
s−1∏

ℓ=1

Y(ζℓ
s
x)

]−1

×
3∏

m=1

⎡
⎣

s/s(m)−1∏

ℓm=1

Y(ζℓm
s/s(m))

⎤
⎦ = 1. (4.54)

Furthermore, the Z2-symmetry {κi → −κi} of (4.43) entails that

Y(x)Y(1/x) = 1. (4.55)

Every time we cross the cut C̺, the exponentiated resolvent is subject to the monodromy
transformation (4.54). An approach to solve the monodromy problem (4.54) together the
asymptotic conditions at 0 and∞ was systematically developed in [17] following in the direction
of [27], and it goes as follows. Fix v ∈ Zs and let

Yv(x) �

s−1∏

j=0

[Y(ζj
s
x)]vj . (4.56)

Here Yv(x) inherits a cut on the rotation C(j)
̺ = ζ−j

s
C̺ for all j such that vj 	= 0; in particular,

the jump on each of these cuts returns the spectral density ̺, and thus WLMO
0,1 (x).

By definition, Yv(x) is a single-valued function on the universal cover Γ̂ of P1 \ {ζj
s
b±(τ)}sj=1.

We want to ask whether there is a clever choice of v such that this factors through a finite
-degree covering map ΓLMO → P1 branched at {ζj

s
b±(τ)}sj=1 such that Yv(x) is single-valued

on ΓLMO. This was answered in the affirmative in [17], as follows. A direct consequence of
(4.54), as in the study of the torus knots matrix model of [27], is that the change-of-sheet

transition given by crossing the cut C(j)
̺ results in a lattice automorphism Tj ∈ GL(s,Z) such

that

Yv(x + i0) = YTj(v)(x− i0) . (4.57)

The monodromy group of the local system determined by Yv(x) is then (a subgroup of) the
group of lattice transformations Tj for j = 0, . . . , (s− 1). This is beautifully characterised by
the following.

Proposition 4.7 [17]. There is a Z-linear monomorphism

ι : Λr → Zs (4.58)

embedding Λr(e8) as a rank 8 sublattice of Zs. Its image ι(Λr) is invariant under the {Tj}j-
action, and the pull-back of the monodromy (4.54) to Λr is isomorphic to the Coxeter action
of W = Weyl(e8).

By Proposition 4.7, picking v to lie in ι(Λr) does exactly the trick of returning a finite-degree
covering of the complex line by the affine curve

y : V

⎡
⎣ ∏

̟∈ι(W)v

(y − Y̟(x))

⎤
⎦→ A1, (4.59)
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with sheets labelled by elements of a W-orbit on Λr. Our freedom in the choice of the initial
element v in the orbit is given by the number of semi-simple, 7-vertex Dynkin subdiagrams of
the black part of Figure 2 [57], which classify the stabilisers of any given element in the orbit;
in other words, by the choice of a fundamental weight ωi of g. The natural choice here is to
pick the minimal orbit, corresponding to the largest stabilising group, by choosing to delete
the node α7 in Figure 2, so that v = ω7 = α0: in this case, obviously, Wv = Δ∗, the set of
non-zero roots. I refer the reader to Appendix B.1 for further details on the orbit, and give the
following.

Definition 4.2. We call the normalisation of the closure in CP2 of (4.59) with v = ι(α0)
the LMO curve of type E8.

This places us in the same set-up of the Toda spectral curves of Sections 2.4 and 2.5 (see
in particular (2.22) and definition 2.1), by realising the LMO curve as a curve of eigenvalues
for a G-valued Lax operator with rational spectral parameter; at this stage, of course, it is still
unclear whether this rational dependence has anything to do with that of (2.12). The upshot of
the discussion above is that that there exists a degree 240, monic polynomial Pα0

∈ C[x, y] with
y-roots given exactly by the branches of the Zs-symmetrised, exponentiated resolvent Y(x):

Pα0
(x, y) =

240∏

α∈∆∗

(y − Y̟α
(x)), (4.60)

where we wrote ̟α � ι(α). As we point out in Appendix B.1, the rescaling x→ ζ−1
s

x
corresponds to an action on Zs given by the image of the action of the Coxeter element on
Λr, under which the orbit Δ∗ is obviously invariant. The resulting Zs-symmetry implies that
Pα0

(x, y) is in fact a polynomial in λ = xs, and we define

ΞLMO(λ, μ) � Pα0
(λ1/s, μ) ∈ C[λ, μ]. (4.61)

Vanishing of ΞLMO defines a family π : SLMO → BLMO ≃ A1 algebraically varying over a one-
dimensional base BLMO parametrised by the ’t Hooft parameter τ ; the same picture of (2.23)
then holds over this smaller dimensional base.

4.2.3. Hunting down the Toda curves. We are now ready to show the weak B-model
Gopakumar–Vafa correspondence, conjecture 4.5. This will follow from establishing that the
LMO spectral curves are a subfamily of Toda curves with canonical Dubrovin–Krichever data
matching with (3.57).

Theorem 4.8. There exists an embedding

BLMO →֒ Bg

τ −→ (u(c),ℵ(c)), (4.62)

such that

SLMO = Sg ×Bg
BLMO. (4.63)

Explicitly, this is realised by the existence of algebraic maps ui = ui(c), ℵ = c−qg such that

ΞLMO = Ξg,red

∣∣
u=u(c),ℵ=−c−qg . (4.64)

Furthermore, the full 1/N asymptotic expansion of (4.45) is computed by the topological
recursion (4.37)–(4.38) with induction data (4.46)–(4.47), and the O(

∏
i x

ki
i ) coefficients with

ki = (s/s(m))ji, ji ∈ Z, m = 1, 2, 3, return the 1/N expansion of the perturbative quantum
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invariants of the knot Km going along the singular fibre of order s(m) with colouring given by
the virtual connected power sum representation specified by {ji}.

Proof. The statement of the first part of the theorem condenses what were called ‘Step A’
and ‘Step B’ in the construction of LMO spectral curves that was offered in our previous paper
[15], where we stated that Step B was too complex to be feasibly completed. I am going to
show how the stumbling blocks we found there can be overcome here.

Let me first recall the strategy of [15]. As in [27], the first thing we do is to use the asymptotic
conditions (4.53) for the un-symmetrised resolvent on the physical sheet (the eigenvalue plane),
to read off the asymptotics of the symmetrised resolvent Yι(α) on the sheet labelled by α. Let
̟ = (̟j)j = ι(α)) as displayed in Table B1, and further write

n0(̟) �

s∑

j=1

̟j , n1(v) =

s−1∑

j=1

j̟j . (4.65)

Then, from (4.53), we have

x→ 0 , Y̟(x) ∼ (−cx)n0(̟) ζn1(̟)
s

, (4.66)

x→∞ , Y̟(x) ∼ (−x/c)n0(̟) ζn1(̟)
s

, (4.67)

which in one shot gives both the Puiseux slopes of the Newton polygon of Pα0
as (±1, n0(̟)),

and the coefficients of its boundary lattice points up to scale; in view of the comparison with
Ξg,red we set the normalisation for the latter by fixing the coefficient of y0 to be equal to
one. Taking into account the symmetries of Pα0

and plugging in the data of Table B1 on the
minimal orbit, this is seen to return exactly the Newton polygon and the boundary coefficients
of Ξg,red (see Figure 3).

The remaining part is to prove the existence of the map ui(c) such that all the interior
coefficients match as well. As was done in [15], I set out to prove it by working out the
constraints due to the global nature of Y as a meromorphic function on ΓLMO

τ . Write

τ

s2
W (x) =

∑

k�1

mk xk+1 , (4.68)

for the expansion of the 1-point function (4.46) in terms of the planar moments

mk = lim
N→∞

Edμ

(
N∑

i=1

ekλi

)
. (4.69)

Then, by (4.52) and (4.54), we have that

Y̟α
(x) = (−cx)n0(̟α)sn1(̟α)

a exp

[∑

k>0

mk−1 ( ̟̂α)k mod s x
k

]
, (4.70)

where, as in [15], we wrote

( ̟̂α)k �

s−1∑

j=0

ζjk
s

(̟α)i . (4.71)
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for the discrete Fourier transform of ̟α. There are only eight Fourier modes that are non-
vanishing: these are†

∃α|( ̟̂α)k 	= 0⇒ k ∈ {6, 10, 12, 15, 18, 20, 24, 30} =: k. (4.72)

In particular, the only moments mk that may be found when Taylor-expanding Y at one of the
preimages of x = 0 satisfy

(k + 1) mod s ∈ k.

Consider now inserting the Taylor expansion (4.70) into the right-hand side (4.60). Without
any further constraints on the surviving momenta mk, we have no guarantee a priori that (4.70)
is indeed (a) the Taylor expansion of a branch of an algebraic function and (b) that it gives the
roots of a polynomial Pα0

as presented in (4.60). This means that if we expand up to power
O(xL+1) the product

240∏

α∈∆∗

(y − Y̟α
(x)) =

L∑

i=1

Bi(y)xi +O
(
xL+1

)
(4.73)

then the polynomial
∑L

i=1 Bi(y)xi may well have non-vanishing coefficients outside the Newton
polygon of PLMO; imposing that these are zero, and that those at the boundary return the slope
coefficients of (4.66) and (4.67), gives a set of algebraic conditions on {mk}kmods∈k. In [15] we
pointed out that the complexity of the calculations to solve for these conditions is unworkable
if taken at face value, and refrained to pursue their solution; however I am going to show here
that it is possible to carve out a subsystem of these equations which pins down uniquely an
8-parameter family of solutions, provides a solution to all these constraints for arbitrary L, and
simultaneously leads exactly to the full family of Toda spectral curves (2.20)–(2.22). Take

L = 540 = degx Ξg,red(μ, xqg) = qg degλ Ξg,red(μ, λ)

and expand (4.70) up to L. Plugging this into (4.60) and equating to zero leads to an
algebraic equation for each coefficient of xsmyn with (m,n) once we impose that ΞLMO(λ, μ) =
λ18ΞLMO(λ−1, μ). Consider now the subsystem of equations given by (m,n) in the region

v �
{
(m,n) ∈ Z2

∣∣1 � n � 10, 1 � m � [L− 6n, s]
}

(4.74)

depicted in Figure 5: imposing that Bn(y) = BL−n(y) for the list of exponents in v gives an
algebraic system of 165 equations for the 144 moments mk, L > k ∈ k. Recall that the planar
moments mk(c) are analytic in c around c = 1 [18, 84] (that is,, small ’t Hooft parameter),
and they vanish in that limit

mk(c) =
∑

n�1

m
(n)
k (c− 1)n. (4.75)

Since the constraints on mk are analytic, we can solve them order by order in a Taylor
expansion around c = 1. It easy to figure out from (4.70) that, at O(c− 1)n, we find a linear
inhomogeneous system of the form

Am(n) = Bn (4.76)

with A independent of n, B1 = 0, and Bn a polynomial in m
(m)
k for m < n. From the explicit

form of A we calculate that dim KerA = 8; the solutions of the system (4.76) must then take
the form

m
(n)
k (c) = mk

(
{m(m)

l }l∈k,m�n

)
(4.77)

†In [15], versions 1 and 2, these were erroneously listed as being in the complement of the right-hand side of
(4.72).
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Figure 5 (colour online). Points in Z2 corresponding to the region v of non-vanishing coefficients
of the Taylor expansion of Y̟α around zero; those indicated with a purple cross lie outside the
Newton polygon of ΞLMO.

and they are uniquely determined by solving recursively (4.76) order by order in n. A priori,

the Taylor coefficients m
(m)
l+1∈k of the basic moments m5, m9, m11, m14, m17, m19, m23 and

m29 are subject to two further sets of closed conditions: the first stems from imposing that
the inhomogeneous system (4.76) has solutions for n > 1 (that is, dim Ker[A|Bn] = 9), and the
second from coefficients of the expansion (4.73) which are outside of the region v: this may lead

to the solution manifold of (4.76) having positive codimension in C〈m(m)
l+1∈k〉. This is however

not the case: let us impose that

[λ9μi]ΞLMO(λ, μ) = pi(u1, . . . , u8), i = 1, . . . , 120. (4.78)

where pi are the decomposition of the antisymmetric characters defined as in (2.21), (2.24) and
Claim 2.3. (4.78) gives invertible polynomial maps ml ∈ calC[u1, . . . , u8]; for l + 1 ∈ k we find

m5 =
c6

30
(u7 + 2), m9 =

c10

30
(u1 + 2u7 + 3), m11 =

c12

300

(
−3u2

7 + 38u7 + 20u1 + 10u6 + 38
)
,

m14 =
c15

30
(5u1 + 2u6 + 8u7 + u8 + 7),

m17 =
c18

2250

(
7u3

7 + 117u2
7 + 90u1u7 − 30u6u7 + 1284u7 + 855u1 + 75u5 + 315u6

+ 225u8 + 1031
)
,

m19 = − c20

180

(
u2

1 − 26u7u1 − 114u1 − 26u2
7 − 6u2 − 12u5 − 48u6 − 180u7 − 30u8 − 129

)
,

m23 =
c24

15 000

(
60u6u

2
7 − 11u4

7 − 88u3
7 − 80u1u

2
7 + 12 686u2

7 + 12 280u1u7 − 100u5u7

+ 2240u6u7 + 1200u8u7 + 45 448u7 + 1300u2
1 − 50u2

6 + 27 880u1 + 1000u2 + 500u4

+ 2800u5 + 800u1u6 + 10 740u6 + 7400u8 + 28 374
)
,
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m29 =
c30

30

(
14u3

7 + 16u1u
2
7 + 233u2

7 + 3u2
1u7 + 238u1u7 + 2u2u7 + 7u5u7 + 65u6u7 + 35u8u7

+ 499u7 + 44u2
1 + 3u2

6 + 287u1 + 9u2 + u3 + 2u4 + 2u1u5 + 23u5 + 29u1u6 + 108u6

+ 11u1u8 + 3u6u8 + 65u8 + 259

)
, (4.79)

which are easily seen to have polynomial inverses uk ∈ C[{ml}l; c−1]. As we know that Ξg,red and
ΞLMO share the same Newton polygon with the same boundary coefficients by (2.31), (2.32) and
Table 1, postulating (4.78) is the same as giving an 8-parameter family of polynomial solutions
of the constraints (4.78) which furthermore satisfies all our constraints Bn(y) = BL−n(y) for
all n ∈ [[0, 18]]. The first part of the claim, (4.64), follows then from the uniqueness of the
solution of (4.78) above.

To prove the second part, we show that the two-point functions (4.36) and (4.47) coincide.
We have just shown that Ξg,red = ΞLMO under the change-of-variables (4.79), and we know that
the symmetrised Bergmann kernel of (4.34) is completely determined by Γu,ℵ and the choice

of Ãi cycles in Conjecture 4.5: by its definition in (4.34), it is the unique bidifferential on Γu,ℵ

with vanishing Ã-periods and double poles with zero residues at the 240× 240 components of

the image of the diagonal in Γ
[2]
u,ℵ under the correspondence Pg ×Pg, the coefficients of the

double poles being specified by (3.17) in terms of a 240× 240 matrix of integers BToda
ij . As was

proved in [17], the regularised two-point function,

BLMO(p, q)

dpdq
� WLMO

0,2 (p, q) +
λ′(p)λ′(q)

(λ(p)− λ(q))2
, (4.80)

has precisely the same properties: its matrix of singularities in [17, Section 6.6.3] can be shown
to coincide with BToda

ij above, and the vanishing of the Ã-periods can be proven exactly as
in the case of the ordinary Hermitian 1-matrix model to be a consequence of the planar loop
equation for the 2-point function [51]; we conclude by uniqueness that

WLMO
0,2 = WToda

0,2 (4.81)

under the identification (4.79). This suffices to reach the conclusion of the second part of
the claim: on the Toda side, the higher generating functions satisfy the topological recursion
relations (4.37)–(4.38) by definition†. On the LMO side, the higher generating functions (4.43)–
(4.45) fall within the class of integrals studied in [16], for which the authors prove that the
Chekhov–Eynard–Orantin recursion determines the ribbon graph expansion in 1/N via (4.37)–
(4.38). Since both sides satisfy the recursion, the recursion kernels coincide from (4.81), and
so do the initial data W0,1 and W0,2, the statement of the theorem follows by induction on
(g, h). �

Remark 4.9. The proof of the existence of the embedding BLMO →֒ Bg is only constructive
up to the point where the fibres of the LMO family are shown to be determined by the planar
moments, and in turn by the Toda Hamiltonians and Casimirs via (4.79). Providing explicit
algebraic equations for the restriction ui(c) to the codimension 8 locus BLMO is however a
separate problem. It is worth pointing out that a direct way of calculating the restriction exists

†From a physics point of view, a first-principles heuristic argument to prove straight from the Kodaira–
Spencer theory of gravity that these are genuine open/closed B-model amplitudes may be found in [37]. Also
note that, as Y is non-toric, it momentarily lies outside the scope of existing proofs of the remodelling-the-B-
model approach of [19], which rely either on the existence of a topological vertex formalism [52] or of a torus
action on the target with zero-dimensional fixed loci [54]. I nonetheless believe these obstructions to be merely
of a technical nature.



E8 SPECTRAL CURVES 999

in perturbation theory around c = 1 using the Gaussian perturbation theory methods of [84],

which allow to determine m
(n)
k for arbitrary order in n; it would be however desirable to present

a closed-form algebraic solution by alternative methods, such as the one provided for spherical
3-manifolds of type D in [17] and type E6 in [15].

4.3. Some degeneration limits

To conclude this section, I will highlight three degeneration limits of the E8 relativistic Toda
spectral curves which have a neat geometrical interpretation on each of the other three corners
of Figure 1. This is summarised in the following table, and discussed in detail in the next
three sections.

4.3.1. Limits I: the maximal Argyres–Douglas point and geometry. I am gonna start with
the case in which we set

ℵ = 1, u1 = 1, u2 = 3 = u4 = u6 = −u5, u7 = u8 = −2. (4.82)

In terms of the LMO variables (4.79), this corresponds to c = 1, mi = 0 for all i: this is the
limit of zero ’t Hooft coupling of the measure (4.44), in which the support of the eigenvalue
density shrinks to a point. In this limit the Y-branches of the LMO curve are given by the
slope asymptotics of (4.66), which is in turn entirely encoded by the orbit data of Table B1.
From (4.73) and Table B1, we get

Ξg,red(λ, μ)
∣∣
u(m=0),ℵ=1

= (μ + 1)2
(
μ2 + μ + 1

)3(
μ4 + μ3 + μ2 + μ + 1

)5(
λ + μ5

)(
λμ5 + 1

)

×
(
λμ6 − 1

)(
λ− μ10

)2(
λμ10 − 1

)2(
λ2 − μ15

)(
λ + μ15

)2(
λμ15 + 1

)2

×
(
λ2μ15 − 1

)(
λ− μ30

)(
λμ30 − 1

)(
λ− μ6

)
. (4.83)

I will call (4.83) the super-singular limit of the E8 Toda curves: in this limit, SpecC[λ, μ]/〈Ξg,red〉
is a reducible, non-reduced scheme with the radicals of its 19 distinct non-reduced components
given by lines or plane cusps. In particular, denoting by hΞ the homogenisation of Ξ, the Picard
group of the corresponding reduced scheme is trivial,

Pic(0,...,0)

(
Proj

C[λ, μ, ν]√
〈hΞg,red〉

)
≃ 0, (4.84)

the resolution of singularities Γu(μ=0),1 is a disjoint union of 19 P1’s, and the whole Prym–
Tyurin PT(Γuμ=0,1) collapses to a point in the super-singular limit. This is more tangibly
visualised by what happens to Figure 4 when we approach (4.82): since ℵ = 1, the branch points
of the λ-projection satisfy b+i b−i = 1 from (4.31), and from Proposition 2.6 and the discussion
that follows it, they correspond to αi(l) = 0 for some simple root α ∈ Π. The corresponding
ramification points on the curve are then at μ = exp(αi(l)) = 1, and substituting into (4.83)
we get

Ξg,red(λ, 1)
∣∣
u(m=0),ℵ=1

= 337 500(λ− 1)8(λ + 1)10, (4.85)

which means that the branch points collide together in four pairs with b+i = b− = 1, and five
with b+i = b− = −1. It is immediate to see that the A/B̃-periods of dσ vanish in the limit (as
the corresponding cycles shrink), as do the B/Ã periods upon performing the elementary cycle
integration explicitly.

This degeneration limit should have a meaningful physical counterpart in the dynamics of
the corresponding compactified 5d theory at this particular point on its Coulomb branch, and
in particular it should correspond to the UV fixed point of [66, Section 7 and 8] (see also the
recent works [67, 122]). I will not pursue the details here, but I will give some comments
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on the resulting A- and B-model geometries, and on the broad type of physics implications
it might lead to. The first comment is on the geometrical character of (4.83): it is clearly
expected that singularities in the Wilsonian 4d action should arise from vanishing cycles in
the family of Seiberg–Witten curves [110], and in turn from the development of nodes as we
approach its discriminant; and furthermore, more exotic phenomena related typically related
to superconformal symmetry arise whenever these vanishing cycles have non-trivial intersection
[6], leading to the appearance in the low-energy spectrum of mutually non-local BPS solitons,
and cusp-like singularities in the SW geometry (see [111] for a review). Equation (4.83) provides
a limiting version of this phenomenon whereby all SW periods vanish†. I will refer to (4.83)
as the maximal Argyres–Douglas point of the E8 gauge theory, and as in the more classical
cases of Argyres–Douglas theories, it presents several hallmarks of a theory at a superconformal
fixed point. Besides the vanishing of the central charges of its BPS saturated states, we see
that the way we reach the super-singular vacuum is akin to the mechanism of [66, 109] to
engineer fixed points from five-dimensional gauge theories: since the engineering dimension of

the five-dimensional gauge coupling 1/g
(5)
YM is that of mass, the theory is non-renormalisable and

quantising it requires a cut-off; in the M -theoretic version [66, 79] of the geometric engineering
of [70], this is naturally given in terms of the inverse of the radius of the 11th-dimensional circle
R in (4.13). Considerations about brane dynamics in [109] allow to conclude that the limit in
which the bare gauge coupling diverges leads to a sensible quantum field theory at an RG fixed
point with enhanced global symmetry; and note that, under the identifications (4.13), setting
the Casimir ℵ = 1 amounts to taking precisely that limit. Indeed, upon reintroducing the four-
dimensional scale Λ4 and identifying ΛUV = 1/R as the cut-off scale, the second equality in
(4.13) reads

ℵ =
Λ4

ΛUV
= e−tB/4. (4.86)

Recall that Λ4 = ΛUVe
− 1

gUV , the RG invariant scale in four dimensions; the Seiberg limit
gUV →∞ for the fixed point theory is given then by ℵ = 1, with the vanishing of the masses
of BPS modes being realised by (4.82).

In light of Theorem 4.8, there is an A-model/Gromov–Witten take on this as well, which
also allows us to reconnect the above to the work of [66, 122]. Let us put ourselves in the
appropriate duality frame for (4.82)–(4.83), which corresponds to the choice of Ãi as the cycles
whose dσ-periods serve as flat coordinates around (4.82). By claim 4.1 this corresponds to the
maximally singular chamber in the extended Kähler moduli space of Y given by the orbifold
GW theory of X . Note first that ℵ = 1 corresponds to the shrinking limit of the Kähler volume
of the base P1, tB = 0. Furthermore, as remarked in our earlier paper [15], the Bryan–Graber
crepant resolution conjecture [30] for the E8 singularity prescribes that the orbifold point in

its stringy Kähler moduli space should be given by a vector OP ∈ h∗ ≃ H2(Ĉ2/Ĩ,Z) such that

τi(OP) =

(
2πiα0

|̃I|

)

i

=
πidi
15

(4.87)

the second equality being taken with respect to the root basis for h∗. The values (4.82) for
the Toda Hamiltonians correspond exactly to the values of the fundamental traces of a Cartan

†There is no room for cusp-like singularities like this in the simpler setting of pure SU(2) N = 2 pure Yang–
Mills with SW curve y2 = (x2 − u)2 − Λ4

4, unless we put ourselves in the physically degenerate situation where
we sit at the point of classically unbroken gauge symmetry u = 0 and take the classical limit Λ4 → 0: the theory
is then classical pure N = 2 gluodynamics, where we have essentially imposed by fiat to discard the quantum
corrections that give a gapped vacuum and the breaking of superconformal symmetry.
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torus element corresponding to (4.87): (4.83) is then the spectral curve mirror of the A-model
at the E8-orbifold-of-the-conifold singularity, that is, the tip of the Kähler cone of Y .

The above, together with the constructions in Sections 2 and 3 provides some preliminary
take, in this specific E8 case, to a few of the questions raised at the end of [122] regarding
the Seiberg–Witten geometry, Coulomb branch and prepotential of 5d SCFT corresponding
to Gorenstein singularities. A detailed study and the determination of some of the relevant
quantities for the 5d SCFT (such as the superconformal index) is left for future study, and will
be pursued elsewhere.

4.3.2. Limits II: orbifold quantum cohomology of the E8 singularity. Since the correspon-
dence of the left vertical line of Figure 1 was shown to hold in the context of Theorem 4.8, I will
offer here some calculations giving plausibility (other than the expectation from the underlying
physics) for the lower horizontal and the diagonal arrow in the diagram. This will be done in
a second interesting limit, given by taking ℵ → 0 while keeping all the other parameters finite
(but possibly large). By (4.13) and (4.3), this corresponds to a partial decompactification limit
in which we send the Kähler parameter of the base P1 in Y → P1 to infinity; the resulting

A-model theory has thus the resolution of the threefold transverse E8 singularity Ĉ2/Ĩ× C as
its target, or equivalently, by [30], the orbifold [C2/Ĩ× C] upon analytic continuation in the
Kähler parameters. Accordingly, on the gauge theory side, this corresponds to sending Λ4 → 0
while keeping the classical order parameters ui constant, and it singles out the perturbative
part in the prepotential (4.5). And finally, in the Toda context, this type of limit was considered
in [21, 78] for the non-relativistic type A chain, where it was shown to recover, after a suitable
change-of-variables, the non-periodic Toda chain.

To bolster the claim, let me show that special geometry on the space of E8 Toda curves

does indeed reproduce correctly the degree 0 part of the genus zero GW potential† of Ĉ2/Ĩ× C
in the sector where we have at least one insertion of 1Y : by the string equation, this is the

tt-metric on the Frobenius manifold QH(Ĉ2/Ĩ× C) ≃ QH(Ĉ2/Ĩ) (see Section 5.1.1 for more
details on this). As vector spaces, we have

QH(Ĉ2/Ĩ) = H(Ĉ2/Ĩ) = H0(Ĉ2/Ĩ)⊕H2(Ĉ2/Ĩ) ≃ C⊕ h.

Let us use linear coordinates {li}8i=0 for the decomposition in the last two equalities, where we

write H(Ĉ2/Ĩ) ∋ v = l01Y ⊕i li[Ei], with Ei the ith exceptional curve in the canonical resolution

of singularities π : Ĉ2/Ĩ→ C2/Ĩ, and likewise {li}8i=1 in the second isomorphism are taken with
respect to the α-basis of h∗. On the GW side, the McKay correspondence implies that

ηij = (Ei, Ej)Y = −C
g
ij . (4.88)

On the other hand, by (4.25)–(4.27) (see [40, Lecture 5], and Section 5.1.1), the tt-metric on
the Frobenius manifold on the base of the family of Toda spectral curves is

ηij = −
∑

dμ(p)=0

Resp
∂liμ∂ljμ

μ∂λμ

dλ

qgλ2
, (4.89)

where, in the language of [40, Lecture 5; 45] and as will be reviewed more in detail in
Sections 5.1.1 and 5.1.3, we view the family of Toda spectral curves as a closed set in a
Hurwitz space with μ, lnμ and d lnλ identified with the covering map, the superpotential, and
the prime form, respectively, (see Section 5.1.3); this identification follows straight from the
special Kähler relations (4.25). The argument of the residue has poles at ∂λμ = 0, λ, μ = 0,∞.

†Physically, this is gs → 0, α′ → 0.
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Swapping sign and orientation in the contour integral we pick up the residues at the poles and
zeroes of λ and μ. Let me start from the zeroes of λ. Note that

Ξg,red(0, μ)
∣∣∣
ℵ=0

= Ξ′
g,red(0, μ) =

∏

α∈∆∗

(μ− eα·l)

=
∏

α∈∆∗

(μ− e
∑

j α[j]lj ), (4.90)

so that λ = 0 amounts to μ = e
∑

j α[j]lj for some non-zero root α. Then,

Res
μ=e

∑
j α[j]lj

∂liμ ∂ljμ

μ∂λμ

dλ

qgλ
(4.91)

= −Res
μ=e

∑
j α[j]lj

∂liλ∂ljλ

λ∂μλ

dμ

qgμ2

= −
∂liΞ

′
g,red∂ljΞ

′
g,red

qgμ2(∂μΞ′
g,red)2

∣∣∣∣
μ=e

∑
j α[j]lj

= −
e2

∑
j α[j]ljα[i]α[j]

∏
β,γ �=α

(
e
∑

j α[j]lj − e
∑

j βj lj
)(

e
∑

j α[j]lj − e
∑

j γj lj
)

qge
2
∑

j α[j]lj
∏

β,γ �=α

(
e
∑

j α[j]lj − e
∑

j βj lj
)(

e
∑

j α[j]lj − e
∑

j γj lj
)

= −α[i]α[j]

qg
, (4.91)

where we have used the ‘thermodynamic identity’† of [40, Lemma 4.6] to switch μ↔ λ at the
cost of a swap of sign in the first line, the implicit function theorem for the derivatives ∂•λ in
the second line, and finally (4.90). It is easy to see that the poles at μ = 0,∞ have vanishing
residues; summing over the preimages of λ = 0 then gives

ηij =
∑

λ(p)=0

Resp
∂liμ ∂ljμ

μ∂λμ

dλ

qgλ2
= −

∑

α∈∆∗

α[i]α[j]

qg
= −C

g
ij , (4.92)

where we used [83, Appendix E]
∑

α∈∆∗

〈α, αi〉〈α, αj〉 = qgC
g
ij , (4.93)

and we find precise agreement with (4.88). The calculation of the Frobenius product (namely,
the 3-point function ∂3

ijkFηil)

cijk =
∑

p∈Γ′
u(l),0

dμ(p)=0

Resp
∂liμ ∂ljμ ∂lkμ

μ∂λμ

dλ

qgλ2
(4.94)

is slightly more involved due to the necessity to expand the integrand in (4.91) to higher
order at λ = 0; in other words, and unsurprisingly, the product does depend on the expression

†Namely, the fact that the exchange μ ↔ λ is an anticanonical transformation of the symplectic algebraic
torus ((C⋆)2, d lnμ ∧ d lnλ) the curve V(Ξg,red) embeds into, leading to F → −F in the expression of the
Frobenius prepotential, and thus η → −η.
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of the higher order terms in λ of Ξg,red, unlike ηij for which all we needed to know was
Ξg,red(λ = 0, μ) in (4.90). Let us content ourselves with noting, however, that by the same
token of the preceding calculation for ηij , the right-hand side of (4.94) is necessarily a rational
function in exponentiated flat variables tj : this is in keeping with the trilogarithmic nature of
the 1-loop correction (4.6), whose triple derivatives have precisely such functional dependence
on the flat variables aj .

4.3.3. Limits III: the 4d/non-relativistic limit. The last limit we consider involves the fibres
of π : Sg → Bg. We take

μ = eǫχ, l(λ)→ ǫl(λ) (4.95)

and take the ǫ→ 0 limit while holding χ, λ and l fixed; note that rescaling the Cartan torus
representative l(λ) of the conjugacy class of L̂x,y and taking ǫ→ 0 corresponds to the limits
in row III of Table 2 at the level of ui and ℵ. Then (2.22) becomes

ǫ−dgΞg(λ, μ) = ǫ−dg(μ− 1)8
∏

α∈∆∗

(eα·l − μ) = χ8
∏

α∈∆∗

(α · l− χ) +O(ǫ),

= det
g

(
log L̂x,y − χ1

)
+O(ǫ) (4.96)

so in this limit the curve V(Ξg(λ, μ)) degenerates to the spectral curve of the family of Lie-

algebra elements log L̂x,y. These coincide with the spectral-parameter-dependent Lax operators

of the Ê8 non-relativistic Toda chain [14], to which (2.7) reduce upon taking ǫ→ 0. As
the picture of (4.96) as a curve-of-eigenvalues carries through to this setting†, so does the
construction of the preferred Prym–Tyurin; on the other hand, the ǫ→ 0 degenerate limit of
Theorem 3.4, which amounts in its proof to pick up the Lie-algebraic Krichever–Poisson bracket

ω
(1)
KP, leads to a non-relativistic spectral differential of the form

dσǫ→0 → χ
dλ

qgλ
. (4.97)

As the non-relativistic limit is equivalent to the shrinking limit of the five-dimensional circle in
R4 × S1, the corresponding limit on the gauge theory side leads to pure E8 N = 2 super Yang–
Mills theory in four dimensions, with (4.97) being the appropriate Seiberg–Witten differential
in that limit. Then Claim 2.3 solves the problem of giving an explicit Seiberg–Witten curve
for this theory; it is instructive to present what the polynomial (4.96) looks like more in detail.
We have

lim
ǫ→0

ǫ−dgΞg(λ, μ) = χ8
120∑

i=0

q120−k(v1, . . . , v8)χ
2k, (4.98)

where the χ→ −χ parity operation reflects the reality of g, and v1, . . . v8 is a set of generators
of C[h]W . Taking the power sum basis v1 = Trg(l

2), vi = Trg(l
2i+6), we get

q0 = 1, q1 = −v1

2
, q2 = − 7

40
v1, , q3 = − 49

240
v1, q4 = −1697

9600
v1 −

v2

8
, . . . . (4.99)

†A more accurate way of putting it would be to point out that the original setting of [38, 69, 88, 89]
dealt precisely with Lie algebra-valued systems of this type; since G is simply laced, the construction of the PT

variety dates back to [69]; and since log L̂x,y depends rationally on λ, Theorem 29 of [38] applies despite g not
being minuscule.
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5. Application II: the Ê8 Frobenius manifold

5.1. Dubrovin–Zhang Frobenius manifolds and Hurwitz spaces

5.1.1. Generalities on Frobenius manifolds. I gather here the basic definitions about
Frobenius manifolds for the appropriate degree of generality that is needed here. The reader is
referred to the classical monograph [40] for more details.

Definition 5.1. An n-dimensional complex manifold X is a semi-simple Frobenius manifold
if it supports a pair (η, ⋆), with η a non-degenerate, holomorphic symmetric (0, 2)-tensor with
flat Levi-Civita connection ∇, and a commutative, associative, unital, fibrewise OX -algebra
structure on TX satisfying

Compatibility:

η(A ⋆ B,C) = η(A,B ⋆ C) ∀A,B,C ∈ X (X). (5.1)

Flatness: the 1-parameter family of connections

∇(�)
A B � ∇AB + �A ⋆ B � ∈ C (5.2)

is flat identically in � ∈ C.
String equation: the unit vector field e ∈ X (X) for the product ⋆ is ∇-parallel,

∇e = 0 .

Conformality: there exists a vector field E ∈ X (X) such that ∇E ∈ Γ(End(TX)) is diagonal-
isable, ∇-parallel, and the family of connections equation (5.2) extends to a holomorphic
connection ∇(�) on X × C⋆ by

∇(�) ∂

∂�
= 0 (5.3)

∇(�)
∂/∂�A =

∂

∂�
A + E ⋆ A− 1

�
μ̂A, (5.4)

where μ̂ is the traceless part of −∇E.
Semi-simplicity: the product law ⋆|x on the tangent fibres TxX has no nilpotent elements for

generic x ∈ X.

Definition 5.2. X is a semi-simple Frobenius manifold if and only if there exists an open
set X0, a coordinate chart t1, . . . , tn on X0, and a regular function F ∈ O(X0) called the
Frobenius prepotential such that, defining cijk � ∂3

ijkF , we have

Table 2. Notable degeneration limits of the Toda spectral curves.

Limit ℵ u1 u2 u3 u4 u5 u6 u7 u8

I 1 1 3 0 3 −3 3 −2 −2
II 0 ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1 ≫ 1
III O(ǫ) dim ρω1 dim ρω2 dim ρω3 dim ρω4 dim ρω5 dim ρω6 dim ρω7 dim ρω8

+O(ǫ2) +O(ǫ2) +O(ǫ2) +O(ǫ2) +O(ǫ2) +O(ǫ2) +O(ǫ2) +O(ǫ2)
Limit 5D gauge theory GW target CS

Maximal Argyres– Ĩ-orbifold of the Zero ’t Hooft
I –Douglas SCFT singular conifold limit

II Perturbative limit Ĉ2/Ĩ × C ?
III 4D limit ? ?
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(1) ∂3
1jkF = ηjk = const, det η 	= 0;

(2) letting ηij = (η−1)ij and summing over repeated indices, the Witten–Dijkgraaf–
Verlinde–Verlinde equations hold:

cijkη
klclmn = cimkη

klcljn ∀i, j,m, n; (5.5)

(3) there exists a linear vector field and numbers di, ri, dF

E =
∑

i

dit
i∂i +

∑

i|di=0

ri∂i ∈ X (X0) (5.6)

such that

LEF = dFF + quadratic in t; (5.7)

(4) there is a positive codimension subset X∗
0 ⊂ X0 and coordinates u1, . . . , un on X0 \X∗

0

such that for all m

∂iu
mηijcjkl = ∂ku

m∂lu
m. (5.8)

Upon defining ∂ti ⋆ ∂tj = ηklclij∂tk , e = ∂t1 the latter definition is easily seen to be equivalent
to the previous one. Point (1) ensures non-degeneracy of the metric† η, its flatness and the
String equation; Point (2) and the fact that the structure constants come from a potential
function implies the restricted flatness condition, with the extension due to conformality coming
from Point (3); and Point (4) establishes that ∂ui

are idempotents of the ⋆ product on X0 \X∗
0 ;

the reverse implications can be worked out similarly [41].
The Conformality property has an important consequence, related to the existence of a

bi-Hamiltonian structure on the loop space of the X. Define a second metric g by

g(E ⋆ A,B) = η(A,B) (5.9)

which makes sense on all tangent fibres TpX where E is in the group of units of ⋆|p. In flat
coordinates ti, this reads

gij = Ekckij . (5.10)

A central result in the theory of Frobenius manifolds is that this second metric is flat, and
that it forms a non-trivial‡ flat pencil of metrics with η, namely g + λη is a flat metric ∀λ ∈ C.
Knowledge of the second metric in flat coordinates for the first is sufficient to reconstruct the
full prepotential: indeed, the induced metric on the cotangent bundle (the intersection form)
reads

gαβ = (2− dF + dα + dβ)ηαληβμ∂2
λ,μF (5.11)

from which the Hessian of the prepotential can be read off.

5.1.2. Extended affine Weyl groups and Frobenius manifolds. A classical construction of
Dubrovin [40, Lecture 4], proved to be complete in [64], gives a classification of all Frobenius
manifolds with polynomial prepotential: these are in bijection with the finite Euclidean
reflection groups (Coxeter groups). I will recall briefly here their construction in the case in
which the group is a Weyl groupW of a simple Lie algebra g of dimension dg. Let (h, 〈, 〉) be the
Cartan subalgebra with 〈, 〉 being the C-linear extension of the Euclidean inner product given
by the Cartan–Killing form, and let {xi}i be orthonormal coordinates on (h∗, 〈, 〉). It is well

†As is customary in the subject, I use the word ‘metric’ without assuming any positivity of the symmetric
bilinear form η.

‡That is, it does not share a flat coordinate frame with η.
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known [20] that theW-invariant part S(h∗)W of the polynomial algebra S(h∗) = H0(h,O) is a
graded polynomial ring in rg = dimC(h) homogeneous variables y1, . . . , yrg ; the degrees of the

basic invariants di � degx yi, which are distinct and ordered so that di > di+1, are the Coxeter
exponents of the Weyl group†; also d1 = h(g) = dimg

rankg − 1, the Coxeter number. Let now

DiscrW(h) = Spec
C[x1, . . . , xrg ]〈
{αi · x}rgi=1

〉 =
⋃

i

Hi, (5.12)

where Hi are root hyperplanes in h: the open set

hreg � h \DiscrW(h) (5.13)

is the set of regular Cartan algebra elements (that is, StabW(h) = e for h ∈ hreg). We will be
interested in the unstable and stable quotients

Xus
g � h/W = SpecC[x1, . . . , xrg ]W = SpecC[y1, . . . , yrg ],

Xst
g � h//W = hreg/W = Spec

(
Oh(h

reg)W
)
. (5.14)

Note that π : hreg → Xst
g is a regular cover (a principalW-bundle) of Xst

g , and linear coordinates
on hreg can serve as a set of local coordinates on Xst.

Dubrovin constructs a polynomial Frobenius structure on Xst
g as follows. First off, the

Coxeter exponents are used to define a vector field

E �
1

d1

∑

i

xi∂xi
= ∂y1

+

rg∑

i=1

di
d1

∂yi
. (5.15)

Also, view the Cartan–Killing pairing on h as giving a flat metric ξ on Th, that is, ξ(∂xi
, ∂xj

) =
δij . If V = π−1(U) = V1 ⊔ · · · ⊔ Vrg for U ⊂ Xst

g , and for i = 1, . . . , |W|, let σi : U → hreg be a
section of π : V → U lifting U isomorphically to the ith sheet of the cover, so that σi(U) ≃ Vi,
and define

g � (σi)
∗ξ. (5.16)

By the Weyl invariance of ξ and {yj}j , it is immediately seen that g defines a well-defined
pairing on T ∗Xst

g (that is, the right-hand side is invariant under deck transformations of the
cover hreg, see [40, Lemma 4.1]). Armed with this, a Frobenius structure with unit ∂y1

, Euler
vector field E, intersection form g and flat pairing η = L∂y1

g is defined on Xst
g upon proving

that g + λη thus defined give a flat pencil of metrics on T ∗Xst
g [40, Theorem 4.1]. In the same

paper, it is further proved that such Frobenius structure is polynomial in flat coordinates for
η, semi-simple, and unique given (e, E, g).

In a subsequent paper [44], Dubrovin–Zhang consider a group theory version of the above
construction, as follows. Fix a node ī ∈ {1, . . . , rg} in the Dynkin diagram of g, and let αī, ωī

be the corresponding simple root and fundamental weight. The W-action on h can be lifted to
an action of the affine Weyl group Ŵ ≃ W ⋊ Λr(G) by affine transformations on h,

ŵ : Ŵ × h −→ h

((w,α), l) −→ w(l) + α, (5.17)

†A parallel and somewhat more common convention is to call di − 1 the exponents of the group (the eigenvalue
of a Coxeter element), rather than the degrees di themselves.
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which is further covered by a W̃ī � Ŵ ⋊ Z-action on h× C given by

w̃ : W̃ī × h× C −→ h× C

((w,α, rg), (l, v)) −→
(
w(l) + α + rgωī, xrg+1 − rg

)
. (5.18)

W̃ī is called the extended affine Weyl group with marked root αī. In [44], the authors give

a characterisation of the ring of invariants of W̃ī, which may be reformulated as follows. Set
g = e2πil ∈ G and let ui = χρi

(g) be as in (2.14) the regular fundamental characters of g; also

define dj � 〈ωj , ωī〉. Then†[44, Theorem 1.1],

C[t1, . . . , trg ; trg+1]
W̃i ≃ C[e2πid1trg+1u1, . . . , e

2πidrg trg+1urg ;urg+1e
2πitrg+1 ]. (5.21)

As before, define

X̃us
g,̄i � SpecC[u1, . . . , urg+1] ≃ (h× C)/W̃i ≃ T /W × C⋆ (5.22)

X̃st
g,̄i � (hreg × C)//W̃i = Spec(Oh×C(hreg × C))

W̃i ≃ T reg/W × C⋆ (5.23)

with T reg = exp(hreg) and T reg/W being the set of regular elements of T and regular conjugacy
classes of G, respectively. A Frobenius structure polynomial in u1, . . . , urg+1 can be constructed
along the same lines as for the classical case of finite Coxeter groups: adding a further linear
coordinate xrg+1 for the right summand in h⊕ C, we define a metric ξ with signature (rg, 1) on
h× C by orthogonal extension of 4π2 times the Cartan–Killing pairing on h, and normalising
‖∂xrg+1

‖2 = −4π2:

ξ(∂xi
, ∂xj

) =

⎧
⎪⎨
⎪⎩

4π2δij , i, j < rg + 1,

−4π2, i = j = rg + 1,

0 else.

(5.24)

Exactly as in the previous discussion of the finite Weyl groups, we have a W-principal bundle

(5.25)

with sections σ̃i, i = 1, . . . , |W| defined as before. Then the following theorem holds [44,
Theorem 2.1]:

†The reader familiar with [44] will note the slight difference between what we call ui here and the basic
Laurent polynomial invariants ỹi in [44], the latter being defined as the Weyl-orbit sums

ỹi(t) � e
2πid1trg+1

∑

w∈W
e2πi〈w(ωi),t〉. (5.19)

It is immediate from the definition that there exists a linear, triangular change-of-variables with rational
coefficients

ui =
∑

j

Multρωi
(ωj)

|Wωj |
ỹj(t) + Multρωi

(0), (5.20)

with Multρ(ω) being the multiplicity of ω ∈ Λw in the weight system of ρ ∈ R(G), so that [44, Theorem 1.1]
holds as in (5.21).
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Theorem 5.1. There is a unique semi-simple Frobenius manifold structure
(X̃st

g,̄i
, e, E, ξ, g, ⋆) on X̃st

g,̄i
such that

(1) in flat coordinates t1, . . . , trg , trg+1 for ξ, the prepotential is polynomial in t1, . . . , trg

and et
rg+1

;
(2) e = ∂uī

= ∂tī ;

(3) E = 1
2πidī

∂xrg+1
=

∑
j

dj

dī
tj∂tj + 1

dī
∂trg+1 ;

(4) g = σ̃∗
i ξ.

5.1.3. Hurwitz spaces and Frobenius manifolds. As was already hinted at in Section 4.3.2,
a further source of semi-simple Frobenius manifolds is given by Hurwitz spaces [40, Lecture 5].
For r ∈ N0, m ∈ Nr

0, these are moduli spaces Hg,m =Mg(P1, m) of isomorphism classes of degree
|m| covers λ of the complex projective line by a smooth genus g curve Cg, with marked
ramification profile over ∞ specified by m; in other words, λ is a meromorphic function on Cg

with pole divisor (λ)− = −∑
i miPi for points Pi ∈ Cg, i = 1, . . . , r. Denoting as in definition 2.1

by π, λ and Σi, respectively, the universal family, the universal map, and the sections marking
the ith point in (λ)−, this is

(5.26)

As a result,Hg,m is a reduced, irreducible complex variety with dimCHg,m = 2g +
∑

i mi + r − 1,
which is typically smooth (that is, so long as the ramification profile is incompatible with
automorphisms of the cover).

Dubrovin provides in [40] a systematic way of constructing a semi-simple Frobenius manifold
structure on Hg,m, for which I here provide a simplified account. As in Section 2.4, let d = dπ

denote the relative differential with respect to the universal family (namely, the differential in
the fibre direction), and let pcr

i ∈ Cg ≃ π−1([λ]) be the critical points dλ = 0 of the universal
map (that is, the ramification points of the cover). By the Riemann existence theorem, the
critical values

ui = λ(pcr
i ) (5.27)

are local coordinates on Hg,m away from the discriminant ui = uj . We then locally define an
OHg,m

-algebra structure on the space of vector fields X (Hg,m) by imposing that the coordinate
vector fields ∂ui are idempotents for it:

∂ui ⋆ ∂uj = δij∂ui . (5.28)

The algebra is obviously unital with unit e =
∑

i ∂ui ; a linear (in these coordinates) vector field
E is further defined as

∑
i u

i∂ui . The one missing ingredient in the definition of a Frobenius
manifold is a flat pairing of the vector fields, which is provided by specifying some auxiliary
data. Let then φ ∈ Ω1

C(log(λ)) be an exact meromorphic one form having simple poles† at the
support of (λ)− with constant residues; the pair (λ, φ) are called, respectively, superpotential

†Exactness and simplicity of the poles can be disposed of by looking instead at suitably normalised Abelian
differentials with respect to a chosen symplectic basis of 1-homology circles on Cg ; a fuller discussion, with a
classification of the five types of differentials that are compatible with the existence of flat structures on the
resulting Frobenius manifold, is given in the discussion preceding [40, Theorem 5.1]. The generality considered
here however suits our purposes in the next section.
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and the primitive differential of Hg,m. A non-degenerate symmetric pairing η(X,Y ) for vector
fields X,Y ∈ X (Hg,m) is defined by

η(X,Y ) �
∑

i

Respcr
i

X(λ)Y (λ)

dλ
φ2, (5.29)

where, for p locally around pcr
i , the Lie derivatives X(λ), Y (λ) are taken at constant μ(p) =∫ p

φ. It turns out that η thus defined is flat, compatible with ⋆, with E being linear in flat
coordinates, and it further satisfies

η(X,Y ⋆ Z) =
∑

i

Respcr
i

X(λ)Y (λ)Z(λ)

dμdλ
φ2, (5.30)

g(X,Y ) =
∑

i

Respcr
i

X(log λ)Y (log λ)

d log λ
φ2. (5.31)

Remark 5.2. There is a direct link between the prepotential of the Frobenius manifold
structure above on Hg,m and the special Kähler prepotential of families of spectral curves (see
(4.27) in the Toda case), whenever the latter is given by moduli of a generic cover of the
line with ramification profile m: the two things coincide upon identifying the superpotential
and primitive Abelian integral (λ, μ) on the Hurwitz space side with the marked meromorphic
functions (λ, μ) on the spectral curve end [40, 75]. It is a common situation, however, that
the λ-projection is highly non-generic: the Toda spectral curves of Section 2.4.1 are an obvious
example in this sense. One might still ask, however, what type of geometric conditions ensure
that a semi-simple, conformal Frobenius manifold structure exists on the base of the family

B ι→֒ Hg,m: an obvious sufficient condition is that, away from the discriminant and locally on
an open set Ω ⊂ Hg,m with a chart t : Ω→ CdimHg,m given by flat coordinates for η,

(1) B embeds as a linear subspace of H ⊂ CdimHg,m ;
(2) H ≃ T0H ≃ C〈e〉 ⊕H ′ contains the line through e;
(3) the minor correponding to the restriction to H of the Gram matrix of η is non-vanishing.

In this case, (5.29)–(5.30) define a semi-simple, conformal Frobenius manifold structure with
flat identity on the base B of the family of spectral curves, with all ingredients obtained being
projected down from the parent Frobenius manifold. We will see in the next section that the
family of Ê8 Toda spectral curves falls precisely within this class.

5.2. A one-dimensional LG mirror theorem

5.2.1. Saito coordinates. I will now elaborate on the previous theorem 5.2 in the case of
the degenerate limit ℵ → 0 of the family of Toda curves over U × C. Recall from Section 2.4.1
that there is an intermediate branched double cover Γ′

u ≃ Γu,0 of the base curve Γ′′
u, defined as

Γ′
u = V

[
Ξ′′
g,red

(
μ +

1

μ
, λ

)]
. (5.32)

For future convenience, rescale λ→ λ
u0

in the following. Looking at λ as our marked covering
map gives, by (2.33) and Table 1, we have an embedding of

ι : XToda
g →֒ Hg,m (5.33)
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of XToda
g ≃ Cu0

× U into the Hurwitz space Hg,m with g = 128 and, letting εk = e2πi/k,

m =

⎛
⎜⎝

μ=−1︷︸︸︷
2 ,

μ=εj3 �=1︷︸︸︷
3, 3 ,

μ=εj5 �=1︷ ︸︸ ︷
5, 5, 5, 5,

μ=0︷ ︸︸ ︷
5, 6, 10, 10, 15, 15, 15, 30,

μ=∞︷ ︸︸ ︷
5, 6, 10, 10, 15, 15, 15, 30

⎞
⎟⎠. (5.34)

Mindful of theorem 5.2 I am going to declare (λ, φ) with φ � d lnμ to be the superpotential
and primary differential and proceed to examine the pull-back of η to Cu0

× U . An important
point to stress here is that this will not be a repetition of what was done in Section 4.3.2: in
that case, we were looking at (5.29) with log λ as the superpotential (up to μ↔ λ, F ↔ −F );
this means that the computation leading up to the flat metric (4.92) was rather computing the
intersection form g of XToda

g , by (5.31). The relation between the Frobenius manifold structure

on XToda defined by (5.29)–(5.31) and QH(Ĉ/Ĩ) is indeed a non-trivial instance of Dubrovin’s
notion of almost duality of Frobenius manifolds [42], with the almost dual product being given
by (4.94).

Lemma 5.3. Let X,Y ∈ X (XToda
g ) be holomorphic vector fields on XToda

g . Then (5.29)

defines a flat non-degenerate pairing on TXToda
g , with flat coordinates given by

t0(u) =
lnu0

30
,

ti(u) = Mimli(c = u
1/30
0 , u1, . . . , u8), i > 0, (5.35)

where {mli}i are the planar moments (4.79) and Mi ∈ C. Furthermore, the metric has constant
antidiagonal form in these coordinates.

Proof. As in Section 4.3.2, let us reverse orientation in the residue formula (5.29) and
pick up residues on Γ′

u \ {bcri }i; these are all located at the poles Pi of λ. As in [40], I define

local coordinates νi centred around Pi such that λ = ν−mi
i +O(1), as well as functions rji with

(i, j) ∈ R = {(k, l)|1 � k � 23 = l(m), 1 � j � mi} by

r
j
i �

⎧
⎪⎪⎨
⎪⎪⎩

pv
∫ Pi

P8

dμ
μ for j = 0

ResPi
νj
i pv lnμdλ for j = 1, . . . , mi − 1,

ResPi
λdμ

μ for j = mi,

(5.36)

and where

pv lnμ(Pi) = pv

∫ Pi

P8

dμ

μ
.

Here P8, in the numbering of marked points of (5.34), is the lowest (fifth) order pole of λ at
μ = 0. A remarkable fact, that can be proven straightforwardly from the Puiseux expansion of
λ near Pi using (2.20)–(2.24) and Claim 2.3, is that r

j
i is in all cases a multiple of one of the

planar moments (4.79):

r
j
i (u) = N j

i tℓ(i,j)(u) (5.37)

for some map of finite sets ℓ : R→ [[0, 8]] and complex constants N j
i ∈ C. For 0 < j < mi the

result is collected in Table 3, where we denoted

υ1 = 5−
√

5− i

√
10 + 2

√
5, υ2 = −5−

√
5 + i

√
10− 2

√
5,

υ3 =

(
1 + i

√
5 + 2

√
5

)
υ1/2, υ4 = −(−1)3/5υ1.
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We furthermore have r0
i = 0 and rmi

i = 0 for μ(Pi) 	= 0,∞, and r0
i = 1 = −rmi

i = −r0
i+8 = rmi

i+8

for μ(Pi) = 0. It turns out that (5.37) suffices to prove constancy of η in the coordinate chart
given by ti above; indeed, from (5.36) and Table 3 we obtain

η(∂ti
, ∂tj

) = −
∑

l

ResPl

∂ti
λ∂tj

λ

μ∂μλ
dμ,= −

∑

l

ResPl

∂ti
lnμdλ∂tj

lnμdλ

dλ

= −
∑

l

ml∑

k=0

∂ti
rk
l ∂tj

rml−k
l = −

∑

i

mi∑

k=0

δi,ℓ(l,k)δj,ℓ(l,ml−k)N k
l N ml−k

l

= δi,8−jyi, (5.38)

for numbers yi, so that the Gram matrix of η is constant and antidiagonal in these coordinates.
These can be scaled away by an appropriate rescaling of Mi in the definition of ti in (5.35). �

Table 3. Residues (5.36) in terms of the planar moments (4.79); poles of λ not appearing in the
table are related to those listed above by µ → 1/µ and a sign-flip in the residue.

i j ℓ(i, j) N j
i i j ℓ(i, j) N j

i i j ℓ(i, j) N j
i

1 1 5 i 10 5 3 − 5 3√−1
2

13 6 4 3φ
10

2 1 3 − 6√−1√
3

10 6 4 3
20

(−1)2/5 13 9 6 − φ
25

2 2 7
(−1)5/6

6
√

3
10 9 6 1

50
(−1)3/5 13 10 7 − 5

6

4 1 2 υ1
20

10 10 7 5
12

(−1)2/3 13 12 8 − 3
500φ

4 2 4 υ2
200

10 12 8
3(−1)4/5

1000
13 else − 0

4 3 6 υ3
1500

10 else − 0 14 3 2 −3φ

4 4 8 u4
10 000

11 2 2 −2 5
√−1φ 14 5 3 −5

5 1 2 −υ3
20

11 4 4
(−1)2/5

5φ
14 6 4 − 3

10φ

5 2 4 υ1
200

11 5 5 5i 14 9 6 1
25φ

5 3 6 u4
1500

11 6 6
2(−1)3/5

75φ
14 10 7 − 5

6

5 4 8 − υ2
10 000

11 8 8 − (−1)4/5φ
250

14 12 8 3φ
500

8 1 2 1 11 else − 0 14 else − 0

8 2 4 − 1
10

12 2 2 2 5√−1
φ

15 6 2 −6 5
√−1

8 3 6 1
75

12 4 4 − (−1)2/5φ
5

15 10 3 −10 3
√−1

8 4 8 − 1
500

12 5 5 5i 15 12 4 − 3(−1)2/5

5

9 2 3 2 3
√−1 12 6 6 − 2(−1)3/5

75
φ 15 15 5 −15i

9 3 5 −3i 12 8 8
(−1)4/5

250φ
15 18 6 − 2(−1)3/5

25

9 4 7 − (−1)2/3

3
12 else − 0 15 20 7

5(−1)2/3

3

9 else − 0 13 3 2 3
φ

15 24 8 − 3(−1)4/5

250

10 3 2 3 5√−1
2

13 5 3 −5 15 else − 0
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Before we carry on to examine the product structure on XToda
g let us first check that the unit

e and Euler vector field E satisfy indeed the String Equation and (part of the) Conformality
properties of definition 5.1 by verifying that ∇e = 0, ∇∇E = 0 with ∇ = ∇(η). It is easy to
verify the following.

Proposition 5.4.

e =
∂

∂t8
, E =

∑

j

dj
d8

tj∂tj
+

1

d8

∂

∂t0
, (5.39)

with

d1 = 6, d2 = 10, d3 = 12, d4 = 15, d5 = 18, d6 = 20, d7 = 24, d8 = 30. (5.40)

Proof. The easiest way to see this is to realise that, by their definition in the Hurwitz space
setting, e and E generate an affine subgroup of PSL(2,Z) on the target P1 in (5.26) by

Leλ = const, LEλ = λ. (5.41)

Now, recall first of all that in the natural Hurwitz (B-model) coordinates ui, a shift in u3

keeping all other variables fixed gives a constant shift in λ/u0 by (2.2) with λ→ λ/u0 and
ℵ → 0, as we are considering here. Moreover, from (4.79) we see that in flat coordinates for
η, and since ∂ti

uj = δj3e
−t0t8, a constant shift in t8 leaving all other flat coordinates constant

gives a constant shift in the rescaled λ→ λ/u0:

∂λ

∂t8
= const. (5.42)

Then Leλ ∝ L∂t8
λ, from which we deduce e ∝ ∂t8

as there is no continuous symmetry on λ that
holds up identically in μ; the proportionality can be turned into an equality upon appropriate
choice of M8, which gives in any case an isomorphism of Frobenius manifolds. As far as the
Euler vector field is concerned, recall similarly that a rescaling in u0 at constant ui gives a
rescaling of λ with the same scaling factor, so that E = u0∂u0

. Writing down u0∂u0
in flat

coordinates using (5.36) and (4.79) concludes the proof. �

5.2.2. The mirror theorem. Let us now dig deeper into the Frobenius manifold structure
of XToda

g . By (5.11), the ⋆-structure on TXToda
g can be retrieved from knowledge of the

intersection form g in flat coordinates for η; whilst theoretically this would only require
the calculation of a Jacobian from the flat coordinates for g in Section 4.3.2 to (5.35), such
calculation is however unviable due to the difficulty in inverting the Laurent polynomials ui(t).
We proceed instead from an analysis of (5.30), and prove the following.

Theorem 5.5. There is an isomorphism of Frobenius manifolds

X̃us
g,3 ≃ XToda

g . (5.43)

Proof. We have already come a long way proving (5.43): by Proposition 5.4 the pairs (e, E)
match on the nose already, since di = 〈ωj , ω3〉 by (5.40). Also, by (4.88) and since

gk0 = −
∑

λ(p)=∞

Resp
∂xk

λ

qgμ2∂μλ
dμ = 0,

g00 = −
∑

λ(p)=∞

Resp
λ

qgμ2∂μλ
dμ =

1

qg

∑

λ(p)=∞

ordpλ =
107

900
, (5.44)
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so do the two intersection forms up to a linear change-of-variables. By Theorem 5.1, the
remaining and largest bit in the proof resides then in the proof of the polynomiality of the
⋆-product in flat coordinates (5.35), which I am now going to show. This would be achieved
once we show that

ci,j,k =
∑

i

Resb±i

∂ti
λdμ∂tj

λdμ∂tk
λdμ

qgμ2dμdλ
∈ C[t1, . . . , t8, e

t0 ] (5.45)

for all i, j, k. As in the proof of Lemma 5.3, because of the difficulty in controlling the moduli
dependence of b±i in either ui or ti, we turn the contour around and pick up residues in the
complement of {b±i }. However, one major difference here with the case of the calculation of η is
that not only do poles of λ contribute, but also the 240 ramification points of the μ-projection
qi (counted with multiplicity) satisfying either μ(qi) = −1 or {μ(qi) + μ−1(qi) = rk1}133k=1 (see
(2.34)), whose dependence on ui is even more involved. Indeed, near one of those points, the
superpotential behaves like

λ(p) = λ0(t) + λ1(t))
√

μ− qi +O(μ− qi), (5.46)

and therefore the moduli derivatives of λ at μ = const which appear in (5.45) develop a simple
pole as soon as ∂ti

λ1 	= 0. This leads to a non-vanishing contribution to the residue as the
triple pole resulting from them in (5.45) is now, unlike for η, only partially offset by the
vanishing of dμ and 1/∂μλ at the branch points. It is a straightforward calculation to check
that these contributions do contribute, but are best avoided calculating directly as their moduli
dependence is intractable. Luckily, there is a workaround to do precisely so, as follows. Instead
of (5.45), consider the 3-point function in B-model coordinates ũ0 = lnu0, ũ1 = u1, . . . , ũ8 = u8,

c̃i,j,k = −
∑

dμ(p)=0 or λ(p)=∞

Resp
∂ui

λdμ∂uj
λdμ∂uk

λdμ

qgμ2dμdλ
(5.47)

sticking to the case i = 0 to begin with. Now, ∂ũ0
is the Euler vector field, ∂ũ0

λ = λ, and we have
∂ũ0

λ1 = 0 at all ramification points of μ: this means that the problematic residues at dμ = 0
give individually vanishing contributions to (5.47), unlike for the flat 3-point functions c0,i,j . For
this restricted set of correlators and in this particular set of coordinates, the only contribution
to the LG formula (5.47) may come from the poles Pi: here, a direct calculation from the
Puiseux expansion of λ at its pole divisor immediately shows that the Puiseux coefficients of
λ are polynomial in u0, u1, . . . , u8 at μ = 0,∞. Furthermore, while the Puiseux coefficients at
μ = −1, μ3 = 1 and μ5 = 1 are only Laurent polynomials in ti with denominators given by
powers of t4, t2 and t1, respectively, these powers turn out to delicately cancel from the final
answer in (5.47). All in all, we find

c̃0,j,k =∈ Q[eu0/30, u1, . . . , u8]. (5.48)

To consider the case i > 0 in (5.47), we use the WDVV equation in these coordinates:

c̃ijkη̃
klc̃lmn = c̃imkη̃

klc̃ljn. (5.49)

Setting n = 0, and letting i, j,m go for the ride, (5.49) gives a linear inhomogeneous system
with unknowns c̃ijk, i > 0 with coefficients being given by (complicated) polynomials in
eu0/30, u1, . . . , u8 with rational coefficients. One way to circumvent the complexity of solving
it explicitly is as follows: firstly, it is immediate to prove that the system has maximal rank,
which is an open condition, by evaluating the coefficients at a generic moduli point, so that
c̃ijk are uniquely determined rational functions in eu0/30, u1, . . . , u8. To check that the solution
is indeed polynomial, we just plug a general polynomial ansatz into (5.49) satisfying the degree
conditions of Proposition 5.4 and solve for its coefficients, and find that such an ansatz does
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indeed solve (5.49). The claim follows by uniqueness, the polynomiality of the inverse of (4.79),
and Theorem 5.1. �

One immediate bonus of Theorem 5.5, and a further vindication of taking great pains to give
a closed-form calculation of the mirror in Claim 2.3, is that both the Saito–Sekiguchi–Yano
coordinates (4.79) and the prepotential of X̃g,3, for which an explicit form was unavailable to
date†, can now be computed straightforwardly: the reader may find an expression for the latter
in Appendix B.3. A further bonus is a mirror theorem for the Gromov–Witten theory of the
polynomial P1-orbifold of type E8 [107, 123].

Corollary 5.6. Let Cg ≃ P2,3,5 denote the orbifold base of the Seifert fibration of the
Poincaré sphere Σ (see Section 4.1.3). Then,

QHorb(Cg) ≃ XToda
g (5.50)

as Frobenius manifolds.

This follows from composing the isomorphism QHorb(Cg) ≃ X̃g,3 (see [107]) with Theo-
rem 5.5.

Remark 5.7. In [107], a different type of mirror theorem was proved in terms of a
polynomial three-dimensional Landau–Ginzburg model; it would be interesting to deduce
directly a relation between the two mirror pictures, along the lines of what was done in a
related context in [82]. As in [82], the two mirror pictures have complementary virtues: the
threefold mirror of [107] has a considerably simpler form than the Toda/spectral curve mirror.
On the other hand, having a spectral curve mirror pays off two important dividends: firstly, at
genus zero, the calculation of flat coordinates for the Dubrovin connection (5.2) is simplified
down to one-dimensional (as opposed to three-dimensional) oscillating integrals. Furthermore,
and more remarkably, Givental’s formalism and the topological recursion might allow one to
foray into the higher genus theory, recursively to all genera. This second aspect of the story
will indeed be the subject of Section 5.4.

5.3. General mirrors for Dubrovin–Zhang Frobenius manifolds

There is a fairly compelling picture emerging from Theorem 5.5 and the constructions
of Sections 2 and 3 relating the Dubrovin–Zhang Frobenius manifolds of Section 5.1.2 to
relativistic Toda spectral curves. I am going to propose here what the most general form
of the conjecture should be. For this section only, the symbols g, h, G = exp(g), T = exp(t),
W will refer to an arbitrary simple, not necessarily simply laced, complex Lie algebra, the
corresponding Cartan subalgebra, simple simply connected complex Lie group, Cartan torus
and Weyl group. As in Section 2, let ρ ∈ R(G) be an irreducible representation of G and for
g ∈ G consider the characteristic polynomial

Ξρ(θ1, . . . , θrg ;μ) = det
ρ

(μ1− g) =

dim ρ∑

k=0

μdim ρ−kpk(θ1, . . . , θrg) ∈ Z[θ, μ], (5.51)

with pk ∈ Z[θ] and θi defined as in Section 2.4. Recall that Ξρ reduces to a product over Weyl
orbits W ρ

i

Ξρ(θ;μ) =
∏

k

Ξ(k)
ρ (θ;μ) =

∏

k

|Wρ
k |∏

j=1

(
μ− eω

(k)
j ·l

)
, (5.52)

†This is a private communication from Boris Dubrovin and Youjin Zhang.
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where el with [el] = [g] is any conjugacy class representative in the Cartan torus, and l ∈ h;

for example, when ρ = g, we have two factors Ξ
(0)
ρ = (μ− 1)rg (W g

0 = Δ(0)) and Ξg,red � Ξ
(1)
ρ

irreducible of degree dg − rg (W g
1 = Δ+ ∪Δ−); this was the case we considered for G = E8. In

general, let k̄ be any integer in the product over k in (5.52) such that W ρ

k̄
is non-trivial and

define Ξρ,red � Ξ
(k̄)
ρ . Fixing αī ∈ Π a simple root, write

Γ(̄i)
u = V

(
Ξρ,red

(
θj = uj − δīj

λ

u0

))
, (5.53)

where the overline sign once again indicates taking the normalisation of the projective closure,

and letting ω
(k̄)
1 be the dominant weight in W ρ

k̄
, denote

qρ,k̄ =
1

2

|Wρ

k̄
|∑

j=1

〈
ω

(̄i)
j , ω

(̄i)
1

〉2

. (5.54)

Finally, writing XToda
g,̄i

= C⋆ × (C⋆)rg for the rg + 1-dimensional torus with coordinates

(u0;u1, . . . , urg), define pairings (η, g) and product structure ∂ui
⋆ ∂uj

on TXToda
g,̄i

by

η(∂ui
, ∂uj

) =
∑

l

Respcr
l

∂ui
λ∂uj

λ

qρ,k̄μ
2∂μλ

dμ, (5.55)

η(∂ui
, ∂uj

⋆ ∂uk
) =

∑

l

Respcr
l

∂ui
λ∂uj

λ∂uk
λ

qρ,k̄μ
2∂μλ

dμ, (5.56)

g(∂ui
, ∂uj

) =
∑

l

Respcr
l

∂ui
λ∂uj

λ∂uk
λ

qρ,k̄μ
2∂μλ

dμ, (5.57)

where {pcr
l }l are the ramification points of λ : Γ

(̄i)
u → P1.

Conjecture 5.8 (Mirror symmetry for DZ Frobenius manifolds). The Landau–Ginzburg
formulas (5.55)–(5.57) define a semi-simple, conformal Frobenius manifold (XToda

g,̄i
, η, e, E, ⋆),

which is independent of the choice of irreducible representation ρ and non-trivial Weyl orbit
W ρ

k̄
. In particular, (5.55) and (5.57) define flat non-degenerate metrics on TXToda

g,i , and the
identity and Euler vector fields read, in curved coordinates u0, . . . , urg ,

e = u−1
0 ∂uī

, E = u0∂u0
. (5.58)

Moreover,

XToda
g,̄i ≃ X̃g,̄i. (5.59)

There is a fair amount of circumstantial evidence in favour of the validity of the mirror
conjecture in the form and generality proposed.

(1) Firstly, the independence on the choice of representation should be a consequence of the
work of [87–89] on the ‘hierarchy’ of Jacobians of spectral curves for the periodic Toda lattice
and associated, isomorphic preferred Prym–Tyurins. The very same calculation of Section 4.3.2
of the intersection form (5.57) in this case does indeed show that the sum-of-residues in different
representations and Weyl orbits (ρ, k̄), (ρ′, k̄′) coincide up to an overall factor of qρ,k̄/qρ′,k̄′ ,
which in (5.55)–(5.57) is accounted for by the explicit inclusion of qρ,k̄ at the denominator.

(2) Isomorphisms of the type (5.59) have already appeared in the literature, and they all fit
in the framework of Conjecture 5.8. In their original paper [44], Dubrovin–Zhang formulate a
mirror theorem for the A-series which is indeed the specialisation of Conjecture 5.8 to g = slN
and ρ = � = ρω1

the fundamental representation. Their mirror theorem was extended to the
other classical Lie algebras bN , cN and dN by the same authors with Strachan and Zuo in [43]:
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the Toda mirrors of Conjecture 5.8 specialise to their LG models for g = so2N+1, spN and so2N

with ρ being in all cases the defining vector representation ρ = ρω1
.

(3) At the opposite end of the simple Lie algebra spectrum, Theorem 5.5 gives an affirmative
answer to Conjecture 5.8 for the most exceptional example of G = E8; it is only natural to
speculate that the missing exceptional cases should fit in as well.

(4) Some further indication that Conjecture 5.8 should hold true comes from the study of
Seiberg–Witten curves in the same limit considered for Section 4.3.3, together with Λ4 → 0. It
was speculated already in [82] that the perturbative limit of 4d SW curves with ADE gauge
group should be related to ADE topological Landau–Ginzburg models (and hence the finite
Coxeter Frobenius manifolds of (5.14)) via an operation foreshadowing the notion of almost
duality in [42]; this was further elaborated upon in [49] for g = e6, and [48] for g = e7.

(5) Finally, our way of accommodating the extra datum of the choice of simple root αī is
not only consistent with the results [43], but also with the general idea that these Frobenius
manifolds should be related to each other by a Type I symmetry of WDVV (a Legendre-type
transformation) in the language of [40, Appendix B]. Indeed, different choices of fundamental
characters uī shifting the value of the superpotential correspond precisely to a symmetry of
WDVV where the new unit vector field is one of the old non-unital coordinate vector fields.
This parallels precisely the general construction of [43, 44].

It should be noted that, away from the classical ABCD series and the exceptional case G2,

Γ
′(̄i)
u is typically not a rational curve, not even for the ‘minimal’ case in which αī is chosen as

the root corresponding to the attaching node of the external root in the Dynkin diagram, and
ρ is a minimal non-trivial irreducible representation. For the time being, I will content myself
to provide some data on the exceptional cases in Table 4, and defer a proof of Conjecture 5.8
to a separate publication.

5.4. Polynomial P1-orbifolds at higher genus

As a final application, I restrict my attention to G being simply laced. In this case,
Conjecture 5.8 and [107] would imply the following.

Conjecture 5.9. With notation as in Conjecture 5.8, let ī be an arbitrary node of
the Dynkin diagram for g of type A, or the node corresponding to the highest dimensional
fundamental representation† for type D and E:

ī =

⎧
⎨
⎩

i = 1, . . . , n, g = An

n− 2, g = Dn

3, g = En

(5.60)

Then,

XToda
g,̄i ≃ QHorb(Cg), (5.61)

where Cg is the polynomial P1-orbifold of type g:

Cg =

⎧
⎨
⎩

P(̄i, n− ī + 1), g = An

P(2, 2, n− 2) g = Dn

P(2, 3, n− 3) g = En

(5.62)

There are two noteworthy implications of such a statement. The first is that the LG model of
the previous section would provide a dispersionless Lax formalism for the integrable hierarchy
of topological type on the loop space of the Frobenius manifold QHorb(Cg) [40, Lecture 6];

†Equivalently, this is the attaching node of the external root(s) in the Dynkin diagram.
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for type A, this is well known to be the extended bi-graded Toda hierarchy of [31] (see also
[91]), and for all ADE types, a construction was put forward in [90] for these hierarchies in
the form of Hirota quadratic equations. The zero-dispersion Lax formulation of the hierarchy
could be a key to relate such remarkable, yet obscure hierarchy to a well-understood parent
2 + 1 hierarchy such as two-dimensional Toda , as was done in a closely related context in [24].
A more direct consequence is a Givental-style, genus-zero-controls-higher-genus statement, as
follows. On the Gromov–Witten side, and as a vector space, the Chen–Ruan cohomology of Cg

is the cohomology of the inertia stack ICg [34, 123], which is generated by the identity class
φrg � 10, the Kähler class φ0 � p, and twisted cohomology classes concentrated at the stacky
points of Cg,

φν(i,r) � 1( i
sr

,r) ∈ H( i
sr

,r)(Cg) ≃ H(BZsr ), i = 1, . . . , r − 1, (5.63)

where r = 1, 2 for type A and r = 1, 2, 3 for type D and E label the orbifold points of Cg, sr
is the order of the respective isotropy groups, we label components of the ICg by ( i

r , sr), and
ν(i, r) is a choice of a map to [[1, rg]] increasingly sorting the sets of pairs (i, r) by the value
of i/sr.

† Define now the genus g full-descendent Gromov–Witten potential of Cg as the formal
power series

FCg

g =
∑

n�0

∑

d∈Eff(Cg)

∑

α1,...,αn
k1,...,kn

∏n
i=1 tαi,ki

n!
〈τk1

(φα1
) . . . τkn

(φαn
)〉Cg

g,n,d, (5.64)

where Eff(Cg) ⊂ H2(Cg,Z)/H2
tor(Cg,Z) is the set of degrees of twisted stable maps to Cg,

and the usual correlator notation for multi-point descendent Gromov–Witten invariants was
employed,

〈τk1
(φα1

) . . . τkn
(φαn

)〉Cg

g,n,d �

∫

[Mg,n(Cg,d)]vir

n∏

i=1

ev∗
iφαi

ψki
i . (5.65)

Since QH(Cg) is semi-simple, the Givental–Teleman Reconstruction theorem applies [117]. I
will refer the reader to [26, 58, 81] for the relevant background material, context, and detailed
explanations of origin and inner workings of the formula; symbolically and somewhat crudely,
this is, for a general target X with semi-simple quantum cohomology,

exp

(∑

g

ǫ2g−2FX
g (t)

)
= Ŝ−1

GW,X ψ̂GW,XR̂GW,X

rg+1∏

i=1

τKdV(u), (5.66)

where the calibrations SGW,X and RGW,X are elements of the linear symplectic loop group of
QH(X)⊗ C[�, �−1]] given by flat coordinate frames for the restricted Dubrovin connection to
the internal direction of the Frobenius manifold (5.2), which are, respectively, analytic in � and
formal in 1/�. The hat symbol signifies normal-ordered quantisation of the corresponding linear
symplectomorphism (namely, an exponentiated quantised quadratic Hamiltonian), ψGW,X

is the Jacobian matrix of the change-of-variables from flat to normalised canonical frame,
and τKdV is the Witten–Kontsevich Kortweg–de-Vries τ -function, that is, the exponentiated
generating function of GW invariants of the point. The essence of (5.66) is that there exists
a judicious composition of explicit, exponentiated quadratic differential operators in tα,k and

changes of variables u
(i)
k → tα,k from the kth KdV time of the ith τ -function in (5.66) which

returns the full-descendent, all-genus GW partition function of X. In our specific case X = Cg

†For the case g = e8, since gcd(2, 3, 5) = 1, there is no ambiguity in the choice of ν, and the choice of
labelling of φα here was made to match that of the Saito vector fields ∂tα of Lemma 5.3: up to scale, we have
φα = ∂tα , ∂t0 = p, ∂t8 = 10, ∂t1 = 1( 1

5
,3), ∂t2 = 1( 1

3
,2), ∂t3 = 1( 2

5
,3), ∂t4 = 1( 1

2
,1), ∂t5 = 1( 3

5
,3), ∂t6 = 1( 2

3
,2),

∂t7 = 1( 4
5
,2).
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(and in general, whenever we consider non-equivariant GW invariants), by the Conformality

axiom of definition 5.1, both ŜGW,X and R̂GW,X are determined by the Frobenius manifold
structure of QH(X) alone, without any further input [117]: the grading condition given by
the flatness in the C⋆

�
direction of the Dubrovin connection fixes uniquely the normalisation of

the canonical flat frames S and R at � = 0,∞, respectively. For reference, the R-action on the
Witten–Kontsevich τ -functions gives the ancestor potential in the normalised canonical frame

exp

(∑

g

ǫ2g−2AX
g (t)

)
� R̂GW,X

rg+1∏

i=1

τKdV(u) (5.67)

to which the descendent generating function (5.66) is related by a linear change of variables
(via ψ) and a triangular transformation of the full set of time variables (via S−1); see [81,
Chapter 2].

On the Toda/spectral curve side, a similar higher genus reconstruction theorem exists
in light of its realisation as a Frobenius submanifold of a Hurwitz space: this is, as in
Section 4.1.4, the Chekhov–Eynard–Orantin (CEO) topological recursion procedure, giving
a sequence (FCEO

g (S ),WCEO
g,h (S )) of generating functions (4.37) and (4.38) specified by

the Dubrovin–Krichever data of Definition 3.1. Having proved, or taking for granted the
isomorphism of the underlying Frobenius manifolds as in Conjecture 5.8, it is natural to ask
whether the two higher genus theories are related at all. A precise answer comes from the work
of [47], where the authors show that there exists an explicit change of variables tα,k → vi,j and
an R-calibration of the Hurwitz space Frobenius (sub)manifold associated to Sg such that

exp

⎛
⎝ǫ2g−2

∑

g,d

WCEO(S )g,d(v)

⎞
⎠ = R̂CEO(S )

rg+1∏

i=1

τKdV(u), (5.68)

where the independent variables vi,j on the left-hand side are obtained from the arguments of
the CEO multi-differentials upon expansion around the ith branch point of the spectral curve
(see [47, Theorem 4.1] and the discussion preceding it for the exact details). In other words,
the topological recursion reconstructs the ancestor potential of a two-dimensional semi-simple
cohomological field theory, with R-calibration RCEO(S ) entirely specified by the spectral curve
geometry via a suitable Laplace transform of the Bergman kernel. One upshot of this is that,
up to a further change-of-variables and a (non-trivial) shift by a quadratic term, (5.68) can be
put in the form of (5.66).

So, in a situation where SX is a spectral curve mirror to X, we have two identical
reconstruction theorems for the higher genus ancestor potential starting from genus zero CohFT
data, both being unambiguosly specified in terms of R-actions RGW,X and RCEO(SX). If these
agree, then the full higher genus potentials agree, and the higher genus ancestor invariants
of X are computed by the topological recursion on SX by (5.68). Happily, it is a result of

Table 4. Degree and genera of minimal spectral curve (putative) mirrors of X̃g,̄i for the exceptional

series EFG; for simplicity I only indicate the genus for the original choice of marked node ī in [44,
Table I].

G ρ k̄ qρ,k̄ dim ρ degμ Ξρ,red deguj
Ξρ,red g(Γ

(̄i)
u )

E6 ρω1 1 6 27 27 5, 3, 2, 3, 5, 3 5
E7 ρω6 6 12 56 56 6, 4, 3, 4, 5, 10, 6 33
E8 ρω7 7 60 248 240 23, 13, 9, 11, 14, 19, 29, 17 128
F4 ρω4 4 6 26 24 3, 2, 3, 5 4
G2 ρω1 1 6 7 7 2, 1 0
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Shramchenko that in non-equivariant GW theory this is always precisely the case [112] (see
also [46, Theorem 7]):

RGW,X = RCEO(SX). (5.69)

In other words, the R-calibration RCEO(SX), which is uniquely specified by the Bergmann
kernel of a family of spectral curves SX whose prepotential coincides with the genus zero GW
potential of a projective variety† X, coincides with the R-calibration RGW,X uniquely picked
by the de Rham grading in the (non-equivariant) quantum cohomology of X. We get to the
following.

Corollary 5.10. Suppose that Conjecture 5.8 holds. Then the ancestor higher genus
potential of Cg equates to the higher genus topological recursion potential

ACg

g =
∑

h

W
Sg

g,h (5.70)

up to the change-of-variables of [47, Theorem 4.1].

In particular, such all-genus full-ancestor statements hold in type A by [44, Theorem 3.1],
type D by [43, Theorem 5.6] and type E8 by Theorem 5.5. The two remaining exceptional
cases can be treated along the same lines of Theorem 5.5, and far more easily than the case of
E8, and are left as an exercise to the reader.

Remark 5.11 (On an ADE Norbury–Scott theorem). For the case of the Gromov–Witten
theory of P1, it was proposed by Norbury–Scott in [97], supported by a low-genus proof and
a heuristic all-genus argument, and later proved in full generality by the authors of [47] using

(5.68), that the residue at infinity of the CEO differentials W
Sg

g,n gives the n-point, genus g
stationary GW invariant of P1,

n∏

j=1

Reszj=∞

z
mj+1
j

(mj + 1)!
WToda

g,n (z1, . . . , zn) = (−)n

〈
n∏

i=1

τmj
(p)

〉
. (5.71)

I fully expect that a completely analogous ADE orbifold version of (5.71), which allows for a
very efficient way to compute GW invariants at higher genera, would hold for all polynomial
P1-orbifolds. For types A and D, where the curve is rational, the statement of (5.71) would
probably carry forth verbatim, with the right-hand side being given by n-pointed, non-
stationary, untwisted GW invariants. For type E, it will perhaps be necessary to sum over
all branches above ∞ (8, in the case of E8) to obtain the desired result. I also expect that
in type D and E, poles of λ at finite μ will presumably compute twisted invariants, with
twisted insertions being labelled by the location of the poles. In particular, in type E8, the
poles at lnμ

2πi ∈ {1/5, 1/3, 2/5, 1/2, 3/5, 1/3, 4/5} should correspond to insertions of 1i/sr,r for
the corresponding value of i/sr.

Appendix A. Proof of Proposition 3.1

I am going to prove Proposition 3.1 by first establishing the following.

Lemma A.1. The number of double cosets of W by Wα0
is

|Wα0
\W/Wα0

| = 5. (A.1)

†More generally, a Gorenstein orbifold with projective coarse moduli space.
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Proof. The order of the double coset spaceWα0
\W/Wα0

is the square norm of the character
of the trivial representation of Wα0

, induced up to W [113, Ex. 7.77a],

|Wα0
\W/Wα0

| =
〈
indW

Wα0
1, indW

Wα0
1
〉
. (A.2)

Now, indW
Wα0

1 is just the permutation representation C〈Δ∗〉 on the free vector space on the

set of non-zero roots Δ∗ ≃ W/Wα0
. Suppose that

C〈Δ∗〉 =
⊕

miRi (A.3)

for irreducible representations Ri ∈ R(W) and mi ∈ Z. Then, by (A.2),

|Wα0
\W/Wα0

| =
∑

i

m2
i . (A.4)

The multiplicity of Ri in C〈Δ∗〉 is easily computed as follows. Let c ∈ W and [c] its conjugacy
class. Then its C〈Δ∗〉-character

χC〈∆∗〉([c]) = dimC{v ∈ h∗|cv = v} (A.5)

is equal to the dimension of the eigenspace of fixed points of c. In the standard labelling [32,
102] of conjugacy classes of W = Weyl(e8), we compute the right-hand side of (A.5) to be

χC〈∆∗〉([c]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 [c] ∈ {2b, 4c, 6a, 12a, 4e, 4g, 30b, 10d, 6m, 3d, 24c,
6s, 18c, 6x, 12n, 7a, 14a, 6y, 6z, 6ab},

4 [c] ∈ {4h, 2e, 10b, 30c, 6i, 30d, 12p, 12r},
6 [c] ∈ {8c, 4b, 8e, 6c, 2c, 12h, 8h, 6q, 14b, 12q},
8 [c] ∈ {4d, 4m},
12 [c] ∈ {12f, 2f, 5a, 6g, 10e},
14 [c] = 12m,
20 [c] = 18d,
24 [c] ∈ {8a, 24b, 20b},
26 [c] = 6b,
30 [c] = 12d,
40 [c] = 6h,
60 [c] = 12e,
72 [c] = 4f,
126 [c] = 6e,
240 [c] = 1a,
0 else.

From (A.6), we obtain†

mi =
〈
χRi

, χC〈∆∗〉

〉

=

{
1 Ri ∈ {1+ ≃ 1,8+ ≃ h∗,35−,84−,112+},
0 else,

(A.6)

from which the claim follows. �

†Irreducible representations of W have been labelled as dimRsgnχR(8d). A rather standard use in the literature
is to label irreducible representations of exceptional Weyl groups by how they are stored in the GAP library; for
reference, here the summands in the decomposition (A.6) would be called X.1 (trivial), X.3 (Coxeter), X.8, X.15
and X.16.



E8 SPECTRAL CURVES 1021

Proposition 3.1 is an easy consequence of the Lemma A.1: by Wα0
-invariance, (3.17) defines

an element of the Hecke ring, and it is immediately seen to assume exactly five constant
values −2,−1, 0, 1, 2 on the hyperplanes Hi, which are then in bijection with the elements of
H(W,Wα0

).

Appendix B. Some formulas for the e8 and e
(1)
8 root system

I gather here some reference material for the finite and affine E8 root systems. Let {ei},
i = 1, . . . , 8 be an orthonormal basis for R8. The simple roots {αi}, i = 1, . . . , 8 have
components in this basis given by

alpha1 = (1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,

1
2 ),

α2 = (0, 0, 0, 0, 0,−1, 1, 0),

α3 = (0, 0, 0, 0,−1, 1, 0, 0),

α4 = (0, 0, 0,−1, 1, 0, 0, 0),

α5 = (0, 0,−1, 1, 0, 0, 0, 0),

α6 = (1, 1, 0, 0, 0, 0, 0, 0),

α7 = (0,−1, 1, 0, 0, 0, 0, 0),

α8 = (−1, 1, 0, 0, 0, 0, 0, 0).

. (B.1)

The affine root system is obtained from (B.1) upon adding the affine root

α0 = (0, 0, 0, 0, 0, 0,−1,−1). (B.2)

The respective Cartan matrices are given, from (B.1)–(B.2), by

C
e8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 −1
0 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 0 −1 0
0 0 0 0 0 2 −1 0
0 0 0 0 −1 −1 2 −1
−1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.3)

C
e
(1)
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0 −1
1 0 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 0 −1 0
0 0 0 0 0 0 2 −1 0
0 0 0 0 0 −1 −1 2 −1
0 −1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.4)

The resulting simple Lie algebra for e8 has rank 8 and dimension 240. In the α-basis, (B.1),
the affine root (B.2) reads

α0 =
∑

i

diαi = 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + 3α8. (B.5)

Since det C e8 = 1, we have Λr(e8) ≃ Λw(e8).
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B.1. On the minimal orbit of W. I group here the details of the minimal orbit of W in
Λr ⊂ Zs generated by the adjoint weight ω7, in terms of 240 vectors in a s = 30-dimensional
lattice. Since the orbit is in bijection with the set of non-zero roots of g, ω is in the orbit
if and only if −ω is; also the cyclic shift of the components in Zs corresponds to the action
of the Coxeter element on the orbit, which is thus preserved if we send ω → (ωj+1 mod s)j .
The resulting Z2 × Z30 action breaks up the orbit into suborbits, representatives for which are
displayed† in Table B1.

B.2. The binary icosahedral group Ĩ. The binary icosahedral group Ĩ is the preimage of the
symmetry group of a regular icosahedron in E3 by the degree 2 covering map SU(2)→ SO(3).
It has a presentation as the group generated by the unit quaternions

s =
1

2
(1 + i + j + k), t =

1

2

(
φ + φ−1 + i + j

)
, (B.6)

whose full set of relations is s3 = t5 = (st)2. The resulting group Ĩ has order 120, exponent 60,
and class order 9. Its character table is given in Table B2.

B.3. The prepotential of X̃e8,3.

FX̃e8,3
= − 7t101

135 000 000
+

521e6t0t91
2 700 000

+
5117e12t0t81

100 000
+

e2t0t2t
8
1

300 000
+

7t3t
8
1

15 000 000
+

243

250
e18t0t71

+
136e8t0t2t

7
1

1875
+

67e6t0t3t
7
1

75 000
+

e3t0t4t
7
1

1875
− t5t

7
1

3 937 500
+

1954

375
e24t0t61 +

7

600
e4t0t22t

6
1

− 13t23t
6
1

7 500 000
+

2401

750
e14t0t2t

6
1 +

2151e12t0t3t
6
1

25 000
+

e2t0t2t3t
6
1

25 000
+

243

500
e9t0t4t

6
1 +

19e6t0t5t
6
1

56 250

− e4t0t6t
6
1

1000
+

t7t
6
1

18 750 000
+ 12e30t0t51 +

43

12
e10t0t22t

5
1 +

71e6t0t23t
5
1

50 000

+
43

2
e20t0t2t

5
1 +

189

250
e18t0t3t

5
1 +

4

25
e8t0t2t3t

5
1 + 7e15t0t4t

5
1

+
1

2
e5t0t2t4t

5
1 +

1

250
e3t0t3t4t

5
1 +

67e12t0t5t
5
1

6250
+

e2t0t2t5t
5
1

18 750
+

11t3t5t
5
1

4 687 500

− 1

12
e10t0t6t

5
1 +

e6t0t7t
5
1

25 000
+

159

10
e36t0t41 +

117

100
e6t0t32t

4
1 +

7t33t
4
1

2 500 000
+

592

15
e16t0t22t

4
1

+
2557e12t0t23t

4
1

50 000
+

7e2t0t2t
2
3t

4
1

50 000
+

88

25
e6t0t24t

4
1 −

t25t
4
1

703 125
+

507

10
e26t0t2t

4
1 +

229

125
e24t0t3t

4
1

+
23

600
e4t0t22t3t

4
1 +

343

125
e14t0t2t3t

4
1 +

98

5
e21t0t4t

4
1 +

1

300
et0t22t4t

4
1 +

1331

50
e11t0t2t4t

4
1

+
459

500
e9t0t3t4t

4
1 +

9

250
e18t0t5t

4
1 +

76e8t0t2t5t
4
1

1875
+

11e6t0t3t5t
4
1

9375
+

17e3t0t4t5t
4
1

3750

− 4

15
e16t0t6t

4
1 −

27

100
e6t0t2t6t

4
1 −

19e4t0t3t6t
4
1

3000
− 1

300
et0t4t6t

4
1 +

e12t0t7t
4
1

25 000
+

e2t0t2t7t
4
1

25 000

†The entries in the seventh and eighth columns of row (ω)7, as well as those of the 26th and 27th columns
of row (ω)11 correct four typos in the table of [15, Appendix F.1].
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− t3t7t
4
1

1 250 000
+ 10e42t0t31 +

1

45
e2t0t42t

3
1 +

159

5
e12t0t32t

3
1 +

19e6t0t33t
3
1

25 000
+

484

5
e22t0t22t

3
1

+
9

50
e18t0t23t

3
1 +

54

625
e8t0t2t

2
3t

3
1 +

248

5
e12t0t24t

3
1 +

4

5
e2t0t2t

2
4t

3
1 +

2e6t0t25t
3
1

5625
+

1

45
e2t0t26t

3
1

+ 48e32t0t2t
3
1 + 2e30t0t3t

3
1 +

19

6
e10t0t22t3t

3
1 + 9e20t0t2t3t

3
1 + 18e27t0t4t

3
1 +

343

15
e7t0t22t4t

3
1

+
4

625
e3t0t23t4t

3
1 +

578

5
e17t0t2t4t

3
1 + 6e15t0t3t4t

3
1 + e5t0t2t3t4t

3
1 +

4

375
e24t0t5t

3
1

+
7

375
e4t0t22t5t

3
1 −

t23t5t
3
1

187 500
+

98

375
e14t0t2t5t

3
1 +

51e12t0t3t5t
3
1

3125
+

e2t0t2t3t5t
3
1

3125

+
36

125
e9t0t4t5t

3
1 −

2

45
e2t0t22t6t

3
1 − 3e12t0t2t6t

3
1 −

1

6
e10t0t3t6t

3
1 −

49

15
e7t0t4t6t

3
1

− 1

125
e4t0t5t6t

3
1 +

2

625
e8t0t2t7t

3
1 +

3e6t0t3t7t
3
1

12 500
+

53e12t0t43
100 000

+ 90e9t0t32t4t1

+
2

625
e3t0t4t7t

3
1 +

t5t7t
3
1

468 750
+

15

2
e48t0t21 +

34

3
e8t0t42t

2
1 −

9t43t
2
1

5 000 000
+ 99e18t0t32t

2
1

+
153e12t0t33t

2
1

25 000
+

3e2t0t2t
3
3t

2
1

25 000
+ 6e3t0t34t

2
1 + 105e28t0t22t

2
1 +

81

250
e24t0t23t

2
1 +

29e4t0t22t
2
3t

2
1

1000

+
147

250
e14t0t2t

2
3t

2
1 + 108e18t0t24t

2
1 + 96e8t0t2t

2
4t

2
1 +

78

25
e6t0t3t

2
4t

2
1 +

9e12t0t25t
2
1

3125

+
2e2t0t2t

2
5t

2
1

9375
+

t3t
2
5t

2
1

234 375
+

5

6
e8t0t26t

2
1 −

3t27t
2
1

1 250 000
+ 30e38t0t2t

2
1 +

3

5
e36t0t3t

2
1

+
56

5
e16t0t22t3t

2
1 +

39

5
e26t0t2t3t

2
1 + 3e3t0t32t4t

2
1 + 169e13t0t22t4t

2
1 +

27

100
e9t0t23t4t

2
1

+ 138e23t0t2t4t
2
1 +

42

5
e21t0t3t4t

2
1 +

1

50
et0t22t3t4t

2
1 +

363

25
e11t0t2t3t4t

2
1

+
7

15
e10t0t22t5t

2
1 +

e6t0t23t5t
2
1

1250
+

2

5
e20t0t2t5t

2
1 +

3

125
e18t0t3t5t

2
1 +

4

125
e8t0t2t3t5t

2
1

+
4

5
e15t0t4t5t

2
1 +

2

5
e5t0t2t4t5t

2
1 +

1

125
e3t0t3t4t5t

2
1 −

14

3
e8t0t22t6t

2
1 −

1

200
e4t0t23t6t

2
1

− 3e18t0t2t6t
2
1 −

2

5
e16t0t3t6t

2
1 −

21

50
e6t0t2t3t6t

2
1 − 13e13t0t4t6t

2
1 − 3e3t0t2t4t6t

2
1

− 1

50
et0t3t4t6t

2
1 −

1

15
e10t0t5t6t

2
1 +

3

500
e4t0t22t7t

2
1 +

3t23t7t
2
1

1 250 000
− 1

50
e6t0t2t6t7

+
3e12t0t3t7t

2
1

12500
+

3e2t0t2t3t7t
2
1

12500
+

e12t0t23t5t1

6250
+

51

50
e6t0t32t3t

2
1 +

1

50
et0t22t4t7

+
9

250
e9t0t4t7t

2
1 +

e6t0t5t7t
2
1

3125
− 3

500
e4t0t6t7t

2
1 +

5

6
e4t0t52t1 +

245

6
e14t0t42t1 +

3e6t0t43t1

100 000
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+ 60e24t0t32t1 +
3

250
e18t0t33t1 +

9

625
e8t0t2t

3
3t1 + 60e9t0t34t1 −

2t35t1

2 109 375
+ 30e34t0t22t1

+
7

20
e10t0t22t

2
3t1 +

3

10
e20t0t2t

2
3t1 + 60e24t0t24t1 + 40e4t0t22t

2
4t1 + 210e14t0t2t

2
4t1

+
42

5
e12t0t3t

2
4t1 +

6

5
e2t0t2t3t

2
4t1 +

4e8t0t2t
2
5t1

1875
+

2e6t0t3t
2
5t1

9375
+ 6e27t0t3t4t1

+
4e3t0t4t

2
5t1

1875
+

5

6
e14t0t26t1 +

5

6
e4t0t2t

2
6t1 +

1

30
e2t0t3t

2
6t1 + +80e15t0t32t4

+
3e6t0t27t1

25 000
+

1

30
e2t0t42t3t1 +

41

5
e12t0t32t3t1 +

66

5
e22t0t22t3t1 + 6e32t0t2t3t1

+
3e3t0t33t4t1

1250
+ 190e19t0t22t4t1 +

3

5
e15t0t23t4t1 +

3

10
e5t0t2t

2
3t4t1 + 60e29t0t2t4t1

+
49

5
e7t0t22t3t4t1 +

102

5
e17t0t2t3t4t1 +

4

25
e6t0t32t5t1 +

t33t5t1

312 500
+

8

15
e16t0t22t5t1

+
e2t0t2t

2
3t5t1

6250
+

14

25
e6t0t24t5t1 +

2

125
e24t0t3t5t1 +

7

375
e4t0t22t3t5t1 +

14

125
e14t0t2t3t5t1

+
4

5
e21t0t4t5t1 +

2

75
et0t22t4t5t1 +

44

25
e11t0t2t4t5t1 +

12

125
e9t0t3t4t5t1 −

5

3
e4t0t32t6t1

− 35

3
e14t0t22t6t1 −

1

20
e10t0t23t6t1 − 10e4t0t24t6t1 −

1

15
e2t0t22t3t6t1 − e12t0t2t3t6t1

− 10e19t0t4t6t1 − 30e9t0t2t4t6t1 −
7

5
e7t0t3t4t6t1 −

2

15
e16t0t5t6t1 −

4

25
e6t0t2t5t6t1

− 1

375
e4t0t3t5t6t1 −

2

75
et0t4t5t6t1 +

1

50
e10t0t22t7t1 +

3e6t0t23t7t1

25 000
+

3

625
e8t0t2t3t7t1

+
3

25
e5t0t2t4t7t1 +

3

625
e3t0t3t4t7t1 +

e12t0t5t7t1

3125
+

e2t0t2t5t7t1

3125
− t3t5t7t1

156 250

− 1

50
e10t0t6t7t1 +

3

125
t7t8t1 + e60t0 − t62

324
+

23

3
e10t0t52 +

t53
5 000 000

+
185

6
e20t0t42

+
3e2t0t2t

4
3

100 000
− 5t44

8
+ 20e30t0t32 +

e4t0t22t
3
3

1000
+ 20e15t0t34 + 60e5t0t2t

3
4 + 2e3t0t3t

3
4

− 5t36
324

15e40t0t22 +
1

10
e36t0t23 +

11

100
e6t0t32t

2
3 +

3

5
e16t0t22t

2
3 +

3

10
e26t0t2t

2
3 + 30e30t0t24

+ 130e10t0t22t
2
4

9

25
e6t0t23t

2
4 + 60e20t0t2t

2
4 + 6e18t0t3t

2
4 + 12e8t0t2t3t

2
4 +

1

375
e24t0t25

− t23t
2
5

468 750
+

2

375
e14t0t2t

2
5 +

5

6
e20t0t26 −

5

108
t22t

2
6 +

5

3
e10t0t2t

2
6 +

5

3
e5t0t4t

2
6 +

1

90
e2t0t5t

2
6

+
3e12t0t27
25 000

+
3e2t0t2t

2
7

25 000
+

3t3t
2
7

1 250 000
+ 30t0t

2
8 + e8t0t42t3 + 3e18t0t32t3 +

35

3
e5t0t42t4

+
3

500
e9t0t33t4 + 60e25t0t22t4 +

1

100
et0t22t

2
3t4 +

33

50
e11t0t2t

2
3t4 + e3t0t32t3t4
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+ 6e23t0t2t3t4 +
1

90
e2t0t42t5 +

2

5
e12t0t32t5 +

2

5
e22t0t22t5 +

1

250
e18t0t23t5

+
4

5
e12t0t24t5 +

2

5
e2t0t2t

2
4t5 +

1

75
e10t0t22t3t5 +

14

15
e7t0t22t4t5 +

e3t0t23t4t5

1250

+
2

25
e5t0t2t3t4t5 −

5

324
t42t6 −

10

3
e10t0t32t6 −

e4t0t33t6

1000
− 5

3
e20t0t22t6 −

1

100
e6t0t2t

2
3t6

− 10e10t0t24t6 − e8t0t22t3t6 − e18t0t2t3t6 −
40

3
e5t0t22t4t6 −

1

100
et0t23t4t6 − 20e15t0t2t4t6

− e13t0t3t4t6 − e3t0t2t3t4t6 −
1

45
e2t0t22t5t6 −

1

75
e10t0t3t5t6 −

2

15
e7t0t4t5t6

− t33t7

1 250 000
+

3e12t0t23t7

25 000
+

3e2t0t2t
2
3t7

25 000
+

3

25
e6t0t24t7 +

t25t7

468 750
+

1

500
e4t0t22t3t7

+
3

25
e11t0t2t4t7 +

3

250
e9t0t3t4t7 +

1

625
e8t0t2t5t7 +

1

625
e3t0t4t5t7

− 1

500
e4t0t3t6t7 −

1

50
et0t4t6t7 + 15t24t8 +

2

125
t3t5t8 −

10

3
t2t6t8 +

1

375
e4t0t22t

2
5

+
2e6t0t35
84 375

+
1

50
e6t0t32t7 +

3

625
e8t0t2t

2
3t5 + 13e13t0t22t3t4 +

4

5
e17t0t2t4t5 . (B.7)

Table B.1. Z2 × Z30 suborbits of the minimal orbit of W.

n0 ±6 ±5 ±4 ±3 ±3 ±2 ±2 ±1 0 0 0 0
card 10 12 30 20 20 30 30 60 10 10 6 2
(ω)1 1 −1 −1 −1 1 −1 1 2 −1 1 1 1
(ω)2 0 1 1 1 −1 1 −1 −1 0 0 −1 −1
(ω)3 0 0 0 0 1 1 0 0 0 −1 0 1
(ω)4 0 0 0 1 −1 −1 1 0 0 0 1 −1
(ω)5 0 0 1 −1 1 0 −1 0 1 0 −1 1
(ω)6 1 1 −1 0 0 0 1 0 −1 1 0 −1
(ω)7 0 −1 0 0 0 0 0 1 0 0 1 1
(ω)8 0 1 1 1 0 1 −1 −1 0 −1 −1 −1
(ω)9 0 0 0 0 0 0 1 0 0 0 0 1
(ω)10 0 0 0 0 0 −1 0 0 1 0 1 −1
(ω)11 1 0 0 −1 1 0 0 1 −1 1 −1 1
(ω)12 0 1 0 1 −1 1 0 −1 0 0 0 −1
(ω)13 0 −1 0 0 1 0 0 1 0 −1 1 1
(ω)14 0 1 1 1 −1 0 0 −1 0 0 −1 −1
(ω)15 0 0 0 −1 1 0 0 0 1 0 0 1
(ω)16 1 0 −1 0 0 −1 1 1 −1 1 1 −1
(ω)17 0 0 1 0 0 1 −1 0 0 0 −1 1
(ω)18 0 1 0 1 0 1 0 −1 0 −1 0 −1
(ω)19 0 −1 0 0 0 −1 1 1 0 0 1 1
(ω)20 0 1 1 0 0 0 −1 −1 1 0 −1 −1
(ω)21 1 0 −1 −1 1 0 1 1 −1 1 0 1
(ω)22 0 0 0 1 −1 0 0 0 0 0 1 −1
(ω)23 0 0 1 0 1 1 −1 0 0 −1 −1 1
(ω)24 0 1 0 1 −1 0 1 −1 0 0 0 −1
(ω)25 0 −1 0 −1 1 −1 0 1 1 0 1 1
(ω)26 1 1 0 0 0 0 0 0 −1 1 −1 −1
(ω)27 0 0 0 0 0 1 0 0 0 0 0 1
(ω)28 0 0 0 1 0 0 0 0 0 −1 1 −1
(ω)29 0 0 1 0 0 0 0 0 0 0 −1 1
(ω)30 0 1 0 0 0 0 0 −1 1 0 0 −1
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Table B.2. The character table of Ĩ. Conjugacy classes [g] are denoted by their order and sign of the
SU(2) character χ1 as |[g]|χ1([g]).

11 1−1 301 201 20−1 12φ 12φ−1 12−φ 12−φ−1

χid 1 1 1 1 1 1 1 1 1
χ1 2 −2 0 1 −1 φ φ−1 −φ −φ−1

χ2 4 −4 0 −1 1 1 −1 −1 1
χ3 6 −6 0 0 0 −1 1 1 −1
χ5 4 4 0 1 1 −1 −1 −1 −1
χ6 3 3 −1 0 0 −φ−1 φ −φ−1 φ
χ4 5 5 1 −1 −1 0 0 0 0
χ7 2 −2 0 1 −1 −φ−1 −φ φ−1 φ
χ8 3 3 −1 0 0 φ −φ−1 φ −φ−1

Appendix C. ∧•e8 and relations in R(E8): an overview of the results of [23]

I provide here a summary of the computer-aided proof of Claim 2.3. In principle, a direct
approach to the determination of {pk} is as follows:

(1) decompose ∧kg = ⊕R
(k)
i into irreducibles;

(2) letting λj =
∑8

i=1 mi,jωj be the highest weight of R
(k)
j , consider the tensor product

decomposition of ⊗iρ(mi,jωj): this will contain R
(k)
j as a summand (with coefficient 1),

plus extra terms;
(3) iterate the operation until all virtual summands (possibly with negative coefficients) have

been replaced by tensor products of fundamental representations; taking the character
and summing over j gives pk.

This however turns out to be computationally unfeasible already for k ∼ 7; not only is
the decomposition of ∧kg a daunting (and still unsolved, see however [9, 103]) task; the
decomposition into irreducibles of even simple products such as ρω3

⊗ ρω3
would take hundreds

of Gigabytes of RAM to compute. Instead, we proceed as follows.

(1) For a given Cartan torus element exp(l) ∈ T with l =
∑

i liα
∗
i ∈ h, we can compute

explicit Laurent polynomials θj(exp(l)) ∈ Z[(eli)i, (e
−li)i], φk(l) ∈ Z[(eli)i, (e

−li)i] for i =
1, . . . , 8 and k = 1, . . . , 120 from the sole knowledge of the weight systems of ρωi

with i = 1, 7, 8,
which have manageably small cardinality 2401, 241 and 26 401, respectively, (not taking into
account weight multiplicities): for θi with 3 � i � 7 and all φk this follows from using Newton’s
identities applied to the power sums θ7(exp(kl)), and then use of (2.19); θ2 is similarly computed
from θj with j = 1, 7, 8 by the Adams operation on θ1:

θ1(exp(2l)) = θ2(exp(l))− θ1(exp l) + θ7(exp l)θ1(exp l)− θ8(exp l). (C.1)

(2) We may then impose a priori constraints on the exponents d
(I)
j appearing by inspection

of the weight systems as well as on the dimensions of the tensor powers appearing on the
monomials of the right-hand side of (2.24). We find

{
max
I∈M

d
(I)
j

}8

j=1

= {23, 13, 9, 11, 14, 19, 29, 17}, max
I∈M

8∏

j=1

(
dimρωj

)d(I)
j = 1.25366× 1096.

(C.2)

This truncates the sum on the right-hand side to a finite, if large (|M | = O(106)), number of
monomials.
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(3) In principle, imposing the identity of polynomials φk = pk(θ1, . . . , θ8) determines
uniquely all nI,k; however the range of sum and the complexity of the polynomials involved
renders this entirely unwieldy. A more sensible alternative is to solve (2.24) for nI,k by sampling
the relation (2.24) at |M | random generic points exp(l) ∈ Q8 of the torus†, leading to a
generically non-singular |M | × |M | linear system with rational entries for nI,k, which can be
solved exactly. Due to the sheer size of the monomial set and the density of the resulting linear
system, however, this is unfeasible both for memory and time constraints.

(4) There is however a non-generic choice of sampling points which, with some preparation,
does the trick of reducing the problem to a large number of smaller problems of manageable
size. First we subdivide the monomial set M into slices Mn = h−1(n), n = 0, . . . , 8 given by
level sets of the function

h(d(I) ∈M) =
∑

i

ζ(d
(I)
j ), ζ(x) =

{
0 if x = 0,
1 if x > 0.

(C.3)

It is clear then that sampling exp(l) at values such that θi(exp(l)) = 0 except for n values of
i truncates the right-hand side of (2.24) to one of

(
8
n

)
subsets of Mn. The strategy here is to

solve numerically for {θi = ui} with some ui ∈ Q + IQ; there is a clever choice of the sampling
set here such that with sufficient floating point precision, we obtain a reliable – and in fact
exact, with suitable analytical bounds – rounding to rational expressions for both the left-hand
side and the right-hand side of (2.24), for all values of k. This simultaneously bypasses the ill-
conditioning problem for (2.24), since we can then use exact arithmetic methods to solve it,
and moreover breaks it up into subsystems of size in the range O(10)−O(104).

(5) The latter point is not satisfactory yet since in the worst case scenario we deal with
dense rational matrices of rank in the tens of thousands. However there is a refinement of the
sets Mk by considering a further slicing by one (or more) of the d

(I)
j (that is, level sets of

the projections pj(d
(I) ∈M) = d

(I)
j ); these refined monomial sets are just selected by taking

derivatives of (2.24) with respect to θj of order d
(I)
j . Since we have closed-form expressions

for φk and θj as functions of eli , these can be computed using Faa’ di Bruno type formulas;
while the complexity of the latter grows factorially, it turns out that derivative slicings of
order up to five are both computable in finite time, compatible with the rounding of φk with
8 × machine precision, and they allow to break up the size of the resulting linear systems down
to a maximum‡ of O(4× 103).

(6) We are then left with a large number (O(3.103)) of relatively small linear systems and a
large (O(3.105)) number of sampling points to evaluate φk, θi, and their derivatives in lj ; this
would lead to a total runtime in the hundreds of months (about 120). However the numerical
inversion, evaluation and calculation of derivatives at one sampling point is independent from
that at another; this means that the calculation can be easily distributed over several CPU
cores just by segmentation of the sampling set. Similar considerations apply, mutatis mutandis,
to the solution of the linear subsystems. With N ≃ 75 processor cores§, the absolute runtime
gets reduced to about six weeks.

†One might in principle pick generic, numerical random values with fixed precision and then hope to get
an accurate integer truncation for the resulting nI,k ∈ Z. Such hope is however misplaced, as the resulting
numerical matrix of monomial values (a matrix minor of a multi-variate Vandermonde matrix) is extremely
ill-conditioned and leads to uncontrollable numerical errors.

‡A linear system of this rank, for the type of Vandermonde-type matrices we consider, required typically
around 90 GB of RAM and half a day to terminate when solved using exact arithmetic (in our case, p-adic
expansions and Dixon’s method).

§In my specific case, this involved an average of about nine entry-level 64-bit cluster machines with dual
4-core CPUs.
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The full result of the calculation is available at http://tiny.cc/E8SpecCurve , and the original
C source code is available upon request.

It should be noted that, despite the innocent-looking appearance of (2.25)–(2.28), both the
number of terms and the size of the coefficients grow extremely quickly with k. The monomial
set M turns out to have cardinality |M | = 949 468, with the matrix nI,k growing more and
more dense for high k up to a maximum of 949 256 non-zero coefficients for k = 118, and
maxI,k nI,k ≃ 1.7025× 1010, minI,k nI,k ≃ −1.5403× 1010.
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105. N. Reshetikhin and V. G. Turaev, ‘Invariants of three manifolds via link polynomials and quantum

groups’, Invent. Math. 103 (1991) 547–597.
106. A. G. Reyman and M. A. Semenov-Tian-Shansky, ‘Reduction of Hamiltonian systems, affine Lie

algebras and Lax equations’, Invent. Math. 54 (1979) 81–100.
107. P. Rossi, ‘Gromov–Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory

of Seifert fibrations’, Math. Ann. 348 (2010) 265–287.
108. N. Seiberg, ‘Exact results on the space of vacua of four-dimensional SUSY gauge theories’, Phys. Rev.

D49 (1994) 6857–6863.
109. N. Seiberg, ‘Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics’, Phys.

Lett. B388 (1996) 753–760.
110. N. Seiberg and E. Witten, ‘Electric-magnetic duality, monopole condensation, and confinement in N

= 2 supersymmetric Yang–Mills theory’, Nuclear Phys. B 426 (1994) 19–52.
111. J. S. Seo, ‘Singularity structure of N = 2 supersymmetric Yang–Mills theories’, Internat. J. Modern

Phys. A 28 (2013), https://doi.org/10.1142/S0217751X13300299.
112. V. Shramchenko, ‘Riemann–Hilbert problem associated to Frobenius manifold structures on Hurwitz

spaces: irregular singularity’, Duke Math. J. 144 (2008) 1–52.
113. R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics 62

(Cambridge University Press, Cambridge, 1999), With a foreword by Gian-Carlo Rota and appendix 1
by Sergey Fomin.

114. A. Strominger, ‘Special geometry’, Comm. Math. Phys. 133 (1990) 163–180.
115. Y. B. Suris, The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics
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