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The hierarchical emergence of worm-like chain be-

haviour from globular domain polymer chains

Benjamin S. Hanson1, David Head2, and Lorna Dougan13

Biological organisms make use of hierarchically organised structures to modulate mechanical

behaviour across multiple lengthscales, allowing microscopic objects to generate macroscopic

effects. Within these structural hierarchies, the resultant physical behaviour of the entire sys-

tem is determined not only by the the intrinsic mechanical properties of constituent subunits, but

also by their organisation in three-dimensional space. When these subunits are polyproteins,

colloidal chains or other globular domain polymers, the Kratky-Porod model is often assumed for

the individual subunits. Hence, it is implicitly asserted that the polymeric object has an intrinsic

parameter, the persistence length, that defines its flexibility. However, the persistence lengths

extracted from experiment vary, and are often relatively small. Through a series of simulations on

polymer chains formed of globular subunits, we show that the persistence length itself is a hierar-

chical structural property, related not only to the intrinsic mechanical properties of the underlying

monomeric subunits, but emerging due to the organisation of inhomogenous geometry along the

polymer contour.

1 Introduction

Many naturally occurring proteins form polymers in order to per-

form their biological function, with examples such as fibrinogen,

actin, tubulin1 and the large set of titin subdomains2. Due to

their shape, intrinsic mechanical properties and local physical in-

teractions with one another, each of these monomeric subunits

polymerise into structures with very different structural architec-

tures and emergent mechanical properties. Taking the eukary-

otic cytoskeletal proteins as an example, G-actin monomers poly-

merise linearly to form long F-actin microfilaments. These rel-

atively thin filaments, with a diameter between 7nm and 9nm,

then go on to form bundles, cellular transport networks, and part

of the muscle structure3. On the other hand, tubulin polymerises

linearly to form protofilaments but also radially to form micro-

tubules. With a diameter of ∼25nm, these systems are much

larger than actin filaments whilst also being hollow with respect

to protein material3. Microtubules are then the higher order

structure which goes on to form cellular networks, cilla, and the

core flagellar axonemal structure involved in the beating of sperm

tails4. Even with these diverse emergent architectures and appli-

cations, each of these globular domain polyproteins fall under the
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single umbrella term ‘polymer’. In a similar vein, colloidal chains

can also be considered as globular domain polymers. These sys-

tems are formed of mostly spherical subunits which may be con-

nected by linkers domains, local electrostatic interactions or even

dispersive interactions such as van der Waals forces5. In addition

to the intrinsic mechanical properties of the colloids themselves

and the localised steric interactions between them, the proper-

ties of colloidal chains can also be determined by functionalised

electrostatic interactions6–8.

Of current interest in the study of these types of polymeric ob-

ject is their rational design, namely, how we can design poly-

meric structures with specific and predictable biophysical prop-

erties. These may be the end products in and of themselves,

such as elastomeric polyproteins9 or renewable biopolymers10,

or they may be required for subsequent use in the rational de-

sign of more complex systems, such as biopolymer solutions11

and networks12,13, protein hydrogels14,15 and even mimicking

complex biological systems such as cilia and flagella8. In each of

these applications, both experimental and simulation studies have

shown that the microscopic mechanical properties of these poly-

meric objects have a significant effect on the resulting hierarchical

properties, whether it is macroscopic elasticity or network con-

nectivity. Using a variety of experimental techniques6,7,16–18 we

can reliably create globular domain polymeric objects with con-

trolled subunit geometries. To enable the specific rational design

of these polymers using these methods, or the hierarchical sys-
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tems formed from them, we must first understand how the prop-

erties of the polymers themselves are dependent on their own

underlying structures.

The most commonly applied physical model applied to all types

of polymer is the Kratky-Porod model, colloquially known as the

worm-like chain (WLC) model19. The WLC model assumes a con-

tinuous contour along the polymeric object, with length Lc, along

which there is an energy density proportional to the square of the

curvature at each point. The Hamiltonian function for this model,

HWLC, is

HWLC =
1

2
kBT

∫ Lc

0
Lp

(

∂ 2~r

∂ s2

)2

ds (1)

where s is a scalar parameter specifying a point along the contin-

uous contour of the polymer,~r is the position vector at s, and kBT

is the Boltzmann energy factor. Eq.1 results in the emergence of

a bending resistance throughout the polymer, characterised by an

exponential decay in correlation between the tangent vectors at

any two points along the contour

〈~t(s) ·~t(s′)〉= exp

(

−
|s′− s|

Lp

)

(2)

where ~t(s) is the tangent unit vector at s. We now see that the

value Lp from Eq.1 appears as the decay constant associated with

this exponential decorrelation. Hence, Lp is known as the per-

sistence length. At constant temperature, which we will assume

throughout this article, the WLC model assumes Lp to be an in-

trinsic property of a given polymer. Indeed, there are many ex-

pansions to the WLC20 accounting for chain contour extension,

additional interactions, externally applied forces and others, and

within each of these models the persistence length remains an

intrinsic property of the polymer under consideration. In the con-

text of globular domain polymers, however, this may not be the

case.

We can generalise the physical structures of polyproteins and

colloidal chains, viewing them both as specific type of polymer

with an inhomogeneity in the aspect ratio along the contour i.e.

alternation between thin domains (linker domains) and thick do-

mains (globular subunits). From a theoretical perspective, this

inhomogeneity leads to a lack of clarity in how we should de-

fine the contour of the object and hence, what contour length the

persistence length relates to. Similarly from an empirical perspec-

tive, in the case of experimental extraction of these Lc and Lp pa-

rameters, it is again unclear what physical structure the contour

length refers to, if any, and hence what contour the persistence

length is relative to. This dependence of Lp on Lc was implicitly

noted by Kellermeyer in a study of the biopolymer titin21, who

noted the ‘apparent’ persistence length changed as certain titin

subdomains unfolded under experimental conditions. Further, Fu

et al. introduced the idea of a ‘natural length’ for a polymer22,

termed Ln, representing the end-to-end distance of the polymer

at zero external force. Yet if the lengths of the polymeric struc-

ture change as a function of applied force, this leaves the contour

length Lc acting as a fitting parameter with a somewhat loose

physical interpretation, rather than explicitly defining the poly-

meric structure as we might assume. More explicit examples of

the disjunction between pure polymer physics and its application

to globular domain polymers can be seen in some of the collective

research on titin.

Titin is a large, cable-like structure resulting from the polymeri-

sation of 244 individual globular domains and is responsible for

muscle elasticity23. Two of these domains, the I27 and PEVK

domains, have been extensively studied and exhibit mechanical

behaviour relevant to this work. PEVK is known to be relatively

flexible, unfolding so easily that it was defined by Linke et al. as

an ‘entropic spring’24. On the other hand, I27 is significantly

more thermodynamically stable25, and hence more rigid whilst

in the folded state.

The elasticity of the PEVK domain of titin was investigated

by Sarkar et al. via a single molecule force spectroscopy atomic

force microscopy (SMFS) study on titin co-polymers, also termed

hetero-polyproteins, formed of alternating subdomains of I27 and

PEVK in the form [[PEVK]3I27]4
26. The force-extension rela-

tionship of this process results in a characteristic unfolding curve

that corresponds to an analytic expression derived from the WLC

model20, albeit an approximate relation, and from this Sarkar et

al. were able to extract a value for Lp. They measured the persis-

tence lengths of three different [[PEVK]3I27]4 polyproteins, each

corresponding to a PEVK domain formed from the expression of a

different exon of the human titan gene, exons 120, 161 and 184.

These persistence lengths were measured to be 0.89 ± 0.42nm,

0.92±0.38nm and 0.98±0.4nm respectively, which are on the or-

der of 2 amino acid lengths27. Carrion-Vazquez et al. also used

SMFS to measure the persistence length of [I27]8 polyproteins.

Although there were linker domains present between the I27 do-

mains, there were no flexible PEVK domains28. They measured

the persistence length of this system as 0.39± 0.07nm, even less

than Sarkar et al. measured the unfolded PEVK domain to be.

On the other hand, Li et al. made measurements using single

molecule electron microscopy29, which differs from SMFS in that

it does not apply high tensile strain or spatial boundary conditions

to the polymer. By extracting an end-to-end distribution from the

electron micrographs, a distribution which also has an analytic

form derived from the WLC model, they were able to measure the

persistence length of [I27]12 as 9.8± 0.6nm, significantly greater

than the disordered PEVK regions and, more importantly, greater

than the Lp value of the [I27]8 polyprotein measured using SMFS.

This suggests that the persistence lengths of polyproteins mea-

sured by SMFS differ from those measured in the absence of ap-

plied force.

Finally we look at the work of Huber et al. , who performed

a study of the PEVK domain in isolation using Förster resonance

energy transfer (FRET)30, a method that can also be used to mea-

sure an end-to-end distance distribution, in this case of a single

PEVK domain. Using two synthetic PEVK sequences, one with

11 residues and another with 21, they were able to extract per-

sistence lengths of 0.63± 0.01nm and 0.48± 0.02nm respectively.

Within error, these correspond to the measurements of Sarkar et

al.

From this series of experiments we see that the persistence

length of a polyprotein formed of alternating PEVK/I27 do-

mains is relatively small26 and approximately equivalent to that
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of an independent PEVK domain30, indicating that the rigid

I27 monomers do not contribute significantly to the persistence

length in these cases. However, a polyprotein formed of only I27

domains measured using electron microscopy (at zero applied

tensile force) has a persistence length approximately 25 times

greater than a polyprotein formed of the same monomeric sub-

units under SMFS conditions28,29. This indicates that applied

force somehow affects the measured persistence length, even

though additions to the WLC model Hamiltonian attempt to ac-

count for this31. These observations indicate some discrepancies

between idealised polymer physics and applications of polymer

physics to globular domain polymers, and the difference of po-

tentially orders of magnitude between the apparent and true per-

sistence lengths.

For general SMFS experiments on polyproteins, it is often the

case that the WLC model is used simply as a fitting model to

validate the measurement of single protein properties, such as

the peak forces and the peak-to-peak distances of the SMFS un-

folding curves. Nevertheless, many SMFS experiments observe

persistence lengths of around the length of a single amino acid:

in titin27,28,32,33, general polyproteins34–36, and other struc-

tural motifs37–40, and this magnitude of persistence length corre-

sponds well to that of individual, flexible amino acid chains41,42.

Yet we have seen from the work of Li et al. that in the absence

of applied tensile force, the persistence length can be signifi-

cantly larger. Biophysical systems which incorporate these types

of polymeric object as a structural subunit are currently being in-

vestigated14,15,43, and within these systems it is likely that the

subunits are under conditions similar to SMFS experiments. In

addition, current theoretical models for the viscoelastic proper-

ties of homogeneous semiflexible polymers in solution have re-

cently been shown to be insuffucient11,12. Schuldt et al. observed

that the resultant shear modulus of a polymer network solution,

formed of tunable DNA nanotubes, has a non-trivial dependence

on both the persistence length and polymer concentration that

contradicts current theoretical frameworks12. Tassieri then ar-

gues that the current theoretical understanding of the persistence

length with respect to emergent hierarchical properties is insuffi-

cient for a variety of potential systems11. Thus, as we attempt to

rationally design these hierarchical systems, it is important to re-

visit the WLC model itself so we can employ previously extracted

WLC parameters appropriately to make new predictions about

their resultant mechanical properties.

With these ideas in mind, we have performed a series of simu-

lations of single globular domain polymers which aim to investi-

gate how the underlying subunit geometries, mechanical proper-

ties and externally applied forces affect the persistence length of

the polymeric object (see Figure 1). Via simulations that mimic

the electron microscopy experiments of Li et al. 29, we study the

emergence of persistence length in the absence of any external

forces other than the statistical effects of temperature. With fur-

ther simulations designed to mimic SMFS spectroscopy experi-

ments, we investigate how the contour and persistence lengths

implicitly measured from force-extension curves relate to the pre-

vious explicit calculations in the absence of force.

2 Methods & Simulations

2.1 Globular Domain Polymer Simulations

Standard polymer simulation techniques cannot be used to gain

insight into how the persistence length of a globular domain poly-

mer emerges as a function of the underlying subunit structure.

These techniques often treat polymeric properties as defined pa-

rameters rather than emergent, measurable properties as we re-

quire. Instead, we have used BioNet, a new software package

in active development designed to simulate biological network

structures. Similarly to LAAMPS44, BioNet allows us to design

biophysical systems from various structural building blocks and

perform a variety of simulation protocols on them. To best rep-

resent the polymers studied in this work, our models consisted

of 10 spherical beads connected explicitly at the surface by linear

springs as shown in Figure 3b.

The spheres in our model represent the globular subunits. They

are geometrically rigid, but are associated with a soft core pair-

pair steric repulsion of the form

Ust =











1
2 kst

(

(

Vo

Ac

)2
+(r−2R)2

)

r < 2R

0 r >= 2R

(3)

where r is the center to center distance between two spheres,

R is the radius of each sphere, Vo is the volumetric overlap be-

tween the two spheres45, Ac is the cross-sectional area of each

sphere, and kst is an associated elastic constant. This interaction

has been tested and shown to be fully conservative, and, because

it is a volumetric interaction with Ust ∝ r6, this potential can be

said to represent the intrinsic stiffness of the globular subunits.

Although alternative interaction potentials are available, such as

Weeks-Chandler-Anderson46 or Hertzian47 potentials, our inter-

action potential has been written in this form so that the stiffness

kst is directly comparable with the linear elastic stiffnesses of the

neighbouring linker domains, whilst leaving the functional form

proportional to the volumetric overlap. For completeness how-

ever, we have performed a subset of equivalent simulations using

these different potential forms, the results of which are discussed

in Supplementary Section 5.2.

To aid in simulation efficiency, our linker domains are repre-

sented by simple Hookean springs. As such they can be thought

of as end-to-end distance fluctuations of a Gaussian chain, repre-

senting the underlying linker domain, or simply as a linearisation

of the local forcefield. If required, the combination of equilibrium

length and stiffness in this domain can be converted into a con-

tour length and a Kuhn length and hence, a persistence length.

Increases in linear stiffness whilst keeping the equilibrium length

constant can be loosely thought of as an increase of the persis-

tence length for the underlying linker domain.

A final point of importance is that our beads are not simply

points with ‘effective radii’. The linkers are connected to the

beads explicitly at their surface, giving our beads real three di-

mensional structure. Due to this explicit surface connectivity, on

each sphere the axes of rotation for each connected spring are

different and hence an effective bending energy will emerge due

to steric interactions. This is the core feature of our model from
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Fig. 1 A schematic overview of the systems we are considering in this work. a) A series of globular domain polymers with an increasing linker domain

length, leq, between the subunits and b) a globular domain polymer under SMFS conditions. Increasing the applied force, F , increases the overall

extension in the polymer, ∆x, and hence can be used to force a globular domain polyprotein into the same geometric configuration as the polyproteins

in a).

which we expect to see the emergence of persistence lengths on

the order of the length of the polymer itself (see Figure 2). For

completeness, rotational degrees of freedom were modelled for

each sphere, with dynamics calibrated to correspond with the the-

oretically expected rotational diffusion.

Once each of our polymer models had been built, we ran simu-

lations of each single polymer model using a Brownian dynamics

protocol. Each simulation ran with a simulation timestep a factor

of 10 lower than the smallest relaxation time within the system

and for a simulation time a factor of 100 longer than the theoret-

ical Rouse time for the equivalent Gaussian chain19, an approxi-

mation of the longest relaxation time within these systems. This

ensures the simulation trajectories have both numerical accuracy

and dynamical convergence. The timescales were determined by

a background viscous medium with viscosity µ = 1MPa.ns, similar

to water48. This provided a localised Stokes drag on each sphere

rather than a full hydrodynamic effect. Specific simulation proto-

cols for each investigation will be described in Section 3.

2.2 Molecular Dynamics Simulations

To calibrate the springs within our coarse-grained model, we per-

formed our own study into the persistence length of linker do-

mains used in polyproteins via molecular dynamics simulations

on a set of theoretically disordered amino acid chains49. Our se-

quences were built into physical chains using the ‘Build Structure’

utility within UCSF Chimera50. Each structure was assembled us-

ing the Dunbrack rotamer libraries51 and initialised into helical

structures for simplicity.

Subsequent dynamical equilibrations and simulations were per-

formed using the Gromacs 2018 and 2019 Molecuar Dynamics

packages52. Each single amino acid chain was immersed in ex-

plicit water and simulated using the ‘AMBER99SB-ILDN’ force-

field. Each simulation completed a different amount of real time

dynamics, ranging from 2µs and 7µs.

2.3 Theoretical Background

To aid us in our analysis we will define some useful quantities in

advance. For a polymer chain in the absence of any steric forces or

self-interaction, a simple model to use is the freely-jointed chain

model, a specific instance of the more general Gaussian chain

model. Our structure, as shown in Figure 3b, is a slight exten-

sion of the standard freely-jointed chain. In addition to the freely

rotating linker domains we have an additional rigid globular com-

ponent of radius R with explicit surface binding sites defined, and

the linkers are Hookean springs with associated stiffness k whose

length can thermally fluctuate about an equilibrium length leq.

If we define the end-to-end distance, E, as the distance between

the centers of the two terminal beads, the expected squared end-

to-end distance for a system of N beads can be analytically cal-

culated from an analysis of the end-to-end vector, ~E. The details

involved in this derivation can be found in Supplementary Section

5.3. Here, we simply quote the resulting equation

〈E2〉= (N −1)

(

kBT

k
+ l2

eq +2

(

2−
1

N −1

)

R2

)

. (4)

We can see that in this model, the contribution of the radius R

to the overall end-to-end distance is dependent upon the length

of the chain itself. However, as N increases this effect quickly

becomes negligible and we can define an effective segment length

l′eq as

l′eq =
√

l2
eq +(2R)2. (5)

It is this length about which the chain as a whole undergoes ther-

mal fluctuations that increase its expected end-to-end distance.

In the linear elastic linker domains these thermal fluctuations will

have a characteristic magnitude lrms =
√

kBT/k, which is the root

mean square value as calculated from the equipartition theorem

(see Supplementary Section 5.3). From here we can define a di-
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mensionless variable, l̂′rms, which we will refer to as the relative

fluctuation magnitude

l̂′rms =
lrms

l′eq

=
lrms

2R
√

(

leq

2R

)2
+1

. (6)

This parameter measures how large the thermal fluctuations are

relative to the equilibrium length of the effective segment defined

in Eq.5. As we may expect, l̂′rms can be expressed in terms of the

specific relative geometries within the system, which are

l̂eq =
leq

2R
(7)

l̂rms =
lrms

2R
(8)

where l̂eq and l̂rms are, respectively, the sizes of the equilibrium

length and fluctuation magnitudes of the linker domain relative to

the diameter of the globular domain. As Eq.6 encompasses both

Eq.7 and Eq.8, it follows that l̂′rms is an appropriate dimension-

less quantity to measure the relative size of the thermal fluctua-

tions with respect to the length of the structural subunits within

the chain. We now consider how these parameters can affect the

steric interaction.

In our model Eq.4 is the limit as the local steric interaction

strength kst → 0. For the non-zero case we can imagine the sit-

uation as shown in Figure 2, where θM is the maximum possible

angle before steric interactions begin to occur. Under the approxi-

mation that the fluctuating angle θ is symmetric for neighbouring

beads, then it can be shown that

cos θM = 1−
(

l̂eq + l̂rms

)

. (9)

Therefore, because the relative rotational motion is inhibited by

the steric interaction which is itself dependent on the relative ge-

ometries in the system, we would expect a persistence length to

arise within the polymer as a function of those same relative ge-

ometries, in addition to the intrinsic stiffnesses of the globular

and linker domains.

From our discussion here, we conclude that the natural dimen-

sionless parameters to use in the study of the emergence of persis-

tence length in globular domain polymers are l̂eq and l̂′rms. Varying

l̂eq will allow us to alter the relative equilibrium sizes of the glob-

ular and linker domains, and varying l̂′rms will allow us to alter

the size of the fluctuations in the linker domain relative to the ef-

fective fluctuating segment of the chain defined by Eq.5. For the

remainder of this work, keep in mind that our notation is such

that l̂eq and l̂rms are normalised by 2R, whereas l̂′rms is normalised

by l′eq i.e. the inverted comma denotes a different type of normal-

isation.

Fig. 2 The emergence of bending rigidity due to local steric interactions.

The angle θM is a geometric property dependent upon the relative sizes

of the bead radius, R, and the sum of the equilibrium length, leq and fluc-

tuation magnitude, lrms, of the associated linker domain. When combined

with a non-zero stiffness in the globular domain, kst , the result will be an

effective bending potential.

3 Results

3.1 The persistence length of amino acid chains is compara-

ble to the size of single amino acids, and small compared

to globular proteins

To investigate the intrinsic stiffnesses we might expect from our

linker domains, we performed molecular dynamics simulations of

theoretically disordered amino acid chains, containing small side

chains and zero net charge, which are commonly used as linker

domains49. From these simulations we were able to calculate

persistence lengths using a discretised form of Eq.2, which can

be approximated by defining the contour as a piecewise function

defined from a set of discrete points si, and hence can be rewritten

as

〈~t(si) ·~t(s j)〉= exp

(

−

∣

∣s j − si

∣

∣

Lp

)

(10)

where the set of values si now explicitly define the contour. An

obvious choice for these discrete points in our amino acid chains

is the set of Cα backbone atoms, but it must be emphasised for the

purpose of this work that this is by no means the only choice, and

the persistence lengths calculated will reflect this choice. Defining

each segment vector ~li =~r(si+1)−~r(si), we subsequently define

the tangent vector~t(si) as

~t(si) =
~li

|~li|
(11)

or, in words,~t(si) is the normalised difference in position vectors

between neighbouring Cα atoms i and i + 1. As the length of

our chain, and each segment, may vary over time due to thermal

fluctuations, we chose to define each our overall contour length

of the chain, Lc, as
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Fig. 3 The two types of model studied in this work, with the defined con-

tours superimposed. a) The contour as defined for an amino acid chain,

piecewise between the Cα atoms and b) The contour defined for our

globular domain polymers, piecewise between the effective linker con-

nections to each globular subunit.

Lc =
N−1

∑
i=1

〈|~li|〉. (12)

In words, our contour length is defined as the average contour

length, formed as a summation of the average segment lengths

and where the averages are taken over the full set of simulation

frames. This is shown in Figure 3a.

Here it is important to note that each different length of con-

tour, if thought of as an inextensible worm-like chain, could in

principle be assigned its own ‘intrinsic’ persistence length. What

we measure experimentally and in this simulation environment is

the average effect of each of these systems as the chain entropi-

cally transitions between different contour lengths under thermal

fluctuations. Nevertheless, using these properties we were able

to fit Eq.2 to the simulation trajectory as shown in Figure 4, and

calculate the persistence lengths of amino acid chains as shown

in Table 1.

Model Lp (nm) Lp (Amino acids)

G[P]5C 0.60±0.02 1.80±0.07

[LSVGATI]2 0.54±0.06 1.49±0.17

[GSS]4 0.37±0.04 1.05±0.12

Table 1 The calculated persistence lengths for a set of amino acid chains,

shown in SI units and in terms of the number of amino acid lengths. Both

columns are therefore equivalent.

We can immediately see that whilst dynamics of the [LSVGATI]2
and [GSS]4 chains correspond relatively well to the WLC model,

the G[P]5C chain dynamics do not. For G[P]5C, a relatively strong

correlation exists around the center of the chain indicating some

Fig. 4 The correlations between tangent vectors along the contour of 3

different amino acid chains.

form of self-interaction. The source of this interaction is out of

scope for this work, but we have included this simulation for com-

pleteness. We are still able to fit the Eq.2 to the first 3 Cα atoms

of the G[P]5C chain, although the specificity of this fit is question-

able. Nevertheless, this is the value quoted in Table 1.

Each of the values of Lp shown in Table 1 are relatively small

compared to the size of the globular domains of polyproteins, the

folded proteins themselves. By calculating the average size of

an amino acid in a similar manner to Eq.12 we are also able to

show that these persistence lengths are on the order of just 1-2

amino acids lengths as shown in the second column. This im-

plies that disordered linker domains used within polyproteins are

likely the least rigid components in terms of bending. Addition-

ally, we find that these values of Lp are similar in magnitude to

each of the experiments discussed in Section 1, with the exception

of the electron microscopy experiments of Li et al. This indicates

that the PEVK domain of titin behaves similarly to an unfolded

protein, but perhaps more importantly, it indicates that the SMFS

experiments of [I27]8 by Carrion-Vazquez et al. are likely measur-

ing the persistence lengths of the linker domains connecting the

I27 domains, and not the persistence length of the polyprotein as

a whole28. Although mentioned implicitly throughout the litera-

ture, we emphasise that this result has strong implications for the

mechanical characterisation of polyproteins and other globular

domain polymers. The following sections will investigate the per-

sistence length of these globular domain polymers in the absence

of force.

3.2 The persistence length of a globular domain polymer is

dependent on the relative sizes of the linker domain and

the globular subunits

Now we have seen the order of magnitude of persistence length

that can emerge from disordered amino acid chains, we investi-

gate the how these chains affect the persistence length of a gen-

eral globular domain polymer when embedded within them as

linker domains. As stated in Section 2.1, our polymers are repre-
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sented as soft core globular domains connected explicitly at the

surface by linker domains (see Figure 3). We first investigate the

effect of the relative geometries within the system on the persis-

tence length by performing a series of dynamic simulations with

varying values of l̂eq and l̂′rms, together with a constant value of

kst . From the resulting trajectories we calculate the persistence

lengths using the same explicit method as in Section 3.1, using

Eq.10, but we now define our contour as shown in Figure 3b,

with associated an contour length

Lc =
N−1

∑
i=1

2R+ 〈|~li|〉. (13)

Our new definition of Lc for these systems now accounts for the

rigid globular subunits. However, the structural inhomogeneity

along the defined contour leads to a non-trivial decay in corre-

lation along the contour. Our method for extracting unique per-

sistence lengths from these correlation curves in accordance with

Eq.10 is addressed in Supplementary Section 5.4. Figure 5 shows

the persistence lengths extracted from these simulations.

Fig. 5 The effect of the linker equilibrium length on the persistence length

of a globular domain polymer, for a variety of relative fluctuation magni-

tude values, l̂′rms, and in the presence and absence of the steric interac-

tion, as represented by the globular domain stiffness kst . Main kst = 192.31

pN.nm and Inset kst = 0 pN.nm

From Figure 5 we can see that as the relative linker size l̂eq in-

creases, there appears to be convergence in the persistence length

Lp towards an asymptotic value for each value of the relative fluc-

tuation magnitude l̂′rms. We will denote this asymptote as Lp,∞.

Given our definition of the contour, which begins at the centre of

the first subunit, our hypothesis is that as l̂eq → ∞, Lp ∼ R. This

theoretical asymptote is shown in Figure 5 as a black dashed line.

As the globular domains get further apart from one another due

to longer linker domains, local steric interactions will occur less

often. With only a freely jointed connection between the linker

domains and the globular subunits in our model, a reduction in

local steric interactions will subsequently lead to the reduction

in correlation between the tangents of neighbouring contour seg-

ments until, at infinite separation, there is no correlation at all

except within each of the discrete contour segments. For our defi-

nition of the contour, this discrete change in correlation will occur

at the surface of the first globular subunit, a distance R from the

beginning of the contour. This is validated by the inset graph of

Figure 5, where because the steric interaction has effectively been

switched off, there is no source of correlation at any value of l̂eq

and so we observe the same, small persistence length regardless

of the polymeric geometry.

If we instead consider reductions in the relative linker size l̂eq

in Figure 5, we observe an increase in Lp for most of the smaller

values of l̂′rms. Due to the increase in the rate of steric interac-

tions as the globular subunits get closer to one another, there is

an emergence of an effective bending resistance along the defined

contour as per Eq.9, leading to correlations of the tangent vectors

between contour segments. Reducing l̂eq, then, although having

no effect on the intrinsic stiffness of the linker domain, leads to a

larger bending resistance via an increase in the rate of local steric

interactions. Again, in the inset graph of Figure 5, the complete

lack of steric interaction effectively switches of this bending re-

sistance entirely by reducing the intrinsic stiffness of the globular

domain to zero. Thus we have shown that an increase in the aver-

age separation between the globular domains in globular domain

polymers decreases the persistence length of the polymer. Figure

11 in Supplementary Section 5.5 shows an intermediate case be-

tween the two graphs in Figure 5, showing the same convergence

behaviour but with smaller values of Lp at small l̂eq.

We will consider the exact effect of the steric interaction in Sec-

tion 3.4, but first we notice that Figures 5 and 11 clearly show

that the increase in Lp with a reduction in l̂eq is much more pro-

nounced for smaller values of l̂′rms. Hence, Lp must also be depen-

dent upon the intrinsic flexibility of the linker domain.

3.3 The persistence length of a globular domain polymer is

affected by the flexibility of the linker domains

From Eq.6, l̂′rms is a dimensionless value representing the flexibil-

ity of the linker domain. As the magnitude of the thermal fluctua-

tions increases, the effective length of the domain, and hence the

entire chain, increases as per Eq.4.

Figure 5 shows that as the relative fluctuation magnitude l̂′rms

decreases, the persistence length Lp increases for each value of

the relative linker size l̂eq. This indicates that as the thermal fluc-

tuations comprising l̂′rms decrease, there is a reduction in the ef-

fective length of the linker domain, promoting a higher rate of

steric interactions as per Eq.9.

An additional point of note is that although in the absence

of steric interactions the thermal fluctuations will be symmetric,

such that the average length of the linker domain 〈li〉 = leq, the

inclusion of steric interactions will tend to bias the fluctuations

towards increasing the overall contour length for smaller values

of l̂eq. Hence, the reduction in l̂′rms generates a greater increase in

the persistence length for smaller values of l̂eq. We can conclude

that decreasing l̂′rms corresponds to an increase in Lp not only be-

cause the linker is intrinsically stiffer, but because the reduction

in magnitude of thermal fluctuations leads to a reduction in the
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contour length and hence promotes a higher rate of local steric

interactions. Thus we have shown that in addition to increases in

the average linker length reducing the overall persistence length,

increases in the fluctuations about this average also reduces the

persistence length.

From the differences between the traces at each value of l̂′rms

in Figures 5 and 11, we can see that at all values of l̂eq, the mag-

nitude of the increase in Lp due to a reduction in l̂′rms is itself

continuously dependent upon the stiffness of the globular domain

kst .

3.4 The persistence length of a globular domain polymer is

dependent on the stiffness of the globular domain

We have seen that an increase in the rate of local steric inter-

actions between globular subunits causes the emergence of an

effective bending resistance along the polymer contour, leading

to larger persistence lengths. The strength of these interactions,

then, should further modulate this effect. This can be seen in Fig-

ure 6, where we have performed simulations with varying values

of l̂eq and kst with a constant value of l̂′rms

Fig. 6 The effect of the linker equilibrium length on the persistence length

of a globular domain polymer, for a variety of globular domain stiffness

values, kst , and at two different values of the relative fluctuation magni-

tude, l̂′rms. Main l̂′rms = 0.02 and Inset l̂′rms = 1.0

With a similar form to Figure 5, Figure 6 shows that as we in-

crease the globular domain stiffness kst , we observe an increase

in the persistence length Lp. This effect is significantly more pro-

nounced at smaller values of the relative linker size l̂eq. However,

we now see from the inset graph in Figure 6 that for relatively

large values of the relative fluctuation magnitude l̂′rms, no addi-

tional bending resistance emerges for any values of l̂eq or kst . This

indicates that the linkers are so flexible that the effective increase

in contour length prevents steric interactions from occurring alto-

gether. This is not equivalent to setting kst = 0, however, but does

comprise a reduction to the freely-jointed chain model as given by

Eq.4 or, had we included explicit amino acid chains, a reduction

to a homogeneous worm-like chain model. Thus we have shown

that if steric interactions can occur between the globular domains

within the polymer, then a reduction in the strength of the steric

interaction will reduce the overall persistence length. Figure 12 in

Supplementary Section 5.5 shows an intermediate case between

the two graphs in Figure 6.

3.5 The persistence length of a globular domain polymer

measured under SMFS conditions is not equivalent to

that of the free polymer

In previous sections we have been able to explicitly calculate per-

sistence lengths from the definition given in Eq.10, using the ‘true’

contour of the system defined in advance. These native conditions

are similar to the electron microscopy experiments of Li et al. and

so can result in similarly high persistence lengths such as those

measured experimentally for the [I27]12 polyprotein29. SMFS,

however, changes the relative geometries of the globular domain

polymer through the action of an applied force, which imparts an

overall extension to the polymer.

To investigate how this process affects the values of both Lp and

Lc we performed an additional series of globular domain polymer

simulations with constraints representing the experimental con-

ditions of SMFS force spectroscopy. To accomplish this, we first

aligned the polymer along the x-axis. During each simulation a

constant force ~F was applied in the positive x direction to the fi-

nal node in the chain to simulate the action of the AFM tip, whilst

all forces on the base node were set to zero to simulate surface

adhesion.

To calculate the persistence length in each of our simulations,

we used the equation from the original work of Marko and Siggia
31,

F =
kBT

Lp

(

1

4

(

(

1−
∆x

Lc

)−2

−1

)

+
∆x

Lc

)

(14)

where F is the applied force, and ∆x the extension in the x direc-

tion only, as would be measured by the changing height of the

AFM tip. We note that for an ideal polymer i.e. one in which

there is a continuous aspect ratio along the contour, we would

expect that the value of Lp extracted from Eq.14 would be ap-

proximately equal to that calculated from Eq.2. However, as we

are studying globular domain polymers, we cannot assume that

these values will be the same due to the constantly changing ge-

ometry ratios. Therefore, we make the distinction that the values

of Lp measured in the remainder of this section are apparent per-

sistence lengths, and will be strongly dependent upon the specific

conditions of applied force.

As with earlier sections, we will rewrite Eq.14 with dimension-

less parameters for a more general analysis. In the absence of

thermal fluctuations, the application of a force to our system

would simply result in F = k∆l for each linker domain, where

∆l = l − leq. Thus, we can define our force in terms of the length-

scale ∆l. Additional normalisation by 2R allows us to rewrite

Eq.14 as

∆l̂ = l̂rms
lrms

Lp

(

1

4

(

(

1−
∆x

Lc

)−2

−1

)

+
∆x

Lc

)

(15)
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where l̂rms and lrms are as defined in Section 2.3 and

∆l̂ =
∆l

2R

=
F

2Rk

We performed a series of single polymer simulations using a

value of l̂eq = 0.01 only, and for a range of values of l̂′rms and kst .

Each simulation applied a different value of ∆l̂ and from each we

calculated the extension as

∆x = 〈xN − x1〉 (16)

where x1 and xN are the x coordinates of the initial and final nodes

respectively, and the average is again taken over the set of simula-

tion frames. Hence, for each value of l̂′rms and kst , we were able to

extract a force-extension curve that is equivalent to a single peak

of a characteristic force-extension curve from SMFS experiments

using AFM. Examples of the application of Eq.15 to these curves

are shown in Figure 7, where both Lp and Lc were left as variable

fitting parameters.

Just as in standard SMFS applications of the WLC model, Eq.15

does not fit well at large applied forces. Due to our parameter

normalisation, we were able to standardise our fits of Eq.15 to the

first 8 data points in each curve as shown in Figure 7, which gave

the best fit in terms of minimising the fitting parameter covari-

ances whilst deviating from the data at high strain. The effect of

both kst and l̂′rms on the effective contour and persistence lengths

measured from the force-extension curves are made clearer in Fig-

ure 8, where we plot the extracted values of Lc and Lp as functions

of these mechanical parameters.

The first thing to recognise from Figure 8a is that neither the

values of Lc or Lp are the same as those defined or measured for

the equivalent free polymers (see Sections 3.2 and 3.4). This im-

plies that the persistence length of globular domain polymers is

in some way dependent upon the environment and the applied

constraints, specifically the forces applied to them, and hence the

apparent and true persistence lengths are not equivalent for glob-

ular domain polymers. We also see that the values of Lp are not

as small as the asymptotic values seen for large values of l̂′rms in

simulations of free polymers (Lp ∼ R). This implies that the SMFS

force spectroscopy technique, by varying the relative geometries

within the system as it applies increasing force, measures some

form of average of each of the true values of Lp corresponding to

each individual extension.

From a geometrical perspective and with respect to Figure 3b,

we would expect any combination of values of l̂eq and l̂′rms to

explicitly define our contour, independently of the protein stiff-

ness. Indeed, as we increase l̂′rms we also see an increase in Lc.

This may be expected given that l̂′rms acts to increase the aver-

age squared length of a fluctuating chain as per Eq.4. However,

Figure 8a clearly shows a large reduction in our measured con-

tour length Lc as we increase kst . This implies something akin to

the Kuhn length appearing for these globular domain polymers,

in that the effective segment lengths in our polymeric system are

(a)

(b)

Fig. 7 The application of the WLC model to the force-extension be-

haviour of a globular domain polymer with l̂eq = 0.01, for a variety of rel-

ative fluctuation magnitude values, l̂′rms, and at two different values of the

globular domain stiffness, kst . a) kst = 19.23 pN.nm b) kst = 192.31 pN.nm

being reduced from the true polymeric backbone as we reduce

the protein stiffness kst and allow the globular subunits to over-

lap. Therefore, even though in the unstrained state the explicit

definition of Lc and calculation of Lp via Eq.2 works well, when

SMFS constraints are applied the mathematical contour required

to fit the WLC model via Eq.15 is significantly shorter and does

not correspond to the backbone of the polymer itself. Hence, the

contour length Lc is also an apparent value.

Aside from the contour length, we see that the measured per-

sistence length Lp increases with kst as expected. However, com-

pared with the free polymer simulations the effect of kst on Lp

is much less pronounced. This is true even at low values of l̂′rms

when, contrary to the free polymer calculations, kst has almost no

effect on Lp.

Although our measurements of Lc and Lp appear unusual in

isolation, given our results for the true values from the free poly-

mer simulations, Figure 8b shows how the ratio of these two val-
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(a)

(b)

Fig. 8 The effect of the SMFS force spectroscopy procedure on the mea-

surement of both the contour length Lc and the persistence length Lp of

a globular domain polymer with l̂eq = 0.01, for a variety of values of l̂′rms

and kst . a) The individual Lc and Lp values and b) the ratio of Lp and Lc

values

ues changes. We now see that with only a single exception, at

each value of l̂′rms an increase in kst increases the effective persis-

tence length when measured with respect to the effective contour

length. We can also see that as l̂′rms itself increases, the relative

size of Lp with respect to Lc appears to grow initially, and then

begins to fall again. As l̂′rms acts as an effective increase to the to-

tal length of the spring, then as this value initially increases, the

effective contour length also increases, and the effective persis-

tence length increases with it. However, just as in the free poly-

mer simulations, by increasing l̂′rms we also reduce the frequency

of steric interactions, which contributes to a reduction in the per-

sistence length as per Eq.9. As we begin to move into the large

force regime of Eq.15, where steric interactions can no longer

occur in our polymers due to the rigid boundary conditions, the

effect of the increases in contour length on the persistence length

are overtaken by the lack of steric interaction, thus reducing the

persistence length again. Hence, we can see that the apparent

persistence length can only be correctly interpreted when mea-

sured relative to the apparent contour. However, we also see that

whilst our very small initial value of l̂eq = 0.01 would correspond

to a semi-flexible polymer with true values of Lc and Lp measured

from a free polymer using Eq.10 (see Section 3.4), even for our

stiffest globular domains in Figure 8b, the polymer remains in the

fully flexible state for all values of l̂′rms. This indicates the the ap-

plication of tensile force to a globular domain polymer, and the

subsequent change in internal geometry, significantly reduces its

apparent flexibility.

4 Conclusions

From this simulation study we have seen that the persistence

length of globular domain polymers, whether they are colloidal

chains, polyproteins or some other inhomogeneous polymer, is

strongly dependent upon the relative geometries along the poly-

meric contour. This dependence causes the true persistence

length, intrinsic to the free polymer, and apparent persistence

length, specific to an experimental setup, to diverge from one

another. If the linker domain is long compared with the size of

the globular domains, or if the thermal fluctuations are relatively

large, then the intrinsic persistence length will be dominated by

the stiffness of the linker domains themselves. From the intrin-

sic persistence lengths of amino acid chains referenced in Sec-

tion 1 and verified in Section 3.1, it is likely that these polymers

would be classed as flexible. On the other hand, if the linker do-

main is short compared with the size of the globular domains,

and the thermal fluctuations are sufficiently small, then the per-

sistence length will be dominated by the stiffness of the globular

domains. Given the relatively high intrinsic stiffness of proteins53

and their low aspect ratio, it is likely that only this structural ge-

ometry will enable globular domain polyproteins to move into the

semi-flexible or rigid regimes. Finally, we have shown that the al-

teration of internal geometry via SMFS means that the apparent

persistence lengths of globular domain polymers measured via

this technique, although qualitatively useful, cannot be said to

represent the true stiffness of the polymer in any situation other

than that specific experiment.

Our work is in qualitative agreement with Hsu et al. , who were

able to show via a thorough simulation study that although the

WLC model fits well to so-called ‘bottle-brush’ polymers, due to

their complex side chain geometry the resulting Lc and Lp val-

ues do not have clear a physical meaning54. They found that the

persistence length, although clearly defined with respect to a con-

tour, was actually proportional to the contour length itself, which

should not be the case for a WLC system. Our work is complimen-

tary, showing that although the WLC can be applied to the SMFS

force-extension curves of globular domain polymers, the emer-

gent persistence lengths and contour lengths do not accurately

reflect the ‘intrinsic’ stiffness of object. It is true that persistence

length is dependent on external factors such as temperature and

uniform hydrophobicity55, which provide something akin to a de-

localised restoring force equivalent to a modification in the intrin-

sic stiffness of the object. What we have shown is that that the

stiffness of an entire globular domain polymer is inescapably de-
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pendent upon localised interactions with the environment, which

act to alter the relative internal geometries and therefore reduce

the frequency and strength of the local interactions from which

‘intrinsic’ stiffness arises54.

The effect of local geometries on the persistence length of a

long molecule was alluded to by Landau and Lifshitz in their

seminal series of textbooks56, and we now see the relevance of

these insights. The hierarchical emergence of worm-like chain

behaviour in globular domain polyproteins provides a route for

exploring the rational design of biological systems. Based on the

work of Da Silva et al. 14, Shmilovich et al. recently developed

a model to describe the force/extension behaviour of hydrogels

formed of polyproteins of protein L43. Using rigid rods to model

the polyproteins, and via the inclusion of unfolding kinetics for

the individual protein subunits, their model predicts the emer-

gence of a non-linear viscoselastic response as force is applied.

It would be of great interest to observe how the effective change

in persistence length of these polyproteins via the application of

force to the hydrogel would effect the emergent properties of the

system.

We have shown that through careful consideration of the rel-

ative geometries of the linker and globular domains, the micro-

scopic mechanics of a hierarchical system can be manipulated by

orders of magnitude. We hope this study will provide a useful

empirical reference in the design of hierarchical biological sys-

tems which incorporate globular domain polymers.
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5 Supplementary Information

5.1 Data Access & Reproducability

All of our globular domain polymer simulations were performed

using BioNet, a software package in development at the Uni-

versity of Leeds. This software is available for download from

the Bitbucket repository https://bitbucket.org/GokuBH/

proteinhydrogelsoftware/. Although the core software is

in active development for additional applications and features,

for reproducability purposes the branch PolyProteinSims remains

unchanged since this work was performed.

All data and graphs used in this work, as well as addi-

tional movies which comprise the range of globular domain

polymer flexibilities observed in this work, can be found at

https://doi.org/10.5518/709.

(a)

(b)

Fig. 9 The effect of the linker equilibrium length on the persistence length

of a globular domain polymer, for a variety of relative fluctuation magni-

tude values, l̂′rms, and using two different functional forms for the steric

interaction. a) The Hertzian interaction potential given by Eq.17, and b)

the Weeks-Chandler-Anderson potential given by Eq.19.

5.2 Alternate forms of steric interaction

We previously mentioned that the functional form of Eq.3 was

chosen to give an energy proportional to the volume overlap, thus

modelling volumetric compression together with a linear stiff-

ness, kst , which is directly comparable to the linear stiffness of the

linker domain. However, alternate functional forms are available.

Figure 9 shows the results of a range of single globular domain

polymer simulations equivalent to those in Section 3.2 but using

alternative steric interaction potentials.

Figure 9a shows the results of using a Hertzian contact force,

FH , given by Liu et al. as47,57

FH =

{

4
3CE∗εnR2

c ε ≥ 0

0 ε > 0
(17)

where Rc is the contact radius, ε is a dimensionless overlap dis-

tance, E∗ is an elastic contact modulus and C and n are empirical

constants which depend on ε as

0 < ε ≤ 0.1 ⇒ C = 1,n = 1.5

0.1 < ε ≤ 0.2 ⇒ C = 31.62,n = 3

ε > 0.2 ⇒ C = 790.6,n = 5 (18)

This piecewise empirical function is intended to capture the non-

linearity involved in volumetric compression. Specific to our sim-

ulations, where each bead has the same radius R, it can be shown

that Rc = R/2 and ε = 2(2− (r/R)) for r < 2R, and ε = 0 other-

wise. To obtain a value of E∗ that best reflects our original sim-

ulations, we took the derivative of Eq.17 with respect to radial

distance and equated this with a constant value of kst = 192.31

pN.nm from Figure 5. This leads to a variable contact modulus,

but one which reflects the constant stiffness used in our main sim-

ulations. Figure 9a shows this to be a suitable approach, as the

trends are almost exactly equivalent to those shown in Figure 5.

Figure 9b shows the results using a Weeks-Chandler-Anderson

potential46, UWCA, a modification to the standard Lennard-Jones

potential with functional form

UWCA =







Em

(

(

r0

r

)12
−2
(

r0

r

)6
+1
)

r ≤ r0

0 r > r0

(19)

where r0 is the cutoff distance, and Em the energy minimum of

the equivalent Lennard-Jones potential. In our case, we require

the cutoff to be at the surface of the spherical domains and so

r0 = 2R. This potential is significantly steeper than Eq.3 or Eq.17,

and so we chose a value of Em = 10 pN.nm in order to keep our

simulations numerically stable.

That Figures 9a and 9b are so similar to the main simulations

shown in Figure 5 indicates that each form of steric interaction

is interchangeable for the calculations we have been performing.

With regards to the Hertzian potential representation of contact

forces, we have not subjected the subunits to any significant com-

pression, only thermal collisions. Hence, as we are at high values

of kst in Figures 9a and 9b, it is likely that we remain in the lin-

ear regime of steric interaction in our simulations. This justifies
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our linear parameterisation in this section, but also supports our

geometric interpretation of the hierarchical emergence of persis-

tence length in this work i.e. it is not the functional form of steric

interaction that matters, merely the rate of occurrence due to ge-

ometric factors.

Additional software branches, PolyProteinSimsHertz and

PolyProteinSimsWCA, were created with these alternate steric in-

teraction forms and are also available for download (see Section

5.1).

5.3 Derivation of the extended freely-jointed chain model

For a globular domain polymer comprised of N globular domains

and following the contour defined in Figure 3b, the end-to-end

distance vector, ~E, can be written as

~E =
N−1

∑
i=1

~r′i +
~li,i+1 +~ri+1 (20)

where ~r′i is the vector from the center of the ith globular domain

to the surface binding site,~li,i+1 is the vector from the ith globular

domain surface binding site to the i+ 1th, and ~ri+1 is the vector

from the i+1th globular domain surface binding site to the center

of the i+ 1th globular domain (see Figure 3). Using Eq.20, we

can calculate the inner product of ~E with itself, which can be

expanded as

〈E2〉=
N−1

∑
i=1

N−1

∑
j=1

〈~r′i ·
~r′j +

~li,i+1 ·~l j, j+1 +~ri+1 ·~r j+1

+~r′i ·
(

~l j, j+1 +~r j+1

)

+~li,i+1 ·
(

~r′j +~r j+1

)

+~ri+1 ·
(

~r′j +
~l j, j+1

)

〉. (21)

In this freely-jointed chain model, the absence of steric interac-

tions between globular domains means that any term involving

an inner product between neighbouring subunits will reduce to

zero in the ergodic limit. However, we note that it is these very

terms that cause the emergence of a persistence length in globular

domain polymers once a steric interaction is included. Neverthe-

less, neglecting these terms from Eq.21 and simplifying gives

〈E2〉=
N−1

∑
i=1

N−1

∑
j=1

2R2δi, j + 〈l2〉+R2
(

δi, j+1 +δi+1, j

)

(22)

where R is the radius of each globular domain, and l is the length

of each linker domain. The delta functions have emerged from

the ensemble averages taken between subunits, which can only

correlate with themselves in a freely-jointed chain model.

To calculate 〈l2〉, we recognise that l = leq +∆l, where leq is the

equilibrium length of the linker domain, and ∆l are fluctuations

about that length due to thermal noise. Applying the equiparti-

tion theorem, we find that

〈l2〉= l2
eq +

kBT

k
(23)

where k is the linker stiffness. Now, introducing Eq.23 to Eq.22,

we can take summations over the delta functions, resulting in

〈E2〉= (N −1)

(

kBT

k
+ l2

eq +2R2

)

+2(N −2)R2. (24)

For the final term in Eq.24 we have taken into account the

boundary conditions implied by δi, j+1 and δi+1, j, where the upper

and lower limits of the two sums must be taken into account for

polymers of finite length. Finally, factorising Eq.24 yields

〈E2〉= (N −1)

(

kBT

k
+ l2

eq +2

(

2−
1

N −1

)

R2

)

(25)

which is equivalent to Eq.4.

5.4 Alternate persistence length definitions

Figure 10 shows the raw correlation traces between all tangent

vectors along the contour as defined in Section 3.2 and shown as

black discs in Figure 3. Thus, the centre-to-centre vector between

adjacent globules consists of three vectors, corresponding to (i)

globule centre to start of linker, (ii) start of linker to end of linker,

and (iii) end of linker to the next globule centre. We can see that

the graph is highly discontinuous every third data point. With ref-

erence to the starting position of our defined contour, we see that

the significantly lower set of points correspond to the correlations

with the linker domain vectors, and that the pairs of equally cor-

related points correspond to the rigid globular domain vectors.

This shows very clearly the geometric inhomogeneity along the

defined contour for globular domain polymers.

Although the steric interaction potential we have used allows a

variable degree of overlap between the globular domains, it does

not model explicit compression and so the linker-globular domain

connection sites (N and C termini) within each globular domain

remain in a constant orientation with respect to the globular do-

main throughout the simulation. Thus, these rigid body vectors

remain perfectly correlated throughout the simulation. However,

the linker domains do not exhibit any steric interactions with their

neighbours throughout the simulations, and so their correlations

are relatively small. In fact, it is likely that the only reason they

are non-zero is due to the interactions of the globular domains

on either side. It is interesting, therefore, that the linker domain

vectors, representing the end-to-end distance of the underlying

amino acid chains, can have such low correlations with respect

to the initial vector amidst globular domains that are significantly

more correlated due to the linker geometry itself.

In Figures 10a and 10b we can see four of the possible fits of

Eq.10 to the data. In the main text the highest fit, coloured in red,

was employed, as this represents the correlations along the con-

tour emerging from interactions between the globular domains,

the focus of this paper. Due to the perfect correlation within

globular domains, the second fit, coloured in yellow, is exactly

equivalent. The third fit, coloured in black, represents the cor-

relations between the linker domains. Although these correla-

tions are low with respect to the initial vector, the persistence of

the correlations along the chain is significant, resulting in a per-

sistence length of the same magnitude as the globular domains
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(a)

(b)

Fig. 10 The tangent correlations at each point along the contour of a

globular domain polymer with l̂′rms = 0.02, kst = 192.31 pN.nm and for two

different values of l̂eq. We show multiple possible fits of Eq.10 to the data.

See text for an explanation of the different coloured fits. a) l̂eq = 0.01 b)

l̂eq = 0.5

themselves. The final fit, coloured in green, represents a form of

average between the correlations of the linker and globular do-

mains. It is possible that this fit more accurately represents the

effective persistence lengths measured in Section 3.5, or the value

that would be measured via end-to-end measurements such as in

FRET experiments, which take into account the resultant flexibili-

ties of all components of the polymer chain. However, for the pur-

poses of this work, it is sufficient to observe that alternate fitting

models exist for different discretisations of the polymer chain, but

all generate a similar prediction for the persistence length.

We note that if we had defined our contour to start at another

point, say, the N or C termini of the first globular subunit, our

correlation graphs would look slightly different. However, the

similarities between the persistence lengths extracted from only

the linker domains (black curves), or only the globular domains

(red curves), are similar enough in both Figure 10a and Figure

10b that we can infer the same emergent patterns would occur as

a function of the local geometries and steric interactions.

5.5 Graphs of the intermediate regimes of hierarchical

emergence of persistence length in globular domain

polymers

Fig. 11 The effect of the linker equilibrium length on the persistence

length of a globular domain polymer, for a variety of relative fluctuation

magnitude values, l̂′rms, and at an intermediate value of the globular do-

main stiffness, kst = 19.23 pN.nm

Fig. 12 The effect of the linker equilibrium length on the persistence

length of a globular domain polymer, for a variety of globular domain stiff-

ness values, kst , and at an intermediate value of the relative fluctuation

magnitude, l̂′rms = 0.1.
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