
This is a repository copy of Observations of turbulent magnetic reconnection within a solar
current sheet.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152154/

Version: Published Version

Article:

Cheng, X., Li, Y., Wan, L.F. et al. (4 more authors) (2018) Observations of turbulent 
magnetic reconnection within a solar current sheet. The Astrophysical Journal, 866 (1). 64.
ISSN 0004-637X 

https://doi.org/10.3847/1538-4357/aadd16

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Observations of Turbulent Magnetic Reconnection within a Solar Current Sheet

X. Cheng
1

, Y. Li
2
, L. F. Wan

1
, M. D. Ding

1
, P. F. Chen

1
, J. Zhang

3
, and J. J. Liu

4

1
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, Peopleʼs Republic of China; xincheng@nju.edu.cn

2
Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Nanjing 210008, Peopleʼs Republic of China

3
Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA

4
Solar Physics and Space Plasma Research Center, School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

Received 2018 June 22; revised 2018 August 18; accepted 2018 August 20; published 2018 October 12

Abstract

Magnetic reconnection is a fundamental physical process in various astrophysical, space, and laboratory
environments. Many pieces of evidence for magnetic reconnection have been uncovered. However, its specific
processes that could be fragmented and turbulent have been short of direct observational evidence. Here, we
present observations of a super-hot current sheet during the SOL2017-09-10T X8.2-class solar flare that display the
fragmented and turbulent nature of magnetic reconnection. As bilateral plasmas converge toward the current sheet,
significant plasma heating and nonthermal motions are detected therein. Two oppositely directed outflow jets are
intermittently expelled out of the fragmenting current sheet, whose intensity shows a power-law distribution in the
spatial frequency domain. The intensity and velocity of the sunward outflow jets also display a power-law
distribution in the temporal frequency domain. The length-to-width ratio of current sheet is estimated to be larger
than the theoretical threshold and thus ensures its occurrence. The observations therefore suggest that fragmented
and turbulent magnetic reconnection occurs in the long stretching current sheet.

Key words: magnetic reconnection – Sun: coronal mass ejections (CMEs) – Sun: flares – turbulence

Supporting material: animation

1. Introduction

Magnetic reconnection, referring to dissipation and connectivity
change of the magnetic field, is capable of powering plasma
heating, plasma motions, and particle acceleration in relativistic
jets (Bloom et al. 2011), accretion disks (Balbus & Hawley 1998),
solar and stellar flares (Sturrock 1966), and magnetospheres (Phan
et al. 2006). In the past decades, abundant evidence for magnetic
reconnection has been disclosed, including in situ measurements
near the Earth (Wang et al. 2016) and remote sensing observations
such as cusp-shaped flare loops (Masuda et al. 1994), inflows and
downflows near the reconnection region (Yokoyama et al. 2001;
Savage & McKenzie 2011; Takasao et al. 2012; Liu et al. 2013;
Liu 2013; Xue et al. 2016), double hard X-ray coronal sources
(Sui & Holman 2003), and changes in connectivity of coronal
loops (Su et al. 2013; Yang et al. 2015; Li et al. 2016).

Unfortunately, the specific processes involved in magnetic
reconnection, in particular what occur in the reconnection
region, remain mysterious. Theoretically, magnetic reconnec-
tion is believed to take place in a localized region, i.e., the so-
called current sheet, that has enhanced resistivity (Yamada
et al. 2010; Priest 2014). In the Sweet-Parker model, the current
sheet is limited to a long and thin region in which the
reconnection proceeds steadily but too slowly to interpret the
real energy release rate. Through invoking slow-mode shocks
extending from a shortened Sweet-Parker current sheet, the
Petschek model is able to significantly boost the reconnection
rate (Petschek 1964). Nevertheless, the current sheet width in
the Petschek model is of an ion inertial scale, which can hardly
match the detectable width in observations. Therefore, it was
proposed that the current sheet can be fragmented into many

magnetic islands by the tearing mode instability (Furth
et al. 1963; Shibata & Tanuma 2001) and develops turbulence
to achieve the fast reconnection (Lazarian & Vishniac 1999).
However, such a picture has lacked direct observational
evidence, even though it has been documented by numerical
simulations (Kowal et al. 2009; Bárta et al. 2011; Shen et al.
2011) and indicated by various indirect observations such as
simultaneous intermittent plasmoid ejections and hard X-ray/
radio bursts (Asai et al. 2004; Nishizuka et al. 2009; Takasao
et al. 2016), the vortex above flare arcades (McKenzie 2013;
Scott et al. 2016), and complex transition region line profiles
with bright cores and broad wings (Innes et al. 2015).
In this study, we present a detailed analysis of a limb solar

eruption on 2017 September 10 that produced an X8.2-class
flare (SOL2017-09-10T16:06 UT) and a fast coronal mass
ejection (CME). In particular, the presence of a thin and long
hot plasma sheet underneath an erupting CME fits perfectly
into the current sheet structure, as predicted in the theoretical
model (Lin & Forbes 2000), and the dynamic behaviors of the
plasma within and around the current sheet provide direct and
solid evidence of the turbulent and intermittent nature of
magnetic reconnection.

2. Instruments

The data sets are primarily from Solar Dynamics Observa-
tory (SDO; Pesnell et al. 2012). The Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) on board SDO images the
solar corona with a spatial resolution of 0.6 arcsec per pixel and
a cadence of 12 s at seven extreme ultraviolet (EUV)
passbands. Here, we used the AIA data with a cadence of
24 s that have the normal exposure time. The data with a very
short exposure time, in particular during the flare, usually have
large uncertainties in intensity that can influence the differential
emission measure (DEM) calculations and fast Fourier
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transform (FFT) analyses. The X-Ray Telescope (XRT; Golub
et al. 2007) and EUV Imaging Spectrometer (EIS; Culhane et al.
2007) on board Hinode (Kosugi et al. 2007) provide the X-ray
images and EUV spectra in the wavelength ranges of
170–210Å(short) and 250–290Å(long) with a spectral
resolution of 0.0223Åpixel−1, respectively. The Geostationary
Operational Environmental Satellite records the soft X-ray
1–8Å flux from the flare. In addition, the K-Cor instrument
installed at the Mauna Loa Solar Observatory5 and the Large
Angle and Spectrometric Coronagraph (LASCO; Brueckner
et al. 1995) on board the Solar and Heliospheric Observatory
observe the white-light images of the CME and its trailing
current sheet.

3. Results

3.1. Hot Flux Rope and Induced Super-hot Current Sheet

The early phase of the flare/CME eruption was fully
captured by the AIA. At ∼15:35 UT, a filament is activated to
rise up. After ∼15 minutes, it initiates the eruption of a nearby
loop-like structure. Shortly afterward, the loop-like structure
quickly expands and escapes away from the solar surface.
Simultaneously, the overlying field constraining the loop-like
structure is stretched outward. At ∼15:53 UT, the loop-like
structure ascends to a height of 90Mm and appears as a well-
defined bubble consisting of a ring-shaped envelop and a low
emission cavity, both of which are visible at most EUV and
X-ray passbands (top panel of Figure 1(a)). An elongated bright

structure connecting the bottom of the bubble and the top of the
flare loops is observed. These features basically conform to
the classic picture of eruptive flares (Sturrock 1966; Shibata
et al. 1995; Chen 2011), in which the eruption of a twisted
magnetic flux rope leaves behind a long and narrow current
sheet (Lin & Forbes 2000). The bubble is most likely an edge-
on manifestation of the forming flux rope as its axis is mostly
along the line of sight (Cheng et al. 2011). The DEM analyses
show that the cavity of the bubble has a low emission measure
(EM∼1026 cm−5

), though the temperature is relatively high
(∼10 MK). By contrast, the bubble envelope (or the ring) and
the current sheet have a much higher EM (∼1027.5 cm−5

) and
an even higher temperature (∼13 MK). Such a temperature
structure highly resembles the numerical results of the erupting
flux rope energized by the reconnection in its trailing current
sheet (Mei et al. 2012).
As the bubble escapes from the lower corona, the current

sheet is further heated and extended. Its lower end ascends to a
height of at least ∼100Mm around the flare peak time of
∼16:15UT (Figure 1(b)). The EM maps at different
temperatures document that the extended current sheet mainly
contains high-temperature plasma (Figure 1(b)), which is also

confirmed by the EIS Fe XXIV 192.03 and 255.11Å lines (with
the formation temperature of ∼18 MK). The plasma therein is
primarily distributed near the temperature of 20 MK with a
total EM of (1–5)×1027 cm−5

(Figure 1(c)), which is similar
to the temperature of supra-arcade downflows that are
frequently observed when the current sheet is observed face-
on (Hanneman & Reeves 2014). The corresponding density is
calculated to be ∼(0.6–1.3)×109 cm−3 assuming a depth of

Figure 1. Super-hot current sheet in the wake of an erupting bubble on 2017 September 10. (a) Top: a composition of the AIA 193 Å (red; temperature response peaks

at ∼1.6 and 18 MK), 131 Å (green; ∼0.4 and 11 MK), and 171 Å (blue; ∼0.6 MK) images showing an erupting bubble and induced current sheet at 15:53 UT. Middle
and bottom: DEM-weighted average temperature and total EM maps showing that the erupting bubble has a high temperature (∼8 MK) but low density at its center.

(b) Images at the Hinode-XRT Al-poly, SDO-AIA 193 and 131 Å passbands, DEM maps at the temperatures of 2 and 20 MK, and the total EM map showing that the

current sheet appears as a long and thin feature at 16:15 UT. The vertical dashed line in the AIA 193 Å image indicates the location of the slit used to construct the
AIA time–distance plot in Figure 2(a). Note that we do not calculate the average temperature and EM of the flare loops and cross-shaped structure as shown in panels
(a) and (b) because the flux is saturated there (white region). (c) The DEM of the current sheet (left) at five specific regions (small boxes in panel (b)) and the total EM
(right) along five dashed lines as shown in the EM map of panel (b).
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30Mm (the size of the bubble) at the height of ∼100–200Mm.
Based on the distribution of the total EM along the direction
perpendicular to the current sheet, the average width of
the current sheet is estimated to be ∼10Mm at the height
of ∼150Mm (Figure 1(c)), slightly larger than the width
estimated by Savage et al. (2010).

3.2. Fragmented and Turbulent Current Sheet

The EUV 171Å observations disclose that the cool plasma
(∼1 MK) on both sides converges into the current sheet
(Figure 2(a)). Shortly afterward, the plasma is strikingly
heated and becomes visible in the AIA higher temperature
passbands such as 193 and 131Å (10–20 MK). The average
velocity of the converging motion is ∼100 km s−1 in the early
phase (15:55–16:00 UT) and subsequently decreases to
∼20 km s−1, similar to previous estimations (Liu et al.
2013; Zhu et al. 2016; Li et al. 2017; Wang et al. 2017).
The initial and faster inflows are possibly driven by the
restoring force of the magnetic field, which was pushed aside
by the erupting bubble before ∼15:54 UT. Besides the plasma
heating, the Fe XXIV 192.03Å line also displays a significant
nonthermal broadening in the current sheet. The line width
implies a nonthermal velocity of ∼100–150 km s−1 after
subtracting the thermal velocity corresponding to a formation
temperature of 18 MK (Figures 2(b) and (c)). Such large
nonthermal velocity strongly indicates the existence of

turbulent motions in the current sheet (also see Ciaravella &

Raymond 2008; Doschek et al. 2014; Warren et al. 2018). It is

also supported by the fact that the 193Å intensity variation

along the current sheet presents a fluctuation, which shows a

power-law distribution in the spatial frequency domain after

FFT (Figures 3(d) and (e)). The spectral index is estimated to

be −1.16±0.22 (Figure 3(f)).
The turbulent current sheet indicates that the sunward

reconnection outflow jets, probably corresponding to magnetic

islands expelled from the lower end of the current sheet, will

show a power-law behavior. Figure 3(a) and the corresponding

animation clearly show that the jets are intermittently shot out

during the reconnection process. Each jet has an “Eiffel Tower”

shape initially. Within a period of 2–5 minutes, probably

driven by magnetic tension (Forbes & Acton 1996; Priest &

Forbes 2002), each jet gradually comes to be cusp-shaped, and

then continuously shrinks to a flare loop. The 193Å intensities

in the outflow regions also present intermittent fluctuations

(Figures 3(b) and (c)). The FFT analysis shows that the

temporal variation of the intensity (e.g., along the dashed line

in Figure 3(b)) obeys the power-law distribution with a spectral

index around −1.60 (Figure 3(d)), very close to the spectral

index of the turbulent current sheet (e.g., Bárta et al.

2011; Shen et al. 2011). It confirms our conjecture that the

current sheet has been fragmented into different scaled

structures, strongly suggestive of the existence of turbulence,

Figure 2. Evidence of inflows and turbulence. (a) The time–distance plot of the AIA 193 Å (red) and 171 Å (cyan) composited images showing the converging
inflows, whose trajectories are tracked by the dashed lines. Their velocities range from 20 to 100 km s−1. ((b) and (c)) Intensity and nonthermal velocity field of the

EIS Fe XXIV 192.03 Å line. The imaging spectra are obtained by the EIS slit scanning the current sheet region from 16:09 UT to 16:18 UT. (d) The AIA 193 Å image

shows the current sheet structure at 17:10 UT as indicated by the dotted line. (e) The spatial distribution of the normalized AIA 193 Å intensity along the dotted line in
panel (d). The intensity is detrended with a moving average of 10 Mm to indicate the fast-varying structures. (f) The power spectrum of the detrended intensity
variation as shown in panel (e) in the spatial frequency domain. The fitting spectral index α in the range of 1–10 Mm is −1.16±0.22.
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with which the outflow jets are widely distributed in energies
and sizes. Further evidence for a fragmented and turbulent
reconnection is that the intensity variations at the other flaring
regions also present the power-law distribution with spectral
indices ranging from −1.2 to −1.8, quite different from that in
the quiescent and pre-flare regions (see Figures 11–15 in the
Appendix). It is worth noting that supra-arcade downflows may
directly correspond to the sunward outflow jets (McKenzie 2000;
Savage & McKenzie 2011; Reeves et al. 2015) or may be
structures caused by Rayleigh–Taylor instabilities in the outflow
region (Guo et al. 2014).

We find that the velocity of the sunward outflow jets also
presents a dispersed distribution. The heights of the jets are
measured through manually tracking their trajectories (as
shown by Figure 16 in the Appendix). Almost all outflow jets
have a large initial velocity but quickly slow down
(Figure 3(e)). The initial velocities are diversely distributed,
ranging from 100 to 800 km s−1

(Figures 3(f) and 16), even in a
short time period (16:00–16:30 UT), similar to previous
estimations (Savage & McKenzie 2011). Interestingly, the
FFT analysis indicates that the initial velocities also have
a power-law spectrum with a spectral index of −0.35
(Figure 3(g)). It implies that the reconnection that drives the
outflow jets proceeds with a varying reconnection rate,
probably modulated by turbulence. Taking an average value
(20 km s−1

) of the inflow velocities near the flare peak time
(16:00–16:15 UT), the reconnection rate (the ratio of the inflow

velocity to the outflow velocity) is estimated to range from
0.003 to 0.2. If the current sheet is fragmented into magnetic
islands of different sizes (Shibata & Tanuma 2001), different
reconnection rates and thus different kinetic energies of the
outflow jets can be achieved. Moreover, the decelerations also
have a wide distribution with its maximum up to 2000 m s−2

(Figure 16), indicating that the upward magnetic pressure
gradient force also varies with time that resists the downward
magnetic tension and the Sun’s gravity.

3.3. Largely Extended White-light Current Sheet

The K-Cor instrument of the Mauna Loa Solar Observatory
provides the white-light images of the largely extended current
sheet at its later phase. At 17:12 UT, the lower end of the
current sheet is seen to join the tip of the cusp-shaped flare
loops and is located at a height of ∼140Mm (Figure 4(a)),
similar to the value measured in the EUV data. The apparent
width of the current sheet is ∼25Mm, and the lower limit of
the apparent length is 400Mm (Figure 4(b)). It corresponds to a
maximal reconnection rate of ∼0.06, which, similar to the
previous estimations (Savage et al. 2010; Ling et al. 2014;
Seaton et al. 2017), is still smaller than the maximum value
derived above. In fact, the original current sheet could be
fragmented into magnetic islands due to tearing mode
instability. Then, the real length of magnetic islands involved
in each elementary reconnection process could be much

Figure 3. Intermittency and velocity diversity of the sunward outflow jets. (a) The AIA 193 Å running difference images (the time difference is 24 s) at 16:38 UT
(top), 17:35 UT (middle), and 18:10 UT (bottom) displaying the reconnection outflow jets (white features) expelled from the lower end of the current sheet. ((b) and

(c)) Time–distance plots of the original images and running difference images at the AIA 193 Å passband along the direction shown by the dashed line in panel (a).

The white spicule-like features after ∼16:00 UT as shown in panel (c) clearly display the sunward downflows. (d) The power spectrum of the normalized AIA 193 Å
intensity in the outflow region as a function of frequency. The location is indicated by the dashed line in panel (b). Similar to Figure 2(f), the intensity is also detrended
with a moving average of 60 minutes in order to show the high-frequency component. The spectral index (α) derived by linear fitting to the data in the range of
1–15 mHz is −1.63±0.07. (e) The velocity evolution for one reconnection outflow jet. The errors of the velocities (vertical bars) are from the measurement

uncertainties in height (∼1.7 Mm). (f) Scatter plot of the initial velocities of the outflow jets as a function of time. The GOES soft X-ray 1–8 Å flux is also plotted for

comparison. (g) The power spectrum of the initial velocities as a function of frequency. The spectral index α is −0.35±0.05. An animation of the AIA 193 Å
running difference images (panel (a)) from 15:00 to 20:59 UT is available.

(An animation of this figure is available.)
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smaller. This is proved by the fact that the length-to-width ratio

(>16) of the current sheet is much larger than the theoretical

threshold of the tearing mode instability (2π; Furth et al. 1963).

The high-speed anti-sunward moving blobs also provide strong

evidence for the existence of magnetic islands. Figure 4(c)

shows that the blobs are intermittently formed in the current

sheet at a height of ∼200Mm. The initial velocities are

∼400 km s−1 and then they gradually increase. Note that the

width of the current sheet derived in the K corona is about

2.5 times larger than that in the EUV passbands. However, both

are still much smaller than the values measured previously in

the LASCO/C2 white-light coronagraph (∼100Mm at 2 Re;

Lin et al. 2005, 2009, 2015; Ciaravella & Raymond 2008).

Interestingly, the EUV current sheet is found to be located in

the middle of the white-light sheet, implying that the former is

closer to the dissipation layer and thus has a higher
temperature. Theoretically, the width of the diffusion layer is
only tens of kilometers for Petschek-type magnetic reconnec-
tion with an anomalous resistivity. However, in observations,
the apparent width of the current sheet can be seriously
widened by turbulence, as well as slow-mode shock compres-
sion and projection effects (Ciaravella & Raymond 2008; Lin
et al. 2015).

4. Summary and Discussions

In the models of flux-rope-induced CME/flare eruptions
(Shibata et al. 1995; Chen 2011), a pre-existing flux rope
escapes away from the solar surface due to loss of equilibrium
(Lin & Forbes 2000), leading to the formation of a CME and a
flare at almost the same time (Zhang et al. 2001; Cheng
et al. 2011). Magnetic reconnection acts as strong coupling
between the CME and the flare as indicated by the simultaneity
between the evolution of the CME velocity and the variation of
the flare emission (Zhang et al. 2001). The linear bright feature
in the wake of the erupting flux rope has been argued to be the
induced current sheet, where electric current is enhanced and
magnetic field is dissipated (Lin et al. 2015). Previous
observations of the current sheet are mostly limited by the
wavelength window that only responds to relatively narrow and
low temperatures and/or the field of view that is not large
enough (Ciaravella et al. 2003; Lin et al. 2005, 2009; Ciaravella
& Raymond 2008; Savage et al. 2010; Ling et al. 2014; Seaton
et al. 2017). Therefore, studies based on these observations are
mostly speculative, in particular on the origin of the current
sheet and its relation to the CME and flare. Moreover, the
observations in those works could not provide further
information on the detailed physical processes occurring in
the current sheet; therefore, what kind of reconnection it is has
seldom been addressed.

Figure 4. Extended current sheet and intermittent anti-sunward moving blobs. (a) White-light K image normalized with a radially graded filter observed by the Mauna
Loa Solar Observatory showing the extended current sheet at 17:15 UT. (b) The brightness distributions of the current sheet along three perpendicular slits (in panel (a)).
(c) Time–distance plots of the running difference images at the white-light K band along the direction of the current sheet. The dashed lines denote the trajectories of eight
anti-sunward moving blobs. (d) The velocity evolution for blob 2 and blob 6. The errors of the velocities (vertical bars) are from the measurement uncertainties in
height (∼23 Mm)

Figure 5. Loci curves of the emission in a small region in the current sheet,
whose position is shown by the black box in Figure 1(c). The red line is the
best fitting of the EM distribution derived by “xrt_dem_iterative2.pro.” The
gray dashed lines represent 100 MC solutions. The EM is calculated by
Equation (2) in each temperature bin.
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In this study, we present a solar limb eruption event that

displays a distinct picture of the CME/flare eruption with

unprecedented clarity. Observations with a continuous field of

view from 1 to 30 Re and multiwavelengths including the

white-light, EUV, and X-rays enable us to reveal the origin of

and specific processes involved in magnetic reconnection. We

successfully detect almost all ingredients predicted by models

during a single eruption including the erupting hot flux rope,

super-hot current sheet, cusp-shaped flare loops, inflows, and

high-speed sunward and anti-sunward outflow jets, some of

which have been detected in previous observations (Savage

et al. 2010; Ling et al. 2014; Seaton et al. 2017; Liu et al. 2018;

Yan et al. 2018). The high temperature of the flux rope

envelope and the cusp-shaped flare loops probably originates

from the collision of the outflow jets with the local dense

plasma and/or the direct heating by slow-mode shocks at both

ends of the current sheet (Liu et al. 2013). The high

temperature of the current sheet, however, requires local

Figure 6. DEM maps of the erupting hot bubble at the temperatures of 20 MK, 10 MK, and 2 MK derived by the methods of M. A. Weber (a), I. G. Hannah (b), and
M. C. M. Cheung (c), respectively.

Figure 7. Same as Figure 6, but for the current sheet.

6

The Astrophysical Journal, 866:64 (14pp), 2018 October 10 Cheng et al.



Figure 8. Fe XXIV 192.03 Å (∼18 MK), 255.11 Å (∼18 MK), Fe XXIII 263.76 Å (∼14 MK), Fe XXII 253.17 Å (∼12 MK), Fe XVI 262.98 Å (∼3 MK), and Fe XV

284.16 Å (∼2 MK) line spectra showing the visibility and invisibility of the current sheet. The box in the upper left panel indicates the region where intensities and

nonthermal velocities of the Fe xxiv 192.03 Å line are shown in Figure 2.

Figure 9. (a) AIA 193 Å images showing the evolution of the current sheet. (b) The spatial variation of the normalized AIA 193 Å intensity along the current sheet
indicated by the dotted line in panel (a). (c) The power spectrum of the intensity variation as a function of spatial frequency with the oblique lines showing the power-
law fitting to the range of 1–8 Mm.
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heating by magnetic energy dissipation inside the current sheet
itself.

The turbulent behavior of energy release in the current sheet
is also revealed. A high Lundquist number, suggested by a
large length-to-width ratio (>16) of the current sheet, leads to
the generation of magnetic islands due to the tearing mode
instability (Furth et al. 1963), which subsequently appear as
intermittent sunward outflow jets and anti-sunward moving
blobs when shot out of the current sheet. Simultaneously, the
turbulence develops in the current sheet (Strauss 1988;
Lazarian & Vishniac 1999). On the one hand, its effect helps
achieve anomalous resistivity to boost the magnetic dissipation
rate. On the other hand, it may mediate the formation of
magnetic islands with their size and energy presenting a
power-law distribution. This process finally makes the intensity

and velocity of the sunward outflow jets exhibit a power-law
distribution. In particular, the spectral index of the former
is found to vary from −1.2 to −1.8, which suggests that
the turbulence mediates the reconnection process in the
current sheet, resulting in the formation of different scaled
magnetic islands, consistent with previous numerical results
(Kowal et al. 2009; Bárta et al. 2011; Shen et al. 2011). The
deviation from the fully developed isotropic turbulence (with a
Kolmogorov turbulence spectral index of −5/3) may be due to
the role of magnetic field. The significant nonthermal motions
shown in the Fe XXIV line are also evidence of the existence of
turbulence. In summary, these observations show that the
magnetic reconnection, at least in solar eruptions, does not
proceed uniformly in space and time. Instead, the current sheet
should be composed of fragmented structures in which

Figure 10. Same as Figure 9, but for the AIA 131 Å passband.

Figure 11. AIA 193 and 131 Å images at 17:00 UT showing the post-flare loops and the current sheet. Slice 1 and slice 2 are used for creating the time–distance plots
in Figures 12(a)–15(a).
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Figure 12. (a) Time–distance plot of the AIA 193 Å images along slice 1 in Figure 11. ((b) and (c)) The normalized 193 Å intensity variations as a function of time at
the two outflow regions indicated by S1 and S2 in panel (a). It is also detrended with a moving average of 60 minutes in order to remove the feature of the decay
reconnection process. ((d) and (e)) The power spectral densities of the intensities at S1 and S2 with the oblique lines indicating the power-law fitting to the range of
1–15 mHz.

Figure 13. Same as Figure 12, but for the AIA 131 Å passband.
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magnetic reconnection dissipates magnetic energy in a

turbulent way (Kontar et al. 2017) to heat the plasma and

drive the outflow jets.

We are cordially grateful to five anonymous referees for their

very meaningful comments and suggestions. We also thank Jun

Lin, Zongjun Ning, Dong Li, Yu Dai, and Jinsong Zhao for

Figure 14. (a) Time–distance plot of the AIA 193 Å images along slice 2 in Figure 11. ((b) and (c)) The normalized 193 Å intensity variations as a function of time at
the two quiescent regions indicated by S1 and S2 in panel (a). ((d) and (e)) The power spectral densities of the intensities at S1 and S2.

Figure 15. Same as Figure 14, but for the AIA 131 Å passband.
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Appendix
Methodology and Uncertainties

DEM reconstruction: The DEM is resolved through six AIA
passbands including 94Å (FeX, ∼1.1MK; Fe XVIII, ∼7.1MK),
131Å (Fe VIII, ∼0.4MK; Fe XXI, ∼11MK), 171Å (Fe IX,
∼0.6MK), 193Å (Fe XII, ∼1.6MK; Fe XXIV, ∼18 MK), 211Å
(Fe XIV, ∼2.0 MK), and 335Å (Fe XVI, ∼2.5 MK). The code
“xrt_dem_iterative2.pro” in Solar SoftWare (SSW; Freeland &
Handy 1998), originally proposed by Weber et al. (2004) and
later modified by Cheng et al. (2012), is used for reconstructing
the DEM. The inputs are observed intensity Ii and the
temperature response function Ri(T) of the passband i. Ii is
written as

I R T dT IDEM , 1i i iò d= ´ +( ) ( )

where DEM denotes the plasma DEM, and δIi is the uncertainty

in the intensity Ii. The temperature range for doing the

inversion is set as 5.5�log T�8.0. The EM is calculated as

dTEM DEM , 2ò= ( )

where the temperature range of integration is set to be

7.0�log T�7.5. We performed 100 Monte Carlo (MC)

solutions through adding a random noise (within the errors of

observed intensities) to the intensity Ii and then rerunning the

routine. The results show that 100 MC solutions are converged

in the range of 7.0�log T�7.5 (Figure 5). The density n in

the current sheet is obtained by

n lEM , 3= ( )

where l is the depth of the current sheet.
We also take advantage of the other two inversion methods

independently developed by Hannah & Kontar (2012) and
Cheung et al. (2015), respectively. It is found that the three
methods give very similar results. The erupting bubble, in
particular its envelope, primarily contains high-temperature
plasma (Figure 6), while the background and foreground
contribute some cool plasma emission. As for the current sheet,
the results from the different methods are also consistent with
each other, which all present a super-hot ingredient and
the absence of cool plasma in the current sheet (Figure 7). It
is noted that some discrepancies also exist. The code
“xrt_dem_iterative2.pro” is able to reconstruct the super-hot
current sheet with a pretty good clarity. However, in the region
outside of the current sheet, it may overestimate the DEM
values compared with the other two codes. Nevertheless, we do
not think that it influences our results, at least qualitatively. The
results are also consistent with Warren et al. (2018), who did
the DEM inversion via the combination of AIA and EIS data
and also found that the plasma in the current sheet has
temperatures of about 20 MK and distributes in a relatively
narrow temperature range.
The uncertainties in the DEM results come mainly from the

uncertainties in the observed intensities, which are obtained by
the routine “aia_bp_estimate_error.pro” in SSW. The uncer-
tainties of the intensities are a result of the uncertainties in
the temperature response functions of AIA including non-
ionization equilibrium effects (Imada et al. 2011), nonthermal
populations of electrons, modifications of dielectronic recom-
bination rates (Summers 1974; Badnell et al. 2003), radiative
transfer effects (Judge 2010), and even unknown filling factor.
After considering these effects, an uncertainty lower limit of

Figure 16. (a) Time–distance plot of the AIA 193 Årunning difference images with tracked trajectories of the erupting bubble (the first dashed line) and sunward
moving outflow jets. ((b) and (c)) Histogram distributions of the initial velocities and the accelerations of the outflow jets.
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∼20% for Ri(T) is derived (Judge 2010) and thus cannot
significantly influence the results (Cheng et al. 2012).

Spectroscopic Analyses: The EIS data are processed via the
routine eis_prep.pro in the standard EIS software package with
corrections for dark current, hot pixels, and cosmic-ray hits. It
observed the flaring region near the west limb for a period
starting before 15:35 UT (flare onset) through 16:53 UT
that covers the rise and early decay phases of the flare. The
2 arcsec slit of EIS was used to scan over an area of
240 arcsec×304 arcsec from west to east with a course step
of 3 arcsec, yielding a spatial resolution of 3 arcsec×1 arcsec.
It took about 9 minutes in each run with an exposure time of 5 s
at each step.

Here, we used the Fe XXIV 192.03Åline with a formation
temperature of 18 MK, in which the current sheet is most
clearly visible. The Fe XXIV 192.03Åline is believed to be
blended with the Fe XI 192.02Åline (∼1 MK), but the
blending could be safely ignored in large flares that contain hot
plasmas. This can be verified by checking the relative strength
of another line Fe XII 192.39Å(∼1 MK) in the same spectral
window, which is clearly separated from the Fe XXIV 192.03Å.
Theoretically, the Fe XII 192.39Åline is stronger than the
Fe XI 192.02Åline. Therefore, when the emission at 192.02/
192.03Åis greater than that at Fe XII 192.39Å, it should be
mostly from the hot Fe XXIV 192.03Åline. We examine all of
the line profiles around the current sheet region and conclude
that the emission is mainly contributed by the Fe XXIV
192.03Åline (also see Li et al. 2018; Warren et al. 2018). In
addition, we note that the Fe XXIV 192.03Åline is saturated in
some regions (mostly in flare loops) but not in the current sheet
region under study. So we just discard those saturated line
profiles in our study.

The spectra of some other lines, for example, Fe XXIV
255.11Å(∼18 MK), Fe XXIII 263.76Å(∼14 MK), Fe XXII
253.17Å(∼12 MK), Fe XVI 262.98Å(∼3 MK), and
Fe XV 284.16Å(∼2 MK) are also presented (Figure 8). It is
seen that the current sheet is only visible in the high-temperature
(>12 MK) lines, in particular in Fe XXIV 192.03Å, which is
consistent with the AIA imaging observations.

The Fe XXIV 192.03Åline profiles show a good Gaussian
shape, and we implement a single Gaussian fitting to obtain the
nonthermal velocity by the formula

W
c

k T

M
1.665

2
, 4

i 2l
x= + ( )

where W is the FWHM of the spectral line, λ is the line

wavelength, c is the speed of light, k is the Boltzmann constant,

Ti is the ion temperature, and M is the ion mass. The

instrumental width of EIS (2.5 pixels, or 0.056Å) is also

subtracted. Here, we adopt a fixed thermal temperature of

Ti=Tmax=18 MK. For comparison, we also use a DEM-

weighted average temperature that is place-dependent to derive

ξ and find that the results are quite similar. The values are also

consistent with that independently derived by Warren et al.

(2018). Please see Li et al. (2018) for some selected Fe XXIV

192.03Åline profiles and resulting fitting results.
Fragmentation of the Current Sheet: The fragmentation of

the current sheet is also examined at different passbands and
different times, as shown in Figures 9 and 10. It can be seen
that the spatial variation of the 193 and 131Å intensity (along
the current sheet) presents a power-law behavior in the spatial

frequency domain (0.1–1.0 Mm−1
). The spectral index varies

from −1.0 to −1.4. This type of fluctuation is also known as
red “noise,” which is an intrinsic property of a random physical
process, most likely due to turbulence, that can be described by
a power-law spectrum with a negative slope (Vaughan 2005;
Inglis et al. 2015; Ning 2017). It indicates that the current sheet
has been fragmented into different scaled structures, most
likely corresponding to magnetic islands of different sizes. As
shown in Figures 9(b) and 10(b), the AIA 193 and 131Å
intensity has been detrended with a moving average of 10Mm
in order to remove the feature of the intensity decrease away
from the flare region. We also test the different moving average
values (5–20Mm) and find that derived spectral index is not
seriously influenced. It is also worth noting that, for the
detrended data, the power in the low spatial frequency (e.g.,
<0.1 Mm−1

) can be artificially suppressed (Gruber et al. 2011),
but that is not used here. Of course, as mentioned above, the
AIA 193 and 131Å intensity also includes an uncertainty that
mainly is caused by the nonlinear effects of the AIA response
function. The uncertainty may have somewhat of an effect on
the spectral index (Ireland et al. 2015).
Intermittency and Velocity Diversity of the Outflow Jets:

We also inspect the power spectrum of the temporal variations

of the AIA 193 and 131Å intensity at many other locations.
Figure 11 shows two slices that we used for creating the time–
distance plots. We find that the temporal variations of the
intensity at almost all locations do display a power-law
distribution with the spectral index distributing in the range of
−1.2 to −1.8 (e.g., Figures 12 and 13). By contrast, for the
quiescent regions and pre-flare regions, the spectrum is flat,
which denotes white noise that is nearly frequency-indepen-
dent and mainly originates from random signals (e.g.,
Figures 14 and 15). Similar to the spatial frequency analysis,
the nonlinear effects of the AIA passbands also influence the
spectral index in the temporal frequency analysis (Ireland
et al. 2015). Note that the cadence of the AIA data is not
exactly uniform, but is found to be smaller than 0.05%. After
carefully testing, we find that whether the non-uniformity is
corrected or not does not significantly influence the FFT
results.
Using the time–distance plot of the AIA 193Å running

difference images along the direction of the current sheet, we
manually identified the trajectories of the sunward outflow jets,
as shown in Figure 16(a). The initial speed is derived as an
average of the first three points of the measured outflow speeds.
The histogram distributions of the initial velocities and
accelerations of the jets are displayed in Figures 16(b) and
(c). One can clearly see that both of them have a wide
distribution.
Height of the Lower End and X-point of the Current Sheet:

The heights of the CME bubble are measured in the AIA field
of view. Applying the first-order numerical derivative, the
velocity as a function of time is derived (Figure 17). One can
see that the CME bubble experiences a slow rise phase of
∼10 minutes with an average speed of ∼70 km s−1 and a fast
acceleration phase with an acceleration of ∼2200 m s−2 in the
AIA field of view. The CME finally reaches a speed of over
3000 km s−1 when leaving the LASCO field of view.6

The lower end of the current sheet is estimated to be at the
height of ∼100Mm above the solar surface (∼1100 arcsec) at

6
https://cdaw.gsfc.nasa.gov/CME_list/halo/halo.html
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16:15 UT, where the outflow jets are expelled. One hour later

(17:15 UT), the lower end is also seen by the white-light K

coronagraph. The height is determined to be ∼140Mm.

Considering that the lower end of the current sheet has an

ascending motion as the CME erupts, its height will increase by

54Mm in one hour if assuming a velocity of 15 km s−1
(Mei

et al. 2012). It roughly agrees with the difference between the

heights derived in the EUV and white-light passbands at

different instants.
The theoretical model of the flux-rope-induced CME/flare

(Lin & Forbes 2000; Mei et al. 2012) also predicts an X-shaped

null point existing in the current sheet. Magnetic islands are

expected to run away from the null point along two opposite

directions, manifesting as sunward outflow jets and anti-sunward

fast moving blobs (e.g., Song et al. 2012; Chae et al. 2017),

respectively. The jets and blobs have initial heights of∼100Mm

and ∼180Mm, respectively. It indicates that the height of the

X-shaped null point is in the range of 100–180Mm.
Uncertainty in the Reconnection Rate: The reconnection rate

is calculated as the ratio of the inflow velocity to the outflow

velocity. We consider that the initial speed of the outflow jets is
equivalent to the outflow speed. The error of the initial speed is
about 100 km s−1. Thus, the uncertainty in the reconnection
rate can be up to 50% when considering the initial velocities of
100–800 km s−1 in the time period of 16:00–16:30 UT. If
taking an average outflow speed of ∼300 km s−1 and the inflow
speed of 20 km s−1, the average reconnection rate is about
0.07±0.03.
Uncertainty in the Length of the Current Sheet: We estimate

the length of the current sheet based on the distributions of the
brightness along the direction perpendicular to the current sheet
(Figure 4(a)). Figure 4(b) shows that the brightness distribu-
tions at three slices have a similar profile with an FWHM of
about 25Mm. It is found that the FWHM is nearly uniform in
between the two slices located at 840Mm and 1240Mm,
respectively. Outside this region, the FWHM gets larger. Thus,
the distance between the two slices is regarded as the length of
the current sheet. Note that such a length is a lower limit. On
the other hand, the LASCO observations show that the current
sheet may even extend to a height of 8 Re at 17:12 UT, i.e., the
edge of the C2 field of view where the blobs are still seen to
move along the stretched bright structure by the erupting CME
(Figure 18). It corresponds to a length of 4900Mm. Such a
length can be regarded as an upper limit for the length of the
current sheet. If the width remains to be 25Mm, the upper limit
of the length-to-width ratio for the current sheet is ∼200.
Whatever the case may be, the length-to-width ratio is much
larger than the theoretical threshold for the tearing mode
instability (2π; Samtaney et al. 2009).
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