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Abstract  

The benefit of regular physical activity and exercise training for the prevention of cardiovascular and 

metabolic diseases is undisputed. Many molecular mechanisms mediating exercise effects have been 

deciphered. Personalized exercise prescription can help patients in achieving their individual greatest 

benefit from an exercise-based cardiac rehabilitation programme. Yet, we still struggle to provide truly 

personalized exercise prescriptions to our patients.  

In this position paper, we address novel basic and translational research concepts that can help us 

understand the principles underlying the inter-individual differences in the response to exercise, and 

identify early on who would most likely benefit from which exercise intervention. This includes 

hereditary, non-hereditary and sex-specific concepts. Recent insights have helped us to take on a 

more holistic view, integrating exercise-mediated molecular mechanisms with those influenced by 

metabolism and immunity. Unfortunately, while the outline is recognizable, many details are still 

lacking to turn the understanding of a concept into a roadmap ready to be used in clinical routine. This 

position paper therefore also investigates perspectives on how ƚŚĞ ĂĚǀĞŶƚ ŽĨ ͚big dĂƚĂ͛ and the use of 

animal models could help unravel inter-individual responses to exercise parameters and thus influence 

hypothesis building for translational research in exercise-based cardiac rehabilitation. 

 

 Introduction  

Epidemiological and interventional studies have demonstrated a benefit of regular physical activity 

and exercise for the prevention of cardiovascular and metabolic diseases.1ʹ4 Exercise acts in a 

pleiotropic manner, addressing cardiac contractile and diastolic properties, muscle anabolic and 

catabolic pathways, substrate metabolism, and regulatory processes governing tissue perfusion and 

energy storage.5,6 

While physiological research of the past decades allowed us to understand these principal 

interactions, crucial questions remain on how to effectively implement exercise interventions in 

clinical therapy. Access and compliance to CR programmes remains a critical factor in the success of 

an exercise intervention, which requires a highly motivated multi-disciplinary team.7 But basic and 

translational research can also help, addressing questions regarding the personalization of exercise 

prescription, in order to improve efficacy of exercise interventions throughout the 

cardio/vascular/metabolic continuum. Why do some patients not respond to exercise-based cardiac 

rehabilitation (CR), and how can we identify them early on? What drives the difference in response to 

CR in men and women? How is the response to exercise influenced by metabolism, immunity and 

their interaction?  

In addition to that, research methodology is rapidly advancing, bringing different views on translation 

of biochemical findings into the clinics. HŽǁ ǁŝůů ƚŚĞ ĂĚǀĞŶƚ ŽĨ ͚big dĂƚĂ͛ influence hypothesis building 

for translational research in CR? What is the sense and nonsense of using animal models in modern CR 

research? 

In this position paper, we aim to address these future challenges for basic and translational research in 

exercise-based CR. We critically review recent studies dealing with the most important yet 

unanswered questions in the field, both in preclinical and clinical research. Finally, we pinpoint gaps in 

current evidence that deserve intensified attention in future research. 

 

 Future targets and open questions in translational cardiac rehabilitation research 
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While exercise-based 

intervention 

programmes are 

recommended in 

primary and secondary 

cardiovascular 

prevention,8,9 it has 

also become clear that 

exercise parameters ʹ 

type, intensity, 

duration, frequency ʹ 

differentially address 

cardio-vascular and 

metabolic endpoints, 

and that the quality 

and quantity of the 

response differs 

significantly between 

participants. In 

addition to improving 

implementation, it is 

the personalization of 

exercise interventions 

that is an important 

focus of current and 

future research. 

2.1 Why do some 

patients not respond? 

The improvement in 

maximal aerobic capacity (peak oxygen uptake, VO2peak) following exercise-based CR is related to 

survival in a wide range of cardiovascular diseases, independent of other important risk factors.10ʹ12 

Even small increments in VO2peak result in substantially lower risk for all-cause and cause-specific 

mortality.3 Although trials that investigated the effects of exercise-based CR on exercise capacity have 

consistently shown favourable and clinically significant changes,13,14 a large variability is seen in the 

individual training response (relative change in VO2ƉĞĂŬ ĨŽůůŽǁŝŶŐ ƚƌĂŝŶŝŶŐ͕ ѐVO2peak). This variability 

exists both in healthy subjects and in patients with established cardiovascular disease, when exposed 

to similar exercise programs.12,15,16 Recent studies have shown that up to 33% of patients fail to 

demonstrate a meaningful increase in VO2peak in response to CR, despite adequate compliance to 

training͘ TŚĞƐĞ ͚ŶŽŶ-ƌĞƐƉŽŶĚĞƌƐ͛ show a decrease in VO2peak, or an increase within the test-retest 

variability of VO2peak measurement (generally accepted to be ±6%).16ʹ18 The mechanisms driving this 

variability in ѐVO2peak are not well understood, nor do we have good predictors for the response to 

exercise intervention. Possible contributing factors are summarized in Figure 1. As we are moving into 

an era of personalized medicine, and exercise therapy needs to be individually tailored in order to 

 

Figure 1: Known factors possibly influencing the response to exercise 

training. These factors are grouped as cardiac, non-cardiac, external and 

comorbidities. They possibly influence  baseline VO2peak and/or 

ѐVO2peak, and are themselves determined by genetic, epigenetic, and 

environmental factors and drugs, nutrition and sex. CKD = chronic kidney 

disease, COPD = chronic obstructive pulmonary disease, VO2peak = peak 

ŽǆǇŐĞŶ ƵƉƚĂŬĞ͕ ѐVO2peak = relative change in VO2peak following exercise 

training. 
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generate the best response within the greatest safety margin, this is a field of research that requires 

urgent attention. 

 

One way of addressing this line of research is by performing 'secondary' responder analyses on 

existing datasets of original publications. This can be accomplished by quantifying the number of non-

responders and responders to different types of exercise interventions. For example, Williams et al. 

combined data from different laboratories that had compared training volumes ranging between high 

and moderate intensities, in populations of both healthy subjects and patients with established 

cardiovascular disease.19 When exercise was performed with great amounts and high intensities, the 

likelihood of subjects increasing their exercise capacity was significantly greater. Similarly, Montero et 

al. showed that healthy non-responders to an exercise training intervention did increase their VO2peak 

when subjected to greater training volumes.20 Yet, the evidence regarding the additional beneficial 

effects of higher exercise intensities is still conflicting.21 One could argue that the main determinant 

for improvements in exercise capacity is the total energy expenditure rather than the exercise 

intensity in these subjects. More comparative exercise intervention studies are needed to determine 

the inter-individual variability in exercise capacity caused by different types of exercise programs. 

 

It still remains to be elucidated which phenotypic and genotypic characteristics predict the response 

of a patient to these specific exercise interventions. Previous studies already suggested that in 

addition to exercise training characteristics (e.g. intensity, volume, type), common personal 

characteristics like age, sex, body mass index, and baseline physical fitness predict between 15-21% of 

variability in ѐVO2peak.13,15,17,19 Moreover, an additional physiological factor that may influence 

ѐVO2peak in patients with chronic heart failure (HF) is the circulatory response to acute exercise.22,23 

Considering the relatively low predictability of these factors, other more important factors that affect 

ѐVO2peak likely still need to be discovered. 

 

Heritability explains more than 50% of the inter-individual differences in cross-sectionally measured 

VO2peak.24,25 In addition, the Heritage Family study demonstrated that the change in VO2peak to 

exercise training intervention is also largely (47%) determined by heritable factors (i.e. genetic, 

epigenetic or familial environmental factors).26 Heritability of training-induced changes in 

haemodynamic response and skeletal muscle characteristics are also relatively high.27,28 Most 

importantly, the heritability of ѐVO2peak was independent of baseline VO2peak.29 This implies that 

even subjects with a low aerobic capacity may still substantially benefit from exercise training during 

CR.  

 

Previous research has used several approaches to improve our understanding of the genetics 

underlying the variability in VO2peak and ѐVO2peak. In the late 1990s Montgomery et al. assessed left-

ventricular wall thickness as a proxy for the response to exercise intervention in 140 army recruits.30 

Subjects with a specific mutation in the gene for the angiotensin converting enzyme showed no 

improvement in left ventricular mass, while in subjects without this mutation left ventricular mass 

increased by 22-26%. After this publication, ͚The human gene map for performance and health-

related fitness phenotypes͛ was created.31 Even though more than 200 autosomal gene variants and 

quantitative trait loci have been identified from this study, the authors noted that data was mainly 

derived from underpowered sample sizes. Therefore this study did not provide compelling evidence 

that DNA sequence variants in a given gene are associated with human variation in fitness and 
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performance traits.31 Interaction between gene variants and disease modifying factors add to the 

complexity. For example, a single nucleotide polymorphism (SNP) in the FTO gene is associated with 

higher risk for adiposity, but this interaction term was weaker in physically active people.32 

 

A means to overcome the focus on a single gene or locus could be transcriptome wide RNA expression 

profiling studies. Timmons et al. identified 11 SNPs in skeletal muscle, which were responsible for 

nearly 50% of the heritability of ѐVO2peak in healthy subjects.33 Genome-wide association studies 

could also provide unbiased insight into the genetics underlying baseline VO2peak as well as 

ѐVO2peak. Bouchard et al. discovered a total of 39 SNPs significantly associated with ѐVO2peak.34 

Unfortunately, there was no overlap between the genes identified by Timmons et al. and those 

reported by Bouchard et al.35 Another large genome-wide association study compared SNPs in 1520 

elite athletes with SNPs in 2760 non-athletes, and identified only a single SNP (in the GALNTL6 gene) 

that was more common in athletes.36 Hence, while previous studies have started to use hypothesis-

free methods to improve our understanding of the genetics underlying VO2peak and ѐVO2peak, there 

is still a long way to go. 

 

Post-translational modifications may also influence protein function. Indeed, several non-coding RNA 

species have been linked to VO2peak or ѐVO2peak. In healthy subjects, microRNAs are released into 

the circulation even after acute exercise, and exercise training induces long-term changes in their 

expression.37,38 In a rat model of HF, Souza et al. identified a set of 14 cardiac microRNAs of which 

expression was influenced by exercise training.39  Other studies have identified additional exercise-

responsive microRNAs in animal models of different cardiovascular diseases.38 To date, only two small 

studies have assessed the effect of exercise training on microRNA expression in human patients with 

established cardiovascular disease.40,41 Taurino et al. showed that miR-92a and miR-92b were 

upregulated after exercise-based CR in patients with coronary artery disease, coinciding with a 

downregulation of their gene targets.40 Xu et al. identified 3 miRNA dysregulated by acute exercise in 

HF patients, but a clear correlation with VO2peak was not found.41 More extensive studies, including 

larger numbers of patients and screening for more miRNA, are still needed before reliable conclusions 

can be drawn. 

 

Personalization of therapy also means that target parameters need to be chosen according to the 

clinical need of the patient, based on their underlying morbidities and risk profile. This is not 

necessarily always VO2peak, but can be improved submaximal exercise parameters, increased cardiac 

function, better glucose handling, reduced inflammation, or improved vascular stiffness.42ʹ46 Of note, 

target parameters of the exercise intervention might even change over time in each patient. 

 

 To summarize, the change in VO2peak to exercise training shows large inter-individual 

variability. Understanding how such inter-individual differences emerge is important, as a 

lower response is linked to poorer outcomes. ѐVO2peak seems to be regulated by the 

interaction between heritable factors and lifestyle ʹ including exercise parameters, SNPs, and 

non-coding RNAs ʹ but individual targets have yet to be confirmed. We need controlled 

randomized studies using multi-omics techniques (transcriptomics, genomics, proteomics and 

metabolomics) ƚŽ ŝĚĞŶƚŝĨǇ ƉŽƚĞŶƚŝĂů ƉĂƚŚǁĂǇƐ ŝŶ Ă ͚ƐǇƐƚĞŵƐ ďŝŽůŽŐǇ͛ ĂƉƉƌŽĂĐŚ͘ The complex 

interaction between lifestyle and heritable factors likely explains a large part of the individual 
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response to exercise training, and future studies should aim to improve our understanding of 

this interaction. 

2.2 The potential role of sex differences in response to   

In general, VO2peak is ~15% lower in women compared to men.47 Intriguingly, however, women seem 

to experience better clinical outcomes following exercise training, despite similar improvements in 

exercise capacity.48,49 While sex-specific effects thus likely play a key role in the clinical benefits 

associated with exercise interventions, the mechanisms responsible for these benefits remain poorly 

understood. 

Cardiac physiology as well as pathophysiology are markedly different between men and women. The 

main differences are summarized in Table 1. For a more extensive overview, we refer the reader to 

existing reviews.50ʹ52 

 

Table 1: Selected sex differences in cardiac physiology and pathophysiology 

Subject Sex difference Ref. 

Epidemiology: 

risk factors 

Premenopausal women have lower blood pressure compared to men, 

which is lost after menopause 

53 

When present, risk factors (hypertension, cholesterol levels, diabetes) 

are more often uncontrolled in women 

54ʹ57 

Epidemiology: 

cardiac disease 

Epicardial coronary artery disease is less common in women   58 

Heart failure: higher prevalence of preserved EF in women and of 

reduced EF in men 

59 

Acute coronary syndromes: in women more often due to spontaneous 

coronary artery dissection, Takotsubo syndrome, and microvascular 

angina 

60,61 

Cardiovascular 

structure and 

function 

LV volumes are smaller in women, even after adjustment for body size 62 

LV EF is higher in women and the increase in EF with age is larger in 

women 

63 

Reduction in LV systolic long axis contraction with age is larger in 

women 

64 

Increased vascular and LV stiffness in women 62 

Cardiomyocyte 

function 

Ion handling and rhythmicity differs in women, leading to higher rest 

heart rate, shorter PR and longer QT segments  

65,66 

Altered calcium handling in female cardiomyocytes, myofibrils require 

more time to relax 

67 

Female cardiac mitochondria suffer less oxidative damage under stress 68 

Cardiomyocytes have higher protein kinase A activity in women 69 

Cardiomyocyte loss with ageing is higher in women 70 

Response to 

treatment 

Women show higher mortality after coronary revascularization and 

cardiac surgery 

71,72 

Response to cardiac resynchronization therapy may be better in women 73 

Abbreviations: EF = ejection fraction, LV = left ventricular  
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Sex-specific hormones may explain part of these differences. In pre vs. postmenopausal women of 

similar age, blood pressure is lower, and left ventricular end-systolic volume, ejection fraction and 

filling rate are larger.74 The vasodilating properties of oestrogen may play a role.75 Also, RNA 

sequencing in cardiomyocytes revealed more than 600 genes with sexually dimorphic expression 

patterns.69 This adds to genetic differences due to male specific Y-chromosomal gene expression and 

differences in epigenetics (histone and DNA modifications, non-coding RNA expression).52 

Thus, in addition to the obvious endocrine differences between men and women, a variety of 

anatomical, genetical and molecular differences exists within the heart. These may influence not just 

cardiovascular disease progression, but also affect secondary prevention strategies. 

 

While central hemodynamic differences likely explain some of the sex-specific effects in response to 

CR,50 other factors are also involved. It is well established that cardiac disorders induce secondary 

impairments to the periphery, including endothelial and skeletal muscle dysfunction, which are closely 

linked to symptoms of exercise intolerance and prognosis.76 Surprisingly, it is still largely unclear how 

sex modulates the crosstalk of mechanisms governing the loss of endothelial, skeletal and cardiac 

function. A few studies have revealed that in patients with HF, mitochondrial enzymes in skeletal 

muscle show either no major changes or more pronounced deficits in men compared to women, with 

a greater shift towards glycolytic enzymes and type IIX fatigable fibres in men.77,78 In response to an 

aerobic endurance training intervention, evidence has revealed minor differences in terms of skeletal 

muscle biochemistry, with reports suggesting men with HF can increase the content of the slow 

myosin heavy chain isoform towards similar levels to that observed at baseline in women.79 Thus, 

women may experience a greater preservation of muscle oxidative function compared to men with 

HF, which could help to explain why women demonstrate greater clinical benefits after CR.48 The 

mechanisms underpinning the sex-specific differences in muscle physiology and effects of exercise 

intervention remain unclear. Hormonal effects of oestrogen regulation on mitochondrial dynamics 

and/or a preferential shift towards fatty acid oxidation in women may play a role, 80,81 but more 

extensive measures of muscle function and physiology and higher sample sizes are still required to 

confirm this.  

 

In addition to skeletal muscle alterations, endothelial dysfunction also develops in HF patients, both in 

men and women.82 Yet little data is available to clearly demonstrate whether any sex-specific 

alterations are present following CR in patients. Recent evidence from animals models of HF have 

shown that high-intensity interval training can attenuate endothelial dysfunction in both female and 

male rats, which seems to act via mechanisms specifically lowering oxidative stress in males and 

increasing endothelial nitric oxide synthase expression in females.83,84 Whether these molecular 

benefits are paralleled in male and female patients with HF remains unclear.  Furthermore, sex-

specific substrate utilisation could play a key role in the exercise response in women and may fill the 

above-mentioned gap in the literature with regards to the effectiveness of exercise-based CR. One 

example is that women rely on carbohydrates to a lesser extent but have a higher content of 

intramyocellular lipids.85 

 

While CR programs clearly reduce the risk of all-cause and cardiac-related mortality and improve 

quality of life, directly extrapolating these findings from men to women remains fraught with 

complexities since women have consistently been under-represented in previous trials.86 In large 

meta-analyses and randomized controlled trials, the amount of women recruited was 11-28%.50 Given 
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that women are also ~40 % less likely to enrol in CR and have a significantly lower adherence to the 

interventions compared to men, 87,88 the need to better understand sex-specific mechanisms in 

response to exercise training will first require rapid improvement in CR recruitment and adherence of 

women. Identification of sex-specific targets is likely to substantially improve outcomes following CR 

programmes by optimising training regimes. 

Nonetheless, women seem to benefit at least as much from exercise-based CR as men.48,89,90 The most 

recent Cochrane reviews which assessed the benefits of exercise-based CR concluded that exercise 

improves cardiovascular mortality and hospitalization (in patients with coronary artery disease) and 

improves ŚĞĂůƚŚͲƌĞůĂƚĞĚ ƋƵĂůŝƚǇ ŽĨ ůŝĨĞ (in patients with coronary artery disease or HF).91,92 The authors 

also clearly state that evidence for benefits of exercise-based CR in women is currently insufficient. 

Given the above mentioned physiological and pathophysiological differences between men and 

women, we cannot assume that exercise regimes which worked for men will also be effective for 

women.  

 

 To summarize, important differences exist in the response to CR in men and women. Besides 

obvious differences in cardiovascular and skeletal muscle structure, function and physiology, the 

underlying hormonal and molecular mechanisms are still understudied. Identification of sex -

specific targets might further improve outcomes after CR. 

2.3 Immune-metabolism interactions and inflammation 

Both enhanced activation and impaired resolution of inflammation are major underlying principles of 

cardiovascular and metabolic pathologies.93 Regular exercise training has been shown to lower 

systemic and vascular inflammatory load within a few weeks of intervention.46 This has been partly 

attributed to active secretion of anti-inflammatory myokines from skeletal muscle.94 While 

biochemical interactions of some myokines have been deciphered, it remains a major task to chart the 

network of biochemical interactions between energy demand by skeletal muscle contractile activity 

(affected by exercise parameters, such as duration, type and frequency) and the fine-tuning of 

inflammatory mechanisms. The recent years have brought a refinement in our understanding of 

inflammation in atherosclerosis, including the appreciation of resolution of inflammation as an active 

process, distinct from inhibition of inflammation, as well as the tight interactions between immune 

cell activation and their energy metabolism. Only a fraction of these newly understood mechanisms 

has been exploited in the context of the cardiovascular effects of regular exercise training. 

 

Resolution of inflammation versus anti-inflammation: The inability to resolve an ongoing inflammatory 

process is a hallmark of inflammatory degenerative processes, including atherosclerosis. On the one 

hand, innate immune-activating signals - ligands of pattern-recognition receptors, such as modified 

lipids - do not disappear in atherosclerosis, as it would happen in a ͚normal͛ injury. On the other hand, 

the production of pro-resolving mediators appears to be dysregulated. Anti-inflammatory therapies 

have been employed more or less successfully in secondary cardiovascular prevention. However, 

therapeutic success appears to depend on the inflammatory signalling mechanism targeted, likely 

interleukin-1 and interleukin-6 signalling, and may be flawed by increased incidence of lethal 

infections.95,96 In addition, blocking inflammation also appears to block resolving mechanisms, the 

removal of apoptotic particles and cell debris as well as the induction of regenerative processes. 97  

The termination of an acute inflammatory response is normally governed by both the decay of pro-

inflammatory signals, as well as the active production of pro-resolving factors.98 A number of studies 
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support the ability of exercise - ranging from a single session of high-intensity interval exercise to a 3-

month multicomponent exercise programme ʹ to reduce cellular responsiveness to toll-like receptor -

mediated signalling, induced by damage-associated molecular patterns.99ʹ101  

Dietary interventions targeting synthesis of specialized resolving mediators (SPM) have been tested 

for some time now and it becomes evident that both, the dosage and the formulation might be 

relevant to their success in cardiovascular prevention.102 In contrast, only few studies have 

systematically addressed the effects of exercise intervention on the release of SPMs ʹ resolvins, 

lipoxins, protectins and maresins ʹ but the existing literature indicates an increase in SPM release by 

regular exercise.103ʹ105 This might be attributed to acute and chronic effects: strain and acute release 

of pro-inflammatory mediators are associated with SPM release in acute high-intensity exertion, while 

chronic effects of exercise intervention might be connected to the exercise-mediated shift in 

macrophage polarization towards the M2-like phenotype.103,105,106 M2-like macrophages are better 

suited to perform efferocytosis than the M1-like phenotype and it is during efferocytosis that SPMs 

are released.107 Thus, we know that regular exercise is associated with a shift towards the more pro-

resolving macrophage spectrum, as well as higher levels of pro-resolving mediators, but we do not 

know which exercise parameters (e.g. intensity, volume, type) could be used to boost this effect, nor 

whether a combination with dietary approaches to supplement SPMs could potentiate the effects of 

exercise intervention on cardiovascular inflammation (Figure 2).  

 

Energy metabolism and inflammation: From tumour biology, we know that increased glycolysis and 

glutaminolysis provide energy flexibility to the cell and generate intermediates that feed into anabolic 

processes - probably the reason why glycolysis is preferred over oxidative phosphorylation by 

proliferating tumour cells.108ʹ110 In a similar manner, glycolysis is preferred by activated and 

proliferating myeloid and lymphoid cells111 and stimulating glycolysis can activate macrophages.112 In 

addition, M1-type macrophages feature a ͚broken͛ Krebs cycle, with increased output of intermediates 

that serve as substrates in the synthesis of pro-inflammatory mediators, or are pro-inflammatory 

 

Figure 2: Known and unknown interactions between exercise, nutrition and pro-resolving 

macrophage polarization and function in cardiovascular disease. CVD = cardiovascular disease, 

DAMP = damage-associated molecular patterns. 
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mediators in themselves.113 114,115 In contrast, ͚alternative͛ M2-like macrophages favour oxidative 

phosphorylation and fatty acid oxidation.116,117 Indeed, oxidative phosphorylation was a prerequisite of 

M2-type phenotypic macrophage polarization.117  

Of note, the complex spectrum of M2-like macrophage phenotypes recognized with their diverse roles 

in atherosclerosis, have not been charted in detail for their inflammation-resolving and energy 

metabolism phenotype yet, nor regarding the effect of exercise in their polarization. Similarly, NK cells 

and various T lymphocyte populations react to acute and chronic exercise and contribute to both, 

polarization of innate immune cells and functionality of various tissues and organs, including distinct 

fat depots (perivascular, subcutaneous, visceral).118 

 

Both the amount and type of energy substrates provided and physical exercise can affect the 

phenotype of monocytes and macrophages.112,119ʹ122 Energy sensors, such as AMP-dependent kinase , 

can be targeted by both diet and exercise. On the way to personalized lifestyle-based therapies, we 

need to learn more about the integration of exercise parameters (e.g. type, intensity, frequency, 

volume) with diet (e.g. macronutrient composition, amount and timing of eating/fasting) and 

pharmacological means to modulate energy metabolism and (thereby) activation state of 

inflammatory cells.123ʹ127 Of note, activation of the relevant mechanisms might shift between 

individuals, being influenced by a number of factors such as hormonal status/sex, age, 

pharmacotherapy and co-morbidities as well as genetic background.128ʹ130 

 

 To summarize, macrophage phenotype shift, leading to reduced release of pro-inflammatory 

mediators and an increased release of pro-resolving mediators, might well be a nexus of exercise-

mediated anti-inflammatory and metabolic cardio-protective effects. The available seminal data, 

however, requires a better resolution: continuously improved techniques of single-cell immuno-

phenotyping131 and assessment of cellular metabolism132 allow for the fine-mapping of immune-

inflammatory interactions and can be used to develop diagnostic tools, assessing individual 

response to exercise and personalizing exercise parameters. In addition, better understanding of 

the cellular and molecular nodes of the immuno-metabolic network might help to optimize 

exercise parameters on an individual level to improve cardio-vascular and metabolic benefit, 

potentially in combination with pharmacological and diet-based approaches. 

 

 Challenges and opportunities in translational CR research methodology  

The advent of high-throughput molecular techniques, single-cell diagnostics and organs-on-a-chip 

have opened countless opportunities in exercise research, but some important challenges have 

surfaced simultaneously. How can we successfully pinpoint important findings within these vast 

datasets? And if computers can handle increasingly complex tasks, what is the use of animal models in 

the future?  

3.1 Impact of ͚big dĂƚĂ͛ and artificial intelligence  translational research in CR  

As analytical techniques evolve, new challenges arise with regards to handling the enormous amount 

of data they generate. This is especially true in the area of genomics, epigenomics, proteomics and 

metabolomics, but also applies to datasets obtained from large clinical trials or registries, and 

epidemiological research.133 These datasets cannot be readily viewed on any computer, which 

ĐŽŵƉůŝĐĂƚĞƐ ŚƵŵĂŶ ƉĂƚƚĞƌŶ ƌĞĐŽŐŶŝƚŝŽŶ͘ MŽƌĞŽǀĞƌ͕ ƚŚĞ ĂŶĂůǇƐŝƐ ŽĨ ͚ďŝŐ ĚĂƚĂ͛ ƌĞƋƵŝƌĞƐ ĂĚĚŝƚŝŽŶĂů 
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ƐƚĂƚŝƐƚŝĐĂů ƉƌĞĐĂƵƚŝŽŶ͕ ƚĂŬŝŶŐ ŝŶƚŽ ĂĐĐŽƵŶƚ ƚŚĞ ŝŶĐƌĞĂƐĞĚ ͚ŶŽŝƐĞ͛ ŽĨ ŚŝŐŚ-throughput techniques.134 

NŽǀĞů ͚ĚĂƚĂ ŵŝŶŝŶŐ͛ ƚĞĐŚŶŝƋƵĞƐ ŚĂǀĞ ďĞen developed to derive relationships and statistical inference 

from these datasets, often relying on some form of artificial intelligence. These techniques, grouped 

ƵŶĚĞƌ ƚŚĞ ƚĞƌŵ ͚ŵĂĐŚŝŶĞ ůĞĂƌŶŝŶŐ͕͛ ĐĂŶ ďĞ ĞŝƚŚĞƌ ƐƵƉĞƌǀŝƐĞĚ ;ƚŚĞ ƵƐĞƌ ĚĞƚĞƌŵŝŶĞƐ ƚŚĞ ƌĞůĂƚŝon 

between subjects) such as traditional regression analysis, or unsupervised (the computer determines 

the relation between subjects), such as clustering analysis.135,136 

 

Some of these novel techniques have already been applied to translational exercise research. In 2009, 

Goud et al. set up a cluster-randomized trial in 21 CR centres, comparing effects of a computerized 

decision support system to standard care.137 In centres implementing the decision support system, 

concordance with CR guideline recommendations were modestly increased, reducing both over- and 

under-treatment. Further efforts have been made with regard to artificial intelligence-based exercise 

prescription.138ʹ142 Most of these studies describe a framework to automate exercise prescription 

based on patient demographics, comorbidities, test results and reason for referral. Randomized 

clinical trials evaluating these fully computerized exercise prescription are still lacking. 

Finally, the vast amount of data obtained from wearable devices opens up possibilities for data-driven 

personalization strategies. For example, one study succeeded in predicting active energy expenditure 

(a predictor of ѐVO2peak) from photo-plethysmographic heart rate measurements, even in patients 

under beta blocker therapy.143 

 

But many more possibilities of ͚big data͛ and machine learning exist in the field of CR, which we will 

demonstrate at the hand of two examples from other areas within cardiovascular research: imaging 

and phenotyping. 

Imaging is especially suited for the application of machine learning because images contain a rich 

amount of data both within the image itself and through extraction of quantitative features.135 

Furthermore, powerful computational approaches to handle image data have undergone extensive 

development within academic clinical research and non-medical fields such as facial recognition and 

image searching. 144 Combined with recent availability of large imaging datasets,145 this has meant 

artificial intelligence approaches to identify images, automatically quantify image features and predict 

disease from the patterns in the image have developed rapidly within cardiology and radiology.135 As a 

result, automated quantification is now entering clinical use, but broader diagnostic application will 

require robust clinical validation before adoption.146 Of particular interest in CR will be to understand 

whether imaging after cardiac events (e.g. echocardiography) contains information of value for 

prediction of outcome, risk of HF and likelihood of response to exercise interventions. 

 

Another approach of unsupervised machine learning is to find clusters of similar data items: subjects 

in the same cluster are similar to each other, and dissimilar to subjects in other clusters. This can aid in 

discovering subtypes of patients with a certain disease. For example, machine learning has been able 

to identify clusters of patients with HF based on their baseline characteristics and test results 

(including cardiopulmonary exercise tests).147ʹ150 Phenotyping through machine learning predicted the 

prognosis of HF patients, and performed better compared to traditional predictors such as ejection 

fraction.149 

 

A major concern ŽĨ ĂƌƚŝĨŝĐŝĂů ŝŶƚĞůůŝŐĞŶĐĞ ŝƐ ƚŚĞ ͚ďůĂĐŬ ďŽǆ͛ ƉŚĞŶŽŵĞŶŽŶ͘ MŽƌĞ ĐŽŵƉůĞǆ machine 

learning processes, such as neural networks, build layer upon layer of automated decisions up to a 
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point where it is impossible to retrace the individual steps.151 Thus, while some neural networks have 

been proven to outperform humans (for example in image recognition152), it is often hard to assess 

how the computer reached its decision or classification. OŶĞ ƚĞĐŚŶŝƋƵĞ ƚŽ ŽǀĞƌĐŽŵĞ ƚŚĞ ͚ďůĂĐŬ ďŽǆ͛ ŝƐ 
ƚŽ ĂƐŬ ƚŚĞ ĐŽŵƉƵƚĞƌ ƚŽ ƐŝŵƵůƚĂŶĞŽƵƐůǇ ĐƌĞĂƚĞ Ă ƐŝŵƉůĞƌ ͚ƐƵƌƌŽŐĂƚĞ͛ ŵŽĚĞů ƚŽ ŐĂŝŶ ŝŶƐŝŐŚƚ ŝŶ ƚŚĞ 
reasoning process.153 

Also, while the decision process can be fully automated and intelligent, large datasets still need to be 

imputed to train machine learning models. Availability of enough training data is currently still an 

issue, but the increased promotion of open science and data sharing will hopefully provide an answer 

to this problem soon. 

Finally, a major challenge will be to convert artificial intelligence-derived predictions and 

recommendations into effective action. Better phenotyping and improved risk stratification do not 

automatically lead to improve health. To truly achieve a health care transformation, behavioural 

changes are needed at both patient and physician level.154 For example, artificial intelligence may 

ŝŵƉƌŽǀĞ ĞǆĞƌĐŝƐĞ ƉƌĞƐĐƌŝƉƚŝŽŶ͕ ďƵƚ Ă ƉĂƚŝĞŶƚ͛Ɛ ŚĞĂůƚŚ ǁŝůů ŽŶůǇ ŝŵƉƌŽǀĞ ŝĨ ŚŝƐ Žƌ ŚĞƌ ƉŚǇƐŝĐŝĂŶ 
implements this improved prescription in practice, and he or she adheres to the prescribed training. 

 

 To summarize, early applications in CR research and advanced examples from imaging and 

phenotyping studies show that the advent of ͚big data͛ and machine learning will likely change 

current practice. Major challenges include picking up useful signals between increased noise in 

big datasets, ƚŚĞ ͚ďůĂĐŬ ďŽǆ͛ ƉŚĞŶŽŵĞŶŽŶ͕ ĂŶĚ implementing behavioural changes based on 

computerized recommendations. We suggest some future research areas in Table 2. 

 

Table 2: Suggested research areas for application of data mining and machine learning in exercise-

based CR 

Data Source Suggested Application Examples 

Cardiopulmonary 

exercise test raw data 

Improve risk stratification Discover novel prognostic 

variables 

Detection of subliminal patterns Exercise oscillatory ventilation 

Autonomic dysfunction 

Baseline data 

(including imaging) of 

large exercise studies 

Discover novel subtypes / phenogroups  Different phenotypes of heart 

failure 147ʹ150 

Improve diagnostic process AI-driven diagnosis of left 

ventricular dysfunction 

Outcome data of large 

exercise studies 

Improve prescription of CR AI-driven exercise prescription, 

similar to human-driven Expert 

tool 141,142 

Omics (genomics, 

epigenomics, 

proteomics, 

metabolomics) 

Prediction of low or high response to CR 

 

Presence of certain SNP 

indicates better response 33,34 

Improve prescription of CR Presence of certain SNP 

indicates better response to 

certain training modality  

AI = artificial intelligence, CR = cardiac rehabilitation, SNP = single nucleotide polymorphism 
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3.2 Sense and nonsense of animal models 

Appropriate animal models are important to unravel the molecular mechanisms for how exercise-

based CR mediates its beneficial effects. Small rodents in particular are attractive models for 

cardiovascular research, possessing unique properties such as easy handling, short gestation time and 

low costs. Perhaps most important is the availability of transgenic mice and rats, which allow the 

possibility to study the involvement of specific molecules in transmitting the positive effect of exercise 

training, which otherwise would not be possible in humans. Nevertheless, a certain scepticism is 

warranted based on whether animal models appropriately translate to humans, which has resulted 

(and rightly so) in the value of such research being questioned.155ʹ157 

 

An ideal disease model should mimic the human condition genetically, experimentally and 

physiologically. Therefore, using inbred mouse strains may not reflect the response generated in a 

genetically polymorphic human population, which may be one reason for the failure of many 

promising preclinical drugs when translated into human clinical trials. In support, a recently published 

comment stated that >80% of potential therapeutics fail when tested in humans, even after animal 

studies have provided evidence that the treatment is safe and effective.158 One future avenue to 

circumvent such translational problems may reside in the use of humanized models, whereby mice 

expressing human transgenes or engrafted human cells/tissue are used in preclinical research.159 

Obviously, generating diseased animal models due to genetic defects is much easier than trying to 

mimic a more complex disease pattern, where several comorbidities contribute to the final clinical 

phenotype. One contemporary example of such a complex disease is heart failure with preserved 

ejection fraction (HFpEF). Since the development of HFpEF is driven by several comorbidities, which 

include hypertension, diabetes, obesity and ageing,160ʹ162 it remains difficult to define an animal model 

that appropriately mimics the HFpEF phenotype. As of yet, the animal models used to probe molecular 

changes occurring in HFpEF and in response to exercise training have been predominantly based on a 

single risk factor such as aging or hypertension.83,163,164 More recently this line of research included a 

more clinically relevant animal model, in a way that HFpEF develops due to the onset of multiple 

comorbidities that mirror a metabolic syndrome.84,165ʹ167 Another problem with appropriate animal 

models may be that most models develop over a short time period, whereas in humans sometimes 

several years or decades pass before a clear phenotype is established. 

 

Animals used for cardiovascular exercise studies most commonly range from small rodents (e.g. mice, 

rats) to large animals (e.g. rabbits, canine, goats, sheep, pigs, horses).168ʹ173 In these animal models 

exercise can either be voluntary (e.g., animal cage is equipped with a running wheel) or forced (e.g., 

animal is placed onto a treadmill for a specific period). Many exercise training studies have been 

employed using a variety of animal models of diseases that include HF,165,174,175 diabetes,176,177 and 

neurodegenerative diseases.178 Beside the classical animal models (mouse and rat) used to analyse the 

effect of exercise training on molecular and physiological parameters, more recently other species 

have been used such as drosophila and zebrafish.179ʹ182 Exercise training in drosophila results in 

improvements of physiological and molecular measures, which include enhanced climbing speed, 

flight performance, aconitase levels, and cardiac contractility. Clearly, while the main advantage of 

using flies as an animal model is that you can train several thousand flies simultaneously, the question 

of whether and to what extent these findings translate to humans looms large. We also have to keep 

in mind that it is even more difficult in animal models to control for activity levels. In human studies 
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most of the patients recruited into an exercise study exhibit a very low exercise level, which is difficult 

to control for in animals.  

 

 To summarize, the ͚sense͛ to use animal models to investigate the benefits associated with 

exercise in disease is difficult to refute: animal studies have often provided the initial clues to help 

elucidate how exercise exerts its benefits for treating disease. However, animal research can also 

provide much ͚nonsense͛ when translated to humans. Future studies should therefore continue 

focusing on developing more complex and robust animal models of disease that closely reflect the 

human condition.  

 

 Conclusion and Outlook 

Exercise-based CR has consistently shown positive effects on the course of cardiovascular disease.  

However, recent studies showed that there is a large variation in training effects at the individual level, 

with up to one third of patients failing to demonstrate a significant increase in exercise capacity 

despite adequate compliance. Therefore, in order to improve the effects of exercise-based CR it is 

crucial to (1) gain more in-depth knowledge on the determinants and mechanisms governing the 

response to exercise in the organs - beyond the skeletal muscle, heart and vascular system - and (2) to 

acknowledge their interaction at a systemic level. 

Heritable and non-heritable factors each determine approximately 50% of inter-individual 

heterogeneity in ѐVO2peak. High-throughput technologies in combination with improved bio-

informatics and bio-statistical approaches can help identify major regulatory nodes among large 

datasets that cannot be readily interpreted otherwise.  

Sex-specific differences in the response to exercise in cardiovascular therapy are severely 

understudied. Although endocrine, anatomical and molecular differences between men and women 

are assumed to play a role, the exact mechanisms remain largely unknown. Future research therefore 

needs to include sufficient numbers of female patients to address these issues.  

Based on these studies, a concise, easy-to-use panel of markers that could help personalize exercise 

parameters could be developed. This panel could include regulatory nodes identified in clusters of 

patients through their classical risk profile, but also inflammatory and metabolic status, and genetic 

traits identified through advanced bio-statistics. Finally, while animal models have inherent limitations 

complicating translation to humans, complex and robust animal models closely reflecting human 

cardiovascular diseases will be needed to test the hypotheses mentioned and to gain further insight in 

the complex physiology of exercise-based CR. 
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